A Southern Portuguese Margin Perspective of Marine Isotope Stage 47—An Interglacial in the 41 kyr World
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Setting and Material
2.2. Methods
2.2.1. Stable Isotope Analyses
2.2.2. Lipid Biomarker Analyses
2.2.3. Planktonic Foraminifera Assemblage
2.2.4. Coccolithophore Data
2.3. Age Model and Sedimentation Rates
3. Results
3.1. Stable Isotope Records
3.2. Weight Percentage of Sand-Sized Fraction
3.3. Sea Surface Temperatures
3.4. Planktonic Foraminifera Assemblage
3.5. Calcareous Nannofossil Warm Water Taxa Abundance
4. Discussion
4.1. Hydrographic Conditions at the Seafloor–Upper MOW Influence
4.2. The Terminal Stadial Event of MIS 48
4.3. Millennial-Scale Variability during Late MIS 47 and MIS 46
4.4. Interglacial Climate Variability during MIS 47
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. List of Planktonic Foraminifera Species Summed Up as
- (a)
- Subtropical species
- (b)
- Tropical species
References
- Clark, P.U.; Archer, D.; Pollard, D.; Blum, J.D.; Rial, J.A.; Brovkin, V.; Mix, A.C.; Pisias, N.G.; Roy, M. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 2006, 25, 3150–3184. [Google Scholar] [CrossRef]
- Raymo, M.E.; Nisancioglu, K.H. The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography 2003, 18, 11–16. [Google Scholar] [CrossRef]
- Aubry, M.-P.; Couvering, J.A.V.; Christie-Blick, N.; Landing, E.; Pratt, B.R.; Owen, D.E.; Ferrusquía-Villafranca, I. Terminology of geological time: Establishment of a community standard. Stratigraphy 2009, 6, 100–105. [Google Scholar]
- Barker, S.; Starr, A.; van der Lubbe, J.; Doughty, A.; Knorr, G.; Conn, S.; Lordsmith, S.; Owen, L.; Nederbragt, A.; Hemming, S.; et al. Persistent influence of precession on northern ice sheet variability since the early Pleistocene. Science 2022, 376, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Liautaud, P.R.; Hodell, D.A.; Huybers, P.J. Detection of significant climatic precession variability in early Pleistocene glacial cycles. Earth Planet. Sci. Lett. 2020, 536, 116137. [Google Scholar] [CrossRef]
- Morée, A.L.; Sun, T.; Bretones, A.; Straume, E.O.; Nisancioglu, K.; Gebbie, G. Cancellation of the Precessional Cycle in δ18O Records During the Early Pleistocene. Geophys. Res. Lett. 2021, 48, e2020GL090035. [Google Scholar] [CrossRef]
- Raymo, M.E.; Lisiecki, L.E.; Nisancioglu, K.H. Plio-Pleistocene Ice Volume, Antarctic Climate, and the Global δ18O Record. Science 2006, 313, 492–495. [Google Scholar] [CrossRef]
- Billups, K.; Scheinwald, A. Origin of millennial-scale climate signals in the subtropical North Atlantic. Paleoceanography 2014, 29, 612–627. [Google Scholar] [CrossRef]
- Donders, T.; Panagiotopoulos, K.; Koutsodendris, A.; Bertini, A.; Mercuri, A.M.; Masi, A.; Combourieu-Nebout, N.; Joannin, S.; Kouli, K.; Kousis, I.; et al. 1.36 million years of Mediterranean forest refugium dynamics in response to glacial–interglacial cycle strength. Proc. Natl. Acad. Sci. USA 2021, 118, e2026111118. [Google Scholar] [CrossRef]
- Hodell, D.A.; Channell, J.E.T. Mode transitions in Northern Hemisphere glaciation: Co-evolution of millennial and orbital variability in Quaternary climate. Clim. Past 2016, 12, 1805–1828. [Google Scholar] [CrossRef]
- Weber, M.E.; Bailey, I.; Hemming, S.R.; Martos, Y.M.; Reilly, B.T.; Ronge, T.A.; Brachfeld, S.; Williams, T.; Raymo, M.; Belt, S.T.; et al. Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years. Nat. Commun. 2022, 13, 2044. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; McManus, J.F.; Clemens, S.C.; Zhang, X.; Vogel, H.; Hodell, D.A.; Guo, F.; Wang, T.; Liu, X.; An, Z. Persistent orbital influence on millennial climate variability through the Pleistocene. Nat. Geosci. 2021, 14, 812–818. [Google Scholar] [CrossRef]
- Lenton, T.M. Early warning of climate tipping points. Nat. Clim. Chang. 2011, 1, 201–209. [Google Scholar] [CrossRef]
- Rousseau, D.D.; Bagniewski, W.; Ghil, M. Abrupt climate changes and the astronomical theory: Are they related? Clim. Past 2022, 18, 249–271. [Google Scholar] [CrossRef]
- Hodell, D.; Lourens, L.; Crowhurst, S.; Konijnendijk, T.; Tjallingii, R.; Jiménez-Espejo, F.; Skinner, L.; Tzedakis, P.C.; Abrantes, F.; Acton, G.D.; et al. A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin. Glob. Planet. Chang. 2015, 133, 49–64. [Google Scholar] [CrossRef]
- Bajo, P.; Drysdale, R.N.; Woodhead, J.D.; Hellstrom, J.C.; Hodell, D.; Ferretti, P.; Voelker, A.H.L.; Zanchetta, G.; Rodrigues, T.; Wolff, E.; et al. Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition. Science 2020, 367, 1235–1239. [Google Scholar] [CrossRef]
- Mega, A.; Salgueiro, E.; Padilha, M.; Rodrigues, T.; Kuhnert, H.; Voelker, A.H.L. Incursions of extremely cold polar surface waters at the Gulf of Cadiz during the Early-to-Middle Pleistocene Transition. Clim. Past, 2022; in preparation. [Google Scholar]
- Rodrigues, T.; Alonso-García, M.; Hodell, D.A.; Rufino, M.; Naughton, F.; Grimalt, J.O.; Voelker, A.H.L.; Abrantes, F. A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin. Quat. Sci. Rev. 2017, 172, 118–130. [Google Scholar] [CrossRef]
- Voelker, A.H.L.; Salgueiro, E.; Rodrigues, T.; Jimenez-Espejo, F.J.; Bahr, A.; Alberto, A.; Loureiro, I.; Padilha, M.; Rebotim, A.; Röhl, U. Mediterranean Outflow and surface water variability off southern Portugal during the early Pleistocene: A snapshot at Marine Isotope Stages 29 to 34 (1020–1135 ka). Glob. Planet. Chang. 2015, 133, 223–237. [Google Scholar] [CrossRef]
- Voelker, A.H.L.; Jimenez-Espejo, F.J.; Bahr, A.; Rebotim, A.; Cavaleiro, C.; Salgueiro, E.; Röhl, U. Data report: IODP Site U1387: The revised splice between Sections U1387B-18X-3 and U1387C-8R-3 (>171.6 mcd). Proc. Integr. Ocean Drill. Program 2018, 339, 1–11. [Google Scholar] [CrossRef]
- Voelker, A.H.L.; Rodrigues, T.; Padilha, M.; Jiménez-Espejo, F.J.J.; Salgueiro, E.; Kuhnert, H. Early to Middle Pleistocene Climate Records off Southern Iberia Reveal two Types of Interglacial Climate Evolution. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016; p. PP31B-2274. [Google Scholar]
- Daniault, N.; Mercier, H.; Lherminier, P.; Sarafanov, A.; Falina, A.; Zunino, P.; Pérez, F.F.; Ríos, A.F.; Ferron, B.; Huck, T.; et al. The northern North Atlantic Ocean mean circulation in the early 21st century. Prog. Oceanogr. 2016, 146, 142–158. [Google Scholar] [CrossRef]
- Boyer, T.P.; Garcia, H.E.; Locarnini, R.A.; Zweng, M.M.; Mishonov, A.V.; Reagan, J.R.; Weathers, K.A.; Baranova, O.K.; Seidov, D.; Smolyar, I.V. World Ocean Atlas 2018 [Temperature]. 2018, NOAA National Centers for Environmental Information. Available online: https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (accessed on 3 May 2022).
- Schlitzer, R. Ocean Data View. 2021. Available online: https://odv.awi.de (accessed on 14 May 2022).
- Hernández-Molina, F.J.; Sierro, F.J.; Llave, E.; Roque, C.; Stow, D.A.V.; Williams, T.; Lofi, J.; Van der Schee, M.; Arnáiz, A.; Ledesma, S.; et al. Evolution of the gulf of Cadiz margin and southwest Portugal contourite depositional system: Tectonic, sedimentary and paleoceanographic implications from IODP expedition 339. Mar. Geol. 2016, 377, 7–39. [Google Scholar] [CrossRef]
- Hernández-Molina, F.J.; Llave, E.; Stow, D.A.V.; García, M.; Somoza, L.; Vázquez, J.T.; Lobo, F.J.; Maestro, A.; Díaz del Río, V.; León, R.; et al. The contourite depositional system of the Gulf of Cádiz: A sedimentary model related to the bottom current activity of the Mediterranean outflow water and its interaction with the continental margin. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 1420–1463. [Google Scholar] [CrossRef]
- Llave, E.; Schönfeld, J.; Hernandez-Molina, F.J.; Mulder, T.; Somoza, L.; Diaz del Rio, V.; Sanchez-Almazo, I. High-resolution stratigraphy of the Mediterranean outflow contourite system in the Gulf of Cadiz during the late Pleistocene: The impact of Heinrich events. Mar. Geol. 2006, 227, 241–262. [Google Scholar] [CrossRef]
- Tzedakis, P.C.; Crucifix, M.; Mitsui, T.; Wolff, E.W. A simple rule to determine which insolation cycles lead to interglacials. Nature 2017, 542, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Rohling, E.J.; Yu, J.; Heslop, D.; Foster, G.L.; Opdyke, B.; Roberts, A.P. Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years. Sci. Adv. 2021, 7, eabf5326. [Google Scholar] [CrossRef]
- Rohling, E.J.; Foster, G.L.; Grant, K.M.; Marino, G.; Roberts, A.P.; Tamisiea, M.E.; Williams, F. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 2014, 508, 477–482. [Google Scholar] [CrossRef]
- Chalk, T.B.; Hain, M.P.; Foster, G.L.; Rohling, E.J.; Sexton, P.F.; Badger, M.P.S.; Cherry, S.G.; Hasenfratz, A.P.; Haug, G.H.; Jaccard, S.L.; et al. Causes of ice age intensification across the Mid-Pleistocene Transition. Proc. Natl. Acad. Sci. USA 2017, 114, 13114–13119. [Google Scholar] [CrossRef]
- Yan, Y.; Bender, M.L.; Brook, E.J.; Clifford, H.M.; Kemeny, P.C.; Kurbatov, A.V.; Mackay, S.; Mayewski, P.A.; Ng, J.; Severinghaus, J.P.; et al. Two-million-year-old snapshots of atmospheric gases from Antarctic ice. Nature 2019, 574, 663–666. [Google Scholar] [CrossRef]
- Grant, K.M.; Amarathunga, U.; Amies, J.D.; Hu, P.; Qian, Y.; Penny, T.; Rodriguez-Sanz, L.; Zhao, X.; Heslop, D.; Liebrand, D.; et al. Organic carbon burial in Mediterranean sapropels intensified during Green Sahara Periods since 3.2 Myr ago. Commun. Earth Environ. 2022, 3, 11. [Google Scholar] [CrossRef]
- Bahr, A.; Kaboth, S.; Jiménez-Espejo, F.J.; Sierro, F.J.; Voelker, A.H.L.; Lourens, L.; Röhl, U.; Reichart, G.J.; Escutia, C.; Hernández-Molina, F.J.; et al. Persistent monsoonal forcing of Mediterranean Outflow Water dynamics during the late Pleistocene. Geology 2015, 43, 951–954. [Google Scholar] [CrossRef]
- Sierro, F.J.; Hodell, D.A.; Andersen, N.; Azibeiro, L.A.; Jimenez-Espejo, F.J.; Bahr, A.; Flores, J.A.; Ausin, B.; Rogerson, M.; Lozano-Luz, R.; et al. Mediterranean Overflow Over the Last 250 kyr: Freshwater Forcing From the Tropics to the Ice Sheets. Paleoceanogr. Paleoclimatol. 2020, 35, e2020PA003931. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Hernández-Molina, F.J.; Alvarez Zarikian, C.A. The Expedition 339 Scientists. Mediterranean Outflow. In Proceedings of the IODP 2013, 16 November 2011–16 January 2012; Volume 339. [Google Scholar] [CrossRef]
- Peliz, A.; Dubert, J.; Santos, A.M.P.; Oliveira, P.B.; Le Cann, B. Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: An overview. Deep Sea Res. Part I Oceanogr. Res. Pap. 2005, 52, 621–646. [Google Scholar] [CrossRef]
- Peliz, A.; Marchesiello, P.; Santos, A.M.P.; Dubert, J.; Teles-Machado, A.; Marta-Almeida, M.; Le Cann, B. Surface circulation in the Gulf of Cadiz: 2. Inflow-outflow coupling and the Gulf of Cadiz slope current. J. Geophys. Res. 2009, 114, C03011. [Google Scholar] [CrossRef]
- Brambilla, E.; Talley, L.D.; Robbins, P.E. Subpolar Mode Water in the northeastern Atlantic: 2. Origin and transformation. J. Geophys. Res. 2008, 113, C04026. [Google Scholar] [CrossRef]
- Fiuza, A.F.G.; Hamann, M.; Ambar, I.; del Rio, G.D.; Gonzalez, N.; Cabanas, J.M. Water masses and their circulation off western Iberia during May 1993. Deep Sea Res. Part I 1998, 45, 1127–1160. [Google Scholar] [CrossRef]
- Voelker, A.H.L.; Colman, A.; Olack, G.; Waniek, J.J.; Hodell, D. Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 116, 89–106. [Google Scholar] [CrossRef]
- Carracedo Segade, L.I.; Gilcoto, M.; Mercier, H.; Pérez, F.F. Quasi-synoptic transport, budgets and water mass transformation in the Azores–Gibraltar Strait region during summer 2009. Prog. Oceanogr. 2015, 130, 47–64. [Google Scholar] [CrossRef]
- Rios, A.F.; Perez, F.F.; Fraga, F. Water Masses in the Upper and Middle North-Atlantic Ocean East of the Azores. Deep Sea Res. Part A-Oceanogr. Res. Pap. 1992, 39, 645–658. [Google Scholar] [CrossRef]
- Relvas, P.; Barton, E.D.; Dubert, J.; Oliveira, P.B.; Peliz, A.; da Silva, J.C.B.; Santos, A.M.P. Physical oceanography of the western Iberia ecosystem: Latest views and challenges. Prog. Oceanogr. 2007, 74, 149–173. [Google Scholar] [CrossRef]
- Sanchez, R.F.; Relvas, P. Spring-summer climatological circulation in the upper layer in the region of Cape St. Vincent, Southwest Portugal. ICES J. Mar. Sci. 2003, 60, 1232–1250. [Google Scholar] [CrossRef]
- Oezgoekmen, T.M.; Chassignet, E.P.; Rooth, C.G.H. On the connection between the Mediterranean Outflow and the Azores Current. J. Phys. Oceanogr. 2001, 31, 461–480. [Google Scholar] [CrossRef]
- Fründt, B.; Müller, T.J.; Schulz-Bull, D.E.; Waniek, J.J. Long-term changes in the thermocline of the subtropical Northeast Atlantic (33° N, 22° W). Prog. Oceanogr. 2013, 116, 246–260. [Google Scholar] [CrossRef]
- Baringer, M.O.; Price, J.F. Mixing and spreading of the Mediterranean outflow. J. Phys. Oceanogr. 1997, 27, 1654–1677. [Google Scholar] [CrossRef]
- Ambar, I.; Howe, M.R. Observations of the Mediterranean Outflow: 1. Mixing in the Mediterranean Outflow. Deep Sea Res. 1979, 26, 535–554. [Google Scholar] [CrossRef]
- Carracedo, L.I.; Pardo, P.C.; Flecha, S.; Pérez, F.F. On the Mediterranean Water Composition. J. Phys. Oceanogr. 2015, 46, 1339–1358. [Google Scholar] [CrossRef]
- Ambar, I.; Howe, M.R. Observations of the Mediterranean Outflow: 2. Deep Circulation in the Vicinity of the Gulf of Cadiz. Deep Sea Res. Part A-Oceanogr. Res. Pap. 1979, 26, 555–568. [Google Scholar] [CrossRef]
- Ambar, I.; Serra, N.; Brogueira, M.J.; Cabecadas, G.; Abrantes, F.; Freitas, P.; Goncalves, C.; Gonzalez, N. Physical, chemical and sedimentological aspects of the Mediterranean outflow off Iberia. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 4163–4177. [Google Scholar] [CrossRef]
- Ambar, I. A Shallow Core of Mediterranean Water Off Western Portugal. Deep Sea Res. Part A-Oceanogr. Res. Pap. 1983, 30, 677–680. [Google Scholar] [CrossRef]
- Kinder, T.H.; Parrilla, G. Yes, Some of the Mediterranean Outflow Does Come from Great Depth. J. Geophys. Res. 1987, 92, 2901–2906. [Google Scholar] [CrossRef]
- Millot, C.; Candela, J.; Fuda, J.-L.; Tber, Y. Large warming and salinification of the Mediterranean outflow due to changes in its composition. Deep Sea Res. Part I Oceanogr. Res. Pap. 2006, 53, 656–666. [Google Scholar] [CrossRef]
- Müller, P.J.; Kirst, G.; Ruhland, G.; von Storch, I.; Rosell-Melé, A. Calibration of the alkenone paleotemperature index Uk’37 based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochim. Cosmochim. Acta 1998, 62, 1757–1772. [Google Scholar] [CrossRef]
- Schiebel, R.; Hemleben, C. Planktic Foraminifers in the Modern Ocean; Springer: Berlin/Heidelberg, Germany, 2017; p. 358. [Google Scholar]
- Salgueiro, E.; Voelker, A.; Abrantes, F.; Meggers, H.; Pflaumann, U.; Loncaric, N.; Gonzalez-Alvarez, R.; Oliveira, P.; Bartels-Jonsdottir, H.B.; Moreno, J.; et al. Planktonic foraminifera from modern sediments reflect upwelling patterns off Iberia: Insights from a regional transfer function. Mar. Micropaleontol. 2008, 66, 135–164. [Google Scholar] [CrossRef]
- Flores, J.A.; Sierro, F.J. Revised technique for calculation of calcareous nannofossil accumulation rates. Micropaleontology 1997, 43, 321–324. [Google Scholar] [CrossRef]
- Trotta, S.; Marino, M.; Voelker, A.H.L.; Rodrigues, T.; Maiorano, P.; Flores, J.A.; Girone, A.; Addante, M.; Balestra, B. Paleoenvironmental reconstruction in the Gulf of Cadiz using calcareous nannofossil assemblages during the Early Pleistocene (MIS 48-MIS 45). Palaeogeogr. Palaeoclimatol. Palaeoecol. submitted.
- Lisiecki, L.E.; Raymo, M. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar] [CrossRef]
- Hodell, D.A.; Channell, J.E.T.; Curtis, J.H.; Romero, O.E.; Röhl, U. Onset of ‘Hudson Strait’ Heinrich Events in the Eastern North Atlantic at the end of the Middle Pleistocene Transition (~640 ka)? Paleoceanography 2008, 23, PA4218. [Google Scholar] [CrossRef]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef]
- Kucera, M. Chapter Six Planktonic Foraminifera as Tracers of Past Oceanic Environments. In Developments in Marine Geology; Hillaire–Marcel, C., De Vernal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 1, pp. 213–262. [Google Scholar]
- Moal-Darrigade, P.; Ducassou, E.; Giraudeau, J.; Bahr, A.; Kaboth-Bahr, S.; Hanquiez, V.; Perello, M.-C. MOW strengthening and contourite development over two analog climate cycles (MIS 12–11 and MIS 2–1) in the Gulf of Cadíz: An impact on North Atlantic climate during deglaciation V and MIS 11? Glob. Planet. Chang. 2022, 208, 103721. [Google Scholar] [CrossRef]
- Voelker, A.H.L.; Rodrigues, T.; Billups, K.; Oppo, D.; McManus, J.; Stein, R.; Hefter, J.; Grimalt, J.O. Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9-14) and their implications for the thermohaline circulation. Clim. Past 2010, 6, 531–552. [Google Scholar] [CrossRef]
- Rogerson, M.; Rohling, E.J.; Bigg, G.R.; Ramirez, J. Paleoceanography of the Atlantic-Mediterranean exchange: Overview and first quantitative assessment of climatic forcing. Rev. Geophys. 2012, 50, RG2003. [Google Scholar] [CrossRef]
- Voelker, A.H.L.; Lebreiro, S.M.; Schönfeld, J.; Cacho, I.; Erlenkeuser, H.; Abrantes, F. Mediterranean outflow strengthening during northern hemisphere coolings: A salt source for the glacial Atlantic? Earth Planet. Sci. Lett. 2006, 245, 39–55. [Google Scholar] [CrossRef]
- De Lange, G.J.; Thomson, J.; Reitz, A.; Slomp, C.P.; Speranza Principato, M.; Erba, E.; Corselli, C. Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel. Nat. Geosci. 2008, 1, 606–610. [Google Scholar] [CrossRef]
- Rogerson, M.; Cacho, I.; Jimenez-Espejo, F.; Reguera, M.I.; Sierro, F.J.; Martinez-Ruiz, F.; Frigola, J.; Canals, M. A dynamic explanation for the origin of the western Mediterranean organic-rich layers. Geochem. Geophys. Geosyst. 2008, 9, Q07U01. [Google Scholar] [CrossRef]
- Toucanne, S.; Jouet, G.; Ducassou, E.; Bassetti, M.-A.; Dennielou, B.; Angue Minto’o, C.M.; Lahmi, M.; Touyet, N.; Charlier, K.; Lericolais, G.; et al. A 130,000-year record of Levantine Intermediate Water flow variability in the Corsica Trough, western Mediterranean Sea. Quat. Sci. Rev. 2012, 33, 55–73. [Google Scholar] [CrossRef]
- Frigola, J.; Moreno, A.; Cacho, I.; Canals, M.; Sierro, F.J.; Flores, J.A.; Grimalt, J.O.; Hodell, D.A.; Curtis, J.H. Holocene climate variability in the western Mediterranean region from a deepwater sediment record. Paleoceanography 2007, 22, 1–16. [Google Scholar] [CrossRef]
- Jiménez-Espejo, F.J.; Pardos-Gené, M.; Martínez-Ruiz, F.; García-Alix, A.; van de Flierdt, T.; Toyofuku, T.; Bahr, A.; Kreissig, K. Geochemical evidence for intermediate water circulation in the westernmost Mediterranean over the last 20kyrBP and its impact on the Mediterranean Outflow. Glob. Planet. Chang. 2015, 135, 38–46. [Google Scholar] [CrossRef]
- Bosmans, J.H.C.; Drijfhout, S.S.; Tuenter, E.; Hilgen, F.J.; Lourens, L.J. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM. Clim. Dyn. 2015, 44, 279–297. [Google Scholar] [CrossRef]
- Louarn, E.; Morin, P. Antarctic Intermediate Water influence on Mediterranean Sea Water outflow. Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 932–942. [Google Scholar] [CrossRef]
- Bosmans, J.H.C.; Drijfhout, S.S.; Tuenter, E.; Hilgen, F.J.; Lourens, L.J.; Rohling, E.J. Precession and obliquity forcing of the freshwater budget over the Mediterranean. Quat. Sci. Rev. 2015, 123, 16–30. [Google Scholar] [CrossRef]
- Bemis, B.E.; Spero, H.J.; Lea, D.W.; Bijma, J. Temperature influence on the carbon isotopic composition of Globigerina bulloides and Orbulina universa (planktonic foraminifera). Mar. Micropaleontol. 2000, 38, 213–228. [Google Scholar] [CrossRef]
- Naafs, B.D.A.; Hefter, J.; Stein, R. Millennial-scale ice rafting events and Hudson Strait Heinrich(-like) Events during the late Pliocene and Pleistocene: A review. Quat. Sci. Rev. 2013, 80, 1–28. [Google Scholar] [CrossRef]
- Cacho, I.; Grimalt, J.O.; Canals, M.; Sbaffi, L.; Shackleton, N.J.; Schoenfeld, J.; Zahn, R. Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 2001, 16, 40–52. [Google Scholar] [CrossRef]
- Martin-Garcia, G.M.; Alonso-Garcia, M.; Sierro, F.J.; Hodell, D.A.; Flores, J.A. Severe cooling episodes at the onset of deglaciations on the Southwestern Iberian margin from MIS 21 to 13 (IODP site U1385). Glob. Planet. Chang. 2015, 135, 159–169. [Google Scholar] [CrossRef]
- Salgueiro, E.; Naughton, F.; Voelker, A.H.L.; de Abreu, L.; Alberto, A.; Rossignol, L.; Duprat, J.; Magalhães, V.H.; Vaqueiro, S.; Turon, J.L.; et al. Past circulation along the western Iberian margin: A time slice vision from the Last Glacial to the Holocene. Quat. Sci. Rev. 2014, 106, 316–329. [Google Scholar] [CrossRef]
- Birner, B.; Hodell, D.A.; Tzedakis, P.C.; Skinner, L.C. Similar millennial climate variability on the Iberian margin during two early Pleistocene glacials and MIS 3. Paleoceanography 2016, 31, 203–217. [Google Scholar] [CrossRef]
- Raymo, M.E.; Ganley, K.; Carter, S.; Oppo, D.W.; McManus, J. Millennial-scale climate instability during the early Pleistocene epoch. Nature 1998, 392, 699–702. [Google Scholar] [CrossRef]
- Hodell, D.; Crowhurst, S.; Skinner, L.; Tzedakis, P.C.; Margari, V.; Channell, J.E.T.; Kamenov, G.; Maclachlan, S.; Rothwell, G. Response of Iberian Margin sediments to orbital and suborbital forcing over the past 420 ka. Paleoceanography 2013, 28, 185–199. [Google Scholar] [CrossRef]
- Maiorano, P.; Marino, M.; Balestra, B.; Flores, J.A.; Hodell, D.A.; Rodrigues, T. Coccolithophore variability from the Shackleton Site (IODP Site U1385) through MIS 16-10. Glob. Planet. Chang. 2015, 133, 35–48. [Google Scholar] [CrossRef]
- Marino, M.; Maiorano, P.; Tarantino, F.; Voelker, A.; Capotondi, L.; Girone, A.; Lirer, F.; Flores, J.-A.; Naafs, B.D.A. Coccolithophores as proxy of sea-water changes at orbital-to-millennial scale during middle Pleistocene Marine Isotope Stages 14-9 in North Atlantic core MD01-2446. Paleoceanography 2014, 29, 518–532. [Google Scholar] [CrossRef]
Depth in U1387 [c-mcd] 1 | LR04 Age in U1308 [ka] | Comment |
---|---|---|
422.16 | 1413.15 | Primary point |
425.44 | 1420.71 | Primary point |
427.26 | 1424.47 | Secondary point |
429.01 | 1427.44 | Primary point |
432.83 | 1446.03 | Secondary point |
434.58 | 1453.00 | Primary point |
436.21 | 1456.00 | Primary point |
437.45 | 1457.43 | Secondary point |
440.28 | 1466.29 | Primary point |
443.36 | 1484.14 | Primary point |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voelker, A.H.L.; Rodrigues, T.; Trotta, S.; Marino, M.; Kuhnert, H. A Southern Portuguese Margin Perspective of Marine Isotope Stage 47—An Interglacial in the 41 kyr World. Atmosphere 2022, 13, 1378. https://doi.org/10.3390/atmos13091378
Voelker AHL, Rodrigues T, Trotta S, Marino M, Kuhnert H. A Southern Portuguese Margin Perspective of Marine Isotope Stage 47—An Interglacial in the 41 kyr World. Atmosphere. 2022; 13(9):1378. https://doi.org/10.3390/atmos13091378
Chicago/Turabian StyleVoelker, Antje H. L., Teresa Rodrigues, Samanta Trotta, Maria Marino, and Henning Kuhnert. 2022. "A Southern Portuguese Margin Perspective of Marine Isotope Stage 47—An Interglacial in the 41 kyr World" Atmosphere 13, no. 9: 1378. https://doi.org/10.3390/atmos13091378