Spatiotemporal Variations of XCH4 across China during 2003–2021 Based on Observations from Multiple Satellites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Satellite-Observed Atmospheric XCH4
2.1.2. Ground Observations of CH4 Concentrations from WDCGG
2.1.3. CH4 Emissions from EDGAR
2.1.4. Enhanced Vegetation Index from MODIS
2.1.5. Rice-Harvested Area from EARTHSTAT
2.2. Methods
2.2.1. Inverse Distance Weighted Interpolation Method
2.2.2. A Linear Sinusoidal Trend Model with a Seasonal Component
2.2.3. Mann–Kendall Test and Theil–Sen Estimator
3. Results and Discussion
3.1. Validation of Satellite XCH4 Accuracy and Consistency
3.2. Spatial Distribution Patterns of Atmospheric XCH4 across China
3.3. Temporal Variation of Atmospheric XCH4 across China
3.3.1. Long-Term Annual Trends of XCH4 Concentrations across China
3.3.2. Seasonal Cycle of XCH4 Concentrations across China
3.4. Influence of Rice Paddy on Atmospheric XCH4 across China
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Station Name | Longitude (°) | Latitude (°) | Elevation (m) | Time in This Study |
---|---|---|---|---|
AMY | 36.54 | 126.33 | 42 | January 2003–December 2020 |
LLN | 23.47 | 120.87 | 2862 | August 2006–December 2020 |
PDI | 21.57 | 103.52 | 1466 | January 2014–November 2020 |
SDZ | 40.65 | 117.12 | 287 | September 2009–September 2015 |
UUM | 44.44 | 111.09 | 992 | January 2003–October 2020 |
WLG | 36.29 | 100.90 | 3810 | January 2003–December 2020 |
References
- Etminan, M.; Myhre, G.; Highwood, E.J.; Shine, K.P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett. 2016, 43, 12614–12623. [Google Scholar] [CrossRef]
- Canadell, J.G.; Monteiro, P.M.S.; Costa, M.H.; Cunha, L.C.D.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; et al. Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; In Pressed; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Nisbet, E.G.; Dlugokencky, E.J.; Bousquet, P. Methane on the Rise-Again. Science 2014, 343, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Solarin, S.A.; Gil-Alana, L.A. Persistence of Methane Emission in OECD Countries for 1750–2014: A Fractional Integration Approach. Environ. Model. Assess. 2021, 26, 497–509. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Jiang, H.; Lu, X.H.; Cheng, M.M.; Zhang, X.M.; Li, X.H.; Zhang, L.J. Estimate of methane release from temperate natural wetlands using ENVISAT/SCIAMACHY data in China. Atmos. Environ. 2013, 69, 191–197. [Google Scholar] [CrossRef]
- Zhang, G.J.; Le, Q. Analysis distribution of CH4 column concentration using SCIAMACHY data in China. Geospat. Inf. 2011, 9, 115–117. [Google Scholar]
- Kavitha, M.; Nair, P.R. SCIAMACHY observed changes in the column mixing ratio of methane over the Indian region and a comparison with global scenario. Atmos. Environ. 2017, 166, 454–466. [Google Scholar] [CrossRef]
- Qin, X.C.; Lei, L.P.; He, Z.H.; Zeng, Z.C.; Kawasaki, M.; Ohashi, M.; Matsumi, Y. Preliminary Assessment of Methane Concentration Variation Observed by GOSAT in China. Adv. Meteorol. 2015, 2015, 125059. [Google Scholar] [CrossRef]
- Kivimäki, E.; Lindqvist, H.; Hakkarainen, J.; Laine, M.; Sussmann, R.; Tsuruta, A.; Detmers, R.; Deutscher, N.M.; Dlugokencky, E.J.; Hase, F.; et al. Evaluation and Analysis of the Seasonal Cycle and Variability of the Trend from GOSAT Methane Retrievals. Remote Sens. 2019, 11, 882. [Google Scholar] [CrossRef]
- Islam, S.M.N.; Jackson, P.L.; Sweeney, C.; McKain, K.; Frankenberg, C.; Aben, I.; Parker, R.J.; Boesch, H.; Wunch, D. Methane Growth Rate Estimation and Its Causes in Western Canada Using Satellite Observations. J. Geophys. Res. Atmos. 2021, 126, e2020JD033948. [Google Scholar] [CrossRef]
- Zhang, J.X.; Han, G.; Mao, H.Q.; Pei, Z.P.; Ma, X.; Jia, W.J.; Gong, W. The Spatial and Temporal Distribution Patterns of XCH4 in China: New Observations from TROPOMI. Atmosphere 2022, 13, 177. [Google Scholar] [CrossRef]
- Zou, M.M.; Xiong, X.Z.; Saitoh, N.; Warner, J.; Zhang, Y.; Chen, L.F.; Weng, F.Z.; Fan, M. Satellite observation of atmospheric methane: Intercomparison between AIRS and GOSAT TANSO-FTS retrievals. Atmos. Meas. Tech. 2016, 9, 3567–3576. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Landgraf, J.; Detmers, R.; Borsdorff, T.; de Brugh, J.A.; Aben, I.; Butz, A.; Hasekamp, O. Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT. Geophys. Res. Lett. 2018, 45, 3682–3689. [Google Scholar] [CrossRef]
- Zhang, L.J.; Wei, C.; Liu, H.; Jiang, H.; Lu, X.H.; Zhang, X.Y.; Jiang, C. Comparison analysis of global methane concentration derived from SCIAMACHY, AIRS, and GOSAT with surface station measurements. Int. J. Remote Sens. 2021, 42, 1823–1840. [Google Scholar] [CrossRef]
- Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noel, S.; Rozanov, V.V.; Chance, K.V.; Goede, A. SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci. 1999, 56, 127–150. [Google Scholar] [CrossRef]
- Buchwitz, M.; de Beek, R.; Burrows, J.P.; Bovensmann, H.; Warneke, T.; Notholt, J.; Meirink, J.F.; Goede, A.; Bergamaschi, P.; Korner, S.; et al. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models. Atmos. Chem. Phys. 2005, 5, 941–962. [Google Scholar] [CrossRef]
- Barkley, M.P.; Monks, P.S.; Engelen, R.J. Comparison of SCIAMACHY and AIRS CO2 measurements over North America during the summer and autumn of 2003. Geophys. Res. Lett. 2006, 33, L20805. [Google Scholar] [CrossRef]
- Buchwitz, M.; Rozanov, V.V.; Burrows, J.P. A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances. J. Geophys. Res. Atmos. 2000, 105, 15231–15245. [Google Scholar] [CrossRef]
- Burrows, J.P.; Holzle, E.; Goede, A.; Visser, H.; Fricke, W. SCIAMACHY—scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronaut. 1995, 35, 445–451. [Google Scholar] [CrossRef]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef]
- Morino, I.; Uchino, O.; Inoue, M.; Yoshida, Y.; Yokota, T.; Wennberg, P.O.; Toon, G.C.; Wunch, D.; Roehl, C.M.; Notholt, J.; et al. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmos. Meas. Tech. 2011, 4, 1061–1076. [Google Scholar] [CrossRef]
- Suto, H.; Kataoka, F.; Kikuchi, N.; Knuteson, R.O.; Butz, A.; Haun, M.; Buijs, H.; Shiomi, K.; Imai, H.; Kuze, A. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit. Atmos. Meas. Tech. 2021, 14, 2013–2039. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Steele, L.P.; Lang, P.M.; Masarie, K.A. The growth rate and distribution of atmospheric methane. J. Geophys. Res. Atmos. 1994, 99, 17021–17043. [Google Scholar] [CrossRef]
- Yang, Q.; Guan, L.; Tao, F.; Liang, M.; Sun, W.Q. Changes of CH4 Concentrations Obtained by Ground-based Observations at Five Atomspheric Background Stations in China. Environ. Sci. Technol. 2018, 41, 1–7. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xu, J.H.; Li, W.T.; Xie, H.M.; Wang, Y.X.; Wang, L.; Hu, F. Long-Term Trends and Spatiotemporal Variations in Atmospheric XCH4 over China Utilizing Satellite Observations. Atmosphere 2022, 13, 525. [Google Scholar] [CrossRef]
- Wu, X.D.; Zhang, X.Y.; Chuai, X.W.; Huang, X.J.; Wang, Z. Long-Term Trends of Atmospheric CH4 Concentration across China from 2002 to 2016. Remote Sens. 2019, 11, 538. [Google Scholar] [CrossRef]
- Weatherhead, E.C.; Reinsel, G.C.; Tiao, G.C.; Meng, X.L.; Choi, D.S.; Cheang, W.K.; Keller, T.; DeLuisi, J.; Wuebbles, D.J.; Kerr, J.B.; et al. Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res. Atmos. 1998, 103, 17149–17161. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chuai, X.W.; Liu, L.; Zhang, W.T.; Lu, X.H.; Zhao, L.M.; Chen, D.M. Decadal Trends in Wet Sulfur Deposition in China Estimated From OMI SO2 Columns. J. Geophys. Res. Atmos. 2018, 123, 10796–10811. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhang, Y.N.; Sun, X.Y. Trend of Light Rain Precipitation Days of Hangzhou in Recent 60 Years. Bull. Sci. Technol. 2019, 35, 41–45. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Aziz, O.; Burn, D.H. Trends and variability in the hydrological regime of the Mackenzie River Basin. J. Hydrol. 2006, 319, 282–294. [Google Scholar] [CrossRef]
- Cannarozzo, M.; Noto, L.V.; Viola, F. Spatial distribution of rainfall trends in Sicily (1921–2000). Phys. Chem. Earth 2006, 31, 1201–1211. [Google Scholar] [CrossRef]
- Wilks, D.S. On “Field Significance” and the False Discovery Rate. J. Appl. Meteorol. Clim. 2006, 45, 1181–1189. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Wang, J.L.; Sun, J.L.; Xu, Y.; Harris, W. Spatial and Temporal Variations of Lower Tropospheric Methane During 2010–2011 in China. IEEE J. Stars 2012, 5, 1464–1473. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhang, X.Y.; Zhang, L.J.; Li, X.H. Accuracy Comparison of Monthly AIRS, GOSAT and SCIAMACHY Data in Monitoring Atmospheric CH4 Concentration. In Proceedings of the 21st International Conference on Geoinformatics, Kaifeng, China, 20–22 June 2013. [Google Scholar]
- Saito, R.; Patra, P.K.; Sweeney, C.; Machida, T.; Krol, M.; Houweling, S.; Bousquet, P.; Agusti-Panareda, A.; Belikov, D.; Bergmann, D.; et al. TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements. J. Geophys. Res. Atmos. 2013, 118, 3891–3904. [Google Scholar] [CrossRef]
- Kulawik, S.S.; Worden, J.R.; Payne, V.H.; Fu, D.J.; Wofsy, S.C.; McKain, K.; Sweeney, C.; Daube, B.C.; Lipton, A.; Polonsky, I.; et al. Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements. Atmos. Meas. Tech. 2021, 14, 335–354. [Google Scholar] [CrossRef]
- Lorente, A.; Borsdorff, T.; Butz, A.; Hasekamp, O.; Aan De Brugh, J.; Schneider, A.; Wu, L.H.; Hase, F.; Kivi, R.; Wunch, D.; et al. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements. Atmos Meas Tech. 2021, 14, 665–684. [Google Scholar] [CrossRef]
- Xiong, X.Z.; Barnet, C.; Maddy, E.; Sweeney, C.; Liu, X.P.; Zhou, L.H.; Goldberg, M. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). J. Geophys. Res. Biogeo. 2008, 113, 500. [Google Scholar] [CrossRef]
- Schneising, O.; Bergamaschi, P.; Bovensmann, H.; Buchwitz, M.; Burrows, J.P.; Deutscher, N.M.; Griffith, D.; Heymann, J.; Macatangay, R.; Messerschmidt, J.; et al. Atmospheric greenhouse gases retrieved from SCIAMACHY: Comparison to ground-based FTS measurements and model results. Atmos. Chem. Phys. 2012, 12, 1527–1540. [Google Scholar] [CrossRef]
- Dils, B.; De Maziere, M.; Muller, J.F.; Blumenstock, T.; Buchwitz, M.; de Beek, R.; Demoulin, P.; Duchatelet, P.; Fast, H.; Frankenberg, C.; et al. Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH4, CO2 and N2O. Atmos. Chem. Phys. 2006, 6, 1953–1976. [Google Scholar] [CrossRef]
- Gloudemans, A.; Schrijver, H.; Hasekamp, O.P.; Aben, I. Error analysis for CO and CH4 total column retrievals from SCIAMACHY 2.3 mu m spectra. Atmos. Chem. Phys. 2008, 8, 3999–4017. [Google Scholar] [CrossRef] [Green Version]
- Dan-dan, L.; Yin-bo, H.; Zhen-song, C.; Xing-ji, L.U.; Yu-song, S.; Qian-si, T.U. Analysis of Total Columns of Greenhouse Gas Based on Direct Observation and Comparison with Satellite Data in Hefei. Acta Photonica Sin. 2020, 49, 159–168. [Google Scholar] [CrossRef]
- Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Saeki, T.; Yoshida, Y.; Yokota, T.; Sweeney, C.; Tans, P.P.; Biraud, S.C.; et al. Validation of XCH4 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmos. Meas. Tech. 2014, 7, 2987–3005. [Google Scholar] [CrossRef]
- Mermigkas, M.; Topaloglou, C.; Balis, D.; Koukouli, M.E.; Hase, F.; Dubravica, D.; Borsdorff, T.; Lorente, A. FTIR Measurements of Greenhouse Gases over Thessaloniki, Greece in the Framework of COCCON and Comparison with S5P/TROPOMI Observations. Remote Sens. 2021, 13, 3395. [Google Scholar] [CrossRef]
- Sha, M.K.; Langerock, B.; Blavier, J.; Blumenstock, T.; Borsdorff, T.; Buschmann, M.; Dehn, A.; De Maziere, M.; Deutscher, N.M.; Feist, D.G.; et al. Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmos. Meas. Tech. 2021, 14, 6249–6304. [Google Scholar] [CrossRef]
- Tu, Q.S.; Hase, F.; Blumenstock, T.; Kivi, R.; Heikkinen, P.; Sha, M.K.; Raffalski, U.; Landgraf, J.; Lorente, A.; Borsdorff, T.; et al. Intercomparison of atmospheric CO2 and CH4 abundances on regional scales in boreal areas using Copernicus Atmosphere Monitoring Service (CAMS) analysis, COllaborative Carbon Column Observing Network (COCCON) spectrometers, and Sentinel-5 Precursor satellite observations. Atmos. Meas Tech. 2020, 13, 4751–4771. [Google Scholar] [CrossRef]
- Monteil, G.; Houweling, S.; Butz, A.; Guerlet, S.; Schepers, D.; Hasekamp, O.; Frankenberg, C.; Scheepmaker, R.; Aben, I.; Rockmann, T. Comparison of CH4 inversions based on 15 months of GOSAT and SCIAMACHY observations. J. Geophys. Res. Atmos. 2013, 118, 11807–11823. [Google Scholar] [CrossRef]
- Etheridge, D.M.; Pearman, G.I.; Fraser, P.J. Changes in Tropospheric Methane Between 1841 and 1978 from a High Accumulation-Rate Antarctic Ice Core. Tellus B 1992, 44, 282–294. [Google Scholar] [CrossRef]
- Brenninkmeijer, C.; Crutzen, P.; Boumard, F.; Dauer, T.; Dix, B.; Ebinghaus, R.; Filippi, D.; Fischer, H.; Franke, H.; Friess, U.; et al. Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system. Atmos Chem. Phys. 2007, 7, 4953–4976. [Google Scholar] [CrossRef]
- Schuck, T.J.; Ishijima, K.; Patra, P.K.; Baker, A.K.; Machida, T.; Matsueda, H.; Sawa, Y.; Umezawa, T.; Brenninkmeijer, C.A.M.; Lelieveld, J. Distribution of methane in the tropical upper troposphere measured by CARIBIC and CONTRAIL aircraft. J. Geophys. Res. Atmos. 2012, 117, D19304. [Google Scholar] [CrossRef]
- Blake, D.R.; Mayer, E.W.; Tyler, S.C.; Makide, Y.; Montague, D.C.; Rowland, F.S. Global Increase In Atmospheric Methane Concentrations Between 1978 and 1980. Geophys. Res. Lett. 1982, 9, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Cunnold, D.M. In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences. J. Geophys. Res. 2002, 107, ACH 20-1–ACH 20-18. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Bruhwiler, L.; White, J.W.C.; Emmons, L.K.; Novelli, P.C.; Montzka, S.A.; Masarie, K.A.; Lang, P.M.; Crotwell, A.M.; Miller, J.B.; et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 2009, 36, L18803. [Google Scholar] [CrossRef]
- Zhou, L.; Worthy, D.; Lang, P.M.; Ernst, M.K.; Zhang, X.C.; Wen, Y.P.; Li, J.L. Ten years of atmospheric methane observations at a high elevation site in Western China. Atmos. Environ. 2004, 38, 7041–7054. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 121. [Google Scholar] [CrossRef]
- Van Groenigen, K.J.; van Kessel, C.; Hungate, B.A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Chang. 2013, 3, 288–291. [Google Scholar] [CrossRef]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.; et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Zhang, H.H.; Li, C.; Gao, Y.B.; Fang, X.J.; Xiong, W.; Mas, J.J. Research for High-Level OH Radicals Spatio-Temporal Distribution Characteristics and Its Formation Mechanism. J. Atmos. Environ. Opt. 2017, 12, 292–304. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Bai, W.G.; Zhang, P.; Wang, W.H. Spatiotemporal variations in mid-upper tropospheric methane over China from satellite observations. Chin. Sci. Bull. 2011, 56, 3321–3327. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Liao, H.; Wang, Y.S. Simulated Spatial Distribution and Seasonal Variation of Atmospheric Methane over China: Contributions from Key Sources. Adv. Atmos Sci 2014, 31, 283–292. [Google Scholar] [CrossRef]
- Zhang, G.L.; Xiao, X.M.; Dong, J.W.; Xin, F.F.; Zhang, Y.; Qin, Y.W.; Doughty, R.B.; Moore, B. Fingerprint of rice paddies in spatial-temporal dynamics of atmospheric methane concentration in monsoon Asia. Nat. Commun. 2020, 11, 554. [Google Scholar] [CrossRef] [PubMed]
- Tokida, T.; Adachi, M.; Cheng, W.G.; Nakajima, Y.; Fumoto, T.; Matsushima, M.; Nakamura, H.; Okada, M.; Sameshima, R.; Hasegawa, T. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Glob. Chang. Biol. 2011, 17, 3327–3337. [Google Scholar] [CrossRef]
- Tian, H.Q.; Lu, C.Q.; Ciais, P.; Michalak, A.M.; Canadell, J.G.; Saikawa, E.; Huntzinger, D.N.; Gurney, K.R.; Sitch, S.; Zhang, B.W.; et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 2016, 531, 225. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.A.; Peng, C.H.; Wu, N.; Wang, Y.F.; Fang, X.Q.; Jiang, H.; Xiang, W.H.; Chang, J.; Deng, X.W.; et al. Methane emissions from rice paddies natural wetlands, lakes in China: Synthesis new estimate. Glob. Chang. Biol. 2013, 19, 19–32. [Google Scholar] [CrossRef]
- Yan, X.Y.; Akiyama, H.; Yagi, K.; Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cy. 2009, 23, GB2002. [Google Scholar] [CrossRef]
Sites | Satellites | Regression | R | p | RMSE | N |
---|---|---|---|---|---|---|
AMY | SCIAMACHY | y = 0.39x + 1047.77 | 0.27 | 0.04 | 52.21 | 61 |
GOSAT | y = 0.65x + 584.04 | 0.69 | <0.01 | 77.24 | 128 | |
S5P | y = 0.27x + 1331.06 | 0.37 | 0.08 | 34.32 | 23 | |
LLN | SCIAMACHY | y = 0.07x + 1686.86 | 0.03 | 0.84 | 19.77 | 43 |
GOSAT | y = 0.678x + 583.08 | 0.75 | <0.01 | 21.64 | 125 | |
S5P | y = 0.35x + 1205.98 | 0.40 | 0.07 | 14.59 | 22 | |
PDI | SCIAMACHY | |||||
GOSAT | y = −0.06x + 1986.99 | 0.10 | 0.44 | 56.39 | 63 | |
S5P | y = 0.08x + 1721.49 | 0.13 | 0.57 | 35.84 | 21 | |
SDZ | SCIAMACHY | y = 0.01x + 1794.79 | 0.01 | 0.98 | 41.58 | 20 |
GOSAT | y = 0.26x + 1312.77 | 0.43 | <0.01 | 65.06 | 59 | |
S5P | ||||||
UUM | SCIAMACHY | y = 0.04x + 1692.94 | 0.04 | 0.73 | 57.43 | 92 |
GOSAT | y = 0.66x + 552.70 | 0.73 | <0.01 | 75.49 | 116 | |
S5P | y = −0.47x + 2758.41 | 0.40 | 0.28 | 20.98 | 9 | |
WLG | SCIAMACHY | y = 0.98x − 39.40 | 0.41 | <0.01 | 52.72 | 98 |
GOSAT | y = 1.06x − 203.27 | 0.84 | <0.01 | 68.03 | 126 | |
S5P | y = 1.72x − 1484.19 | 0.81 | <0.01 | 26.07 | 20 |
Satellite | SCIAMACHY | GOSAT | Sentine-5P |
---|---|---|---|
Launch time | Mar, 2002 | Jan, 2009 | Oct, 2017 |
Orbit(km) | 772 | 666 | 824 |
Accuracy(ppb) | - | 37 | 5.6 |
Spectral coverage(um) | 0.21–2.38 | 0.76–14.33 | 0.27–0.775 |
2.305–2.385 | |||
CH4 band(um) | 2.36–2.38 | 1.56–1.72 | 0.25–1.0 |
5.56–14.33 | |||
Swath(km) | 960 | 640 | 2600 |
Spatial resolution(km) | 32 × 60 | 10.5 | 7 × 5.5 |
limn sounders | |||
Viewing Model | nadir looking | nadir lloking | nadir looking |
occulation mode | |||
CH4 algorithm | WFM-DOAS | Optimization algorithm | WFM-DOAS |
Sites | A | B | C | D | R2 | RMSE |
---|---|---|---|---|---|---|
China | 1747 | 0.55 | −14.15 | 1.53 | 0.93 | 10.08 |
AMY | 1843 | 0.71 | 18.95 | 1.63 | 0.87 | 16.98 |
LLN | 1780 | 0.61 | 20.71 | 1.15 | 0.80 | 16.68 |
PDI | 1842 | 0.70 | 46.96 | 1.30 | 0.61 | 29.54 |
SDZ | 1881 | 0.63 | 30.66 | 3.75 | 0.41 | 32.54 |
UUM | 1836 | 0.54 | 16.75 | 1.07 | 0.91 | 11.30 |
WLG | 1817 | 0.54 | 6.54 | 3.83 | 0.91 | 10.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Zhang, X.; Zhang, L.; Cheng, M.; Lu, X. Spatiotemporal Variations of XCH4 across China during 2003–2021 Based on Observations from Multiple Satellites. Atmosphere 2022, 13, 1362. https://doi.org/10.3390/atmos13091362
Qin J, Zhang X, Zhang L, Cheng M, Lu X. Spatiotemporal Variations of XCH4 across China during 2003–2021 Based on Observations from Multiple Satellites. Atmosphere. 2022; 13(9):1362. https://doi.org/10.3390/atmos13091362
Chicago/Turabian StyleQin, Jiayao, Xiuying Zhang, Linjing Zhang, Miaomiao Cheng, and Xuehe Lu. 2022. "Spatiotemporal Variations of XCH4 across China during 2003–2021 Based on Observations from Multiple Satellites" Atmosphere 13, no. 9: 1362. https://doi.org/10.3390/atmos13091362
APA StyleQin, J., Zhang, X., Zhang, L., Cheng, M., & Lu, X. (2022). Spatiotemporal Variations of XCH4 across China during 2003–2021 Based on Observations from Multiple Satellites. Atmosphere, 13(9), 1362. https://doi.org/10.3390/atmos13091362