Preliminary Application of a Multi-Physical Ensemble Transform Kalman Filter in Cloud and Precipitation Forecasts
Abstract
:1. Introduction
2. Data and Methods
2.1. Model and Observations
2.2. The Microphysical Parameterization Schemes
2.3. The Multi-Physical and the Multi-Physical ETKF Schemes
2.4. Quantitative Evaluations
3. Results
3.1. Cloud-Top Height and Temperature
3.2. Cloud Hydrometeors
3.3. Precipitation
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, X.; Fu, D.; Li, X.; Hu, Z.; Lei, H.; Xiao, H.; Hong, Y. Advances in cloud physics and weather modification in China. Adv. Atmos. Sci. 2015, 32, 230–249. [Google Scholar] [CrossRef]
- Flossmann, A.I.; Manton, M.; Abshaev, A.; Bruintjes, R.; Yao, Z. Review of advances in precipitation enhancement research. Bull. Am. Meteorol. Soc. 2019, 100, 1465–1480. [Google Scholar] [CrossRef]
- Akdi, Y.; Ünlü, K.D. Periodicity in precipitation and temperature for monthly data of Turkey. Theor. Appl. Climatol. 2021, 143, 957–968. [Google Scholar] [CrossRef]
- Wang, Z.M.; Letu, H.; Shang, H.Z.; Zhao, C.F.; Li, J.M.; Ma, R. A supercooled water cloud detection algorithm using Himawari-8 satellite measurements. J. Geophys. Res. Atmos. 2019, 124, 2724–2738. [Google Scholar] [CrossRef]
- Xu, X.H.; Yin, J.F.; Zhang, X.T.; Xue, H.L.; Gu, H.D.; Fan, H.Y. Airborne measurements of cloud condensation nuclei (CCN) vertical structures over Southern China. Atmos. Res. 2022, 268, 106012. [Google Scholar] [CrossRef]
- Qin, Y.S.; Cai, M.; Liu, S.X.; Cai, Z.X.; Hu, X.F.; Lue, F. A study on macro and micro physical structures of convective-stratiform mixed clouds associated with a cold front in autumn and their catalytic responses in North China. Acta Meteorol. Sin. 2017, 75, 835–849. [Google Scholar] [CrossRef]
- Zheng, W.; Ma, H.; Zhang, M.; Xue, F.; Yu, K.; Yang, Y.; Ma, S.; Wang, C.; Pan, Y.; Shu, Z.; et al. Evaluation of the First Negative Ion-Based Cloud Seeding and Rain Enhancement Trial in China. Water 2021, 13, 2473. [Google Scholar] [CrossRef]
- Rajeevan, M.; Kesarkar, A.; Thampi, S.B.; Rao, T.N.; Radhakrishna, B.; Rajasekhar, M. Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Ann. Geophys. 2010, 28, 603–619. [Google Scholar] [CrossRef]
- Dong, F.; Zhi, X.F.; Zhang, L.; Ye, C.Z. Diurnal variations of coastal boundary layer jets over the northern South China Sea and their impacts on diurnal cycle of rainfall over southern China during the early-summer rainy season. Mon. Weather Rev. 2021, 149, 3341–3363. [Google Scholar] [CrossRef]
- Chung, K.-S.; Chiu, H.-J.; Liu, C.-Y.; Lin, M.-Y. Satellite Observation for Evaluating Cloud Properties of the Microphysical Schemes in Weather Research and Forecasting Simulation: A Case Study of the Mei-Yu Front Precipitation System. Remote Sens. 2020, 12, 3060. [Google Scholar] [CrossRef]
- Yao, B.; Liu, C.; Yin, Y.; Zhang, P.; Min, M.; Han, W. Radiance-based evaluation of WRF cloud properties over East Asia: Direct comparison with FY-2E observations. J. Geophys. Res. Atmos. 2018, 123, 4613–4629. [Google Scholar] [CrossRef]
- Cutraro, F.; Galligani, V.S.; Skabar, Y.G. Evaluation of synthetic satellite images computed from radiative transfer models over a region of South America using WRF and goes/16 observations. Q. J. R. Meteorol. Soc. 2021, 147, 2988–3003. [Google Scholar] [CrossRef]
- Griffin, S.M.; Otkin, J.A. Evaluating the Impact of Planetary Boundary Layer, Land Surface Model, and Microphysics Parameterization Schemes on Simulated GOES-16 Water Vapor Brightness Temperatures. Atmosphere 2022, 13, 366. [Google Scholar] [CrossRef]
- Griffin, S.M.; Otkin, J.A.; Nebuda, S.E.; Jensen, T.L.; Skinner, P.S.; Gilleland, E.; Supinie, T.A.; Xue, M. Evaluating the impact of planetary boundary layer, land surface model, and microphysics parameterization schemes on cold cloud objects in simulated GOES-16 brightness temperatures. J. Geophys. Res. Atmos. 2021, 126, e2021JD034709. [Google Scholar] [CrossRef]
- Zhang, D.L. Roles of Various Diabatic Physical Processes in Mesoscale Models. Chin. J. Atmos. Sci. 1998, 22, 548–561. [Google Scholar] [CrossRef]
- Dawn, S.; Satyanarayana, A.N.V. Sensitivity studies of cloud microphysical schemes of WRF-ARW model in the simulation of trailing stratiform squall lines over the Gangetic West Bengal region. J. Atmos. Sol.-Terr. Phys. 2020, 209, 396–420. [Google Scholar] [CrossRef]
- Venkata, R.G.; Venkata, R.K.; Sridhar, V. Sensitivity of Microphysical Schemes on the Simulation of Post-Monsoon Tropical Cyclones over the North Indian Ocean. Atmosphere 2020, 11, 1297–1313. [Google Scholar] [CrossRef]
- Cintineo, R.; Otkin, J.A.; Xue, M.; Kong, F. Evaluating the performance of planetary boundary layer and cloud microphysical parameterization schemes in convection-permitting ensemble forecasts using synthetic goes-13 satellite observations. Mon. Weather Rev. 2014, 142, 163–182. [Google Scholar] [CrossRef]
- Pu, Z.X.; Lin, C.; Dong, X.Q.; Krueger, S.K. Sensitivity of Numerical Simulations of a Mesoscale Convective System to Ice Hydrometeors in Bulk Microphysical Parameterization. Pure Appl. Geophys. 2019, 176, 2097–2120. [Google Scholar] [CrossRef]
- Huang, Y.J.; Wang, Y.P.; Xue, L.L.; Wei, X.L.; Zhang, L.N.; Li, H.Y. Comparison of three microphysics parameterization schemes in the WRF model for an extreme rainfall event in the coastal metropolitan City of Guangzhou, China. Atmos. Res. 2020, 240, 104939. [Google Scholar] [CrossRef]
- Ma, X.L.; Xue, J.S.; Lu, W.S. Preliminary study on ensemble transform Kalman filter-based initial perturbation scheme in GRAPES global ensemble prediction. Acta Meteorol. Sin. 2008, 66, 526–536. [Google Scholar] [CrossRef]
- Zhang, H.B.; Chen, J.; Zhi, X.F.; Wang, Y.N. A Comparison of ETKF and Downscaling in a Regional Ensemble Prediction System. Atmosphere 2015, 6, 341–360. [Google Scholar] [CrossRef]
- Chen, C.; Li, C.Y.; Tan, Y.; Zeng, Y.; Zhou, Z. Study of the drift of ensemble forecast effects caused by stochastic forcing. Acta Meteorol. Sin. 2013, 3, 505–516. [Google Scholar] [CrossRef]
- Wang, J.Z.; Chen, J.; Zhang, H.B.; Tian, H.; Shi, Y.N. Initial perturbations based on ensemble transfrom kalman filter with rescaling method for ensemble forecast. Weather Forecast. 2021, 36, 823–842. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Zhu, Y.J.; Hou, D.C.; Daryl, K. A Comparison of Perturbations from an Ensemble Transform and an Ensemble Kalman Filter for the NCEP Global Ensemble Forecast System. Weather Forecast. 2016, 31, 2057–2074. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, J.; Li, H.; Zhu, Y.J.; Zhi, X.F.; Zhang, F. Unified ensemble mean forecasting of tropical cyclones based on the feature-oriented mean method. Weather Forecast. 2021, 36, 1945–1959. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, J.; Toth, Z.; Peña, M.; Ravela, S. A New Measure of Ensemble Central Tendency. Weather. Forecast. 2020, 35, 879–889. [Google Scholar] [CrossRef]
- Bishop, C.; Etherton, B.J.; Majumdar, S.J. Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Mon. Weather Rev. 2001, 129, 420–436. [Google Scholar] [CrossRef]
- Peffers, L.T. Hybrid Variational Ensemble Data Assimilation with Initial Condition and Model Physics Uncertainty. Ph.D. Thesis, The Florida State University, Tallahassee, FL, USA, 2011. [Google Scholar]
- Zhang, H.B.; Chen, J.; Zhi, X.F.; Long, K.J.; Wang, Y.N. Design and comparison of perturbation schemes for GRAPES—Meso based ensemble forecast. Trans. Atmos. Sci. 2014, 37, 276–284. [Google Scholar] [CrossRef]
- Huang, H.Y.; Qi, L.L.; Liu, J.W.; Huang, J.P.; Li, S.Y. Preliminary application of a multi-physical ensemble transform Kalman filter in precipitation ensemble prediction. Chin. J. Atmos. Sci. 2016, 40, 657–668. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction-Final Operational Global Analysis Data. Available online: http://dss.ucar.edu/datasets/ds083.2 (accessed on 15 March 2021).
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Eaton, B. User’s Guide to the Community Atmosphere Model CAM-5.1. NCAR. Available online: http://www.cesm.ucar.edu/models/cesm1.0/cam (accessed on 15 March 2021).
- Beljaars, A.C.M. The parametrization of surface fluxes in large-scale models under free convection. Q. J. R. Meteorol. Soc. 1995, 121, 55–270. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Lacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 14, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface Hydrology Model with the Penn State NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 4, 569–585. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev. 2006, 9, 2318–2341. [Google Scholar] [CrossRef]
- Climate Prediction Center Morphing Technique Data. Available online: http://data.cma.cn/data/detail/dataCode (accessed on 15 March 2021).
- Wu, W. Comparison to the Sensitivity of GRAPES and WRF Model Cloud Microphysical Parameterization Schemes Using CloudSat and MODIS Satellite Data. Master’s Thesis, Lanzhou University, Lanzhou, China, 2011. [Google Scholar]
- Yang, Y.; Sun, W.; Chi, Y.; Yan, X.; Fan, H.; Yang, X.; Ma, Z.; Wang, Q.; Zhao, C. Machine learning-based retrieval of day and night cloud macrophysical parameters over East Asia using Himawari-8 data. Remote Sens. Environ. 2022, 273, 112971. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Xu, G.Q.; Huang, S.Y. Preliminary Experimental Study on Improving Cloud Computing Process with Satellite Data. Meteorol. Mon. 2020, 46, 1585–1595. [Google Scholar] [CrossRef]
Experiment | Number of Ensemble Members | Initial Perturbations | Microphysical Schemes |
---|---|---|---|
Multi-Physical | 3 | NO | Member 1 adopts Lin’s, Member 2 adopts Morrison’s, Member 3 adopts CAM5.1 |
multi-physical ETKF | 15 | Generate 15 perturbations | Member 1–5 adopt Lin’s, Member 6–10 adopt Morrison’s Member 11–15 adopt CAM5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Q.; Wang, J.; Zhi, X.; Zhang, H.; Gao, Y.; Yi, C.; Yang, Y. Preliminary Application of a Multi-Physical Ensemble Transform Kalman Filter in Cloud and Precipitation Forecasts. Atmosphere 2022, 13, 1359. https://doi.org/10.3390/atmos13091359
Mei Q, Wang J, Zhi X, Zhang H, Gao Y, Yi C, Yang Y. Preliminary Application of a Multi-Physical Ensemble Transform Kalman Filter in Cloud and Precipitation Forecasts. Atmosphere. 2022; 13(9):1359. https://doi.org/10.3390/atmos13091359
Chicago/Turabian StyleMei, Qin, Jia Wang, Xiefei Zhi, Hanbin Zhang, Ya Gao, Chuanxiang Yi, and Yang Yang. 2022. "Preliminary Application of a Multi-Physical Ensemble Transform Kalman Filter in Cloud and Precipitation Forecasts" Atmosphere 13, no. 9: 1359. https://doi.org/10.3390/atmos13091359
APA StyleMei, Q., Wang, J., Zhi, X., Zhang, H., Gao, Y., Yi, C., & Yang, Y. (2022). Preliminary Application of a Multi-Physical Ensemble Transform Kalman Filter in Cloud and Precipitation Forecasts. Atmosphere, 13(9), 1359. https://doi.org/10.3390/atmos13091359