A Thunderstorm Gale Forecast Method Based on the Objective Classification and Continuous Probability
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Weather Classification
2.3. Method of the Continuous Probability Modeling
2.4. Quantitative Test Algorithm
3. Construction of the Probability Forecast Method for Thunderstorm Gales
3.1. Forecast Scheme
3.2. Parameter Settings of Different Weather Types
4. Results and Discussion
4.1. Compared with the Prediction Results of Reflectivity Factor
4.2. The Advantage of Continuous Probability Method
4.2.1. A Case Study for REA_T Type
4.2.2. A Case Study for FRO_T Type
4.2.3. A Case Study for PER_W Type
4.2.4. A Case Study for EAS_A Type
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, D.L.; Schaefer, J.T.; Doswell, C.A. Climatology of Nontornadic Severe Thunderstorm Events in the United States. Mon. Weather Rev. 1985, 113, 1997–2014. [Google Scholar] [CrossRef]
- Doswell, C.A. Severe Convective Storms; American Meteorological Society: Boston, MA, USA, 2001; pp. 1–26. [Google Scholar]
- Wu, D.; Meng, Z.; Yan, D. The Predictability of a Squall line in South China on 23 April 2007. Adv. Atmos. Sci. 2013, 30, 485–502. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Gong, D. Raindrop Size Distribution in a Midlatitude Continental Squall Line Measured by Thies Optical Disdrometers over East China. J. Appl. Meteorol. Climatol. 2016, 55, 621–634. [Google Scholar] [CrossRef]
- Campbell, M.A.; Cohen, A.E.; Coniglio, M.C.; Dean, A.R.; Corfidi, S.F.; Corfidi, S.J.; Mead, C.M. Structure and Motion of Severe-Wind-Producing Mesoscale Convective Systems and Derechos in Relation to the Mean Wind. Weather Forecast. 2017, 32, 423–439. [Google Scholar] [CrossRef]
- Surowiecki, A.; Taszarek, M. A 10-Year Radar-Based Climatology of Mesoscale Convective System Archetypes and Derechos in Poland. Mon. Weather Rev. 2020, 148, 3471–3488. [Google Scholar] [CrossRef]
- Schoen, J.M.; Ashley, W.S. A Climatology of Fatal Convective Wind Events by Storm Type. Weather Forecast. 2011, 26, 109–121. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, J. Characteristics of Strong Convective Wind Events Caused by Three Types of Convective Systems in Hubei Province. Chin. J. Atmos. Sci. 2019, 43, 483–497. [Google Scholar] [CrossRef]
- Albers, S.C.; McGinley, J.A.; Birkenheuer, D.L.; Smart, J.R. The Local Analysis and Prediction System (LAPS): Analyses of Clouds, Precipitation, and Temperature. Weather Forecast. 1996, 11, 273–287. [Google Scholar] [CrossRef]
- Fang, C.; Zheng, Y.; Lin, Y.; Zhu, W. Classification and Characteristics of Cloud Patterns Triggering Regional Thunderstorm High Winds. Meteor. Mon. 2014, 40, 905–915. [Google Scholar] [CrossRef]
- Xu, X.; Xue, M.; Wang, Y. Mesovortices within the 8 May 2009 Bow Echo over the Central United States: Analyses of the Characteristics and Evolution Based on Doppler Radar Observations and a High-Resolution Model Simulation. Mon. Weather Rev. 2015, 143, 2266–2290. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, A.; Xu, B.; Chen, J.; Li, J. Analysis on mesoscale characteristics and causes of an extreme thunderstorm gale event in Jiangxi. Torrential Rain Disasters 2019, 38, 126–134. [Google Scholar] [CrossRef]
- Luchetti, N.T.; Friedrich, K.; Rodell, C.E.; Lundquist, J.K. Characterizing Thunderstorm Gust Fronts near Complex Terrain. Mon. Weather Rev. 2020, 148, 3267–3286. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, Y.; Leng, L.; Fu, Z.; Guan, Z. Doppler radar observation and analysis of two convective gale weather events in Wuhan in May 2021. Torrential Rain Disasters 2022, 41, 119–129. [Google Scholar] [CrossRef]
- Mcnulty, R.P. Severe and Convective Weather: A Central Region Forecasting Challenge. Weather Forecast. 1995, 10, 187–202. [Google Scholar] [CrossRef]
- Doswell, C.A., III; Brooks, H.E.; Maddox, R.A. Flash Flood Forecasting: An Ingredients-Based Methodology. Weather. Forecast. 1996, 11, 560–581. [Google Scholar] [CrossRef]
- Yang, X.; Hu, S.; Jiang, P.; Wan, M.; Wang, W.; Liu, G.; Gao, H.; Zhangxu, P.U.; Hua, W. Research of Synoptic Model and Physical Quantity Parameter of Thunder-Gust Winds Impact Area. Plateau Meteorol. 2014, 33, 1057–1068. [Google Scholar] [CrossRef]
- Wei, H.; Guanyu, X.U.; Liu, X.; Zhang, J.; Shuangjun, L.I.; Jiang, J. Spatial-temporal distribution and environmental parameter characteristics for different types of thunderstorm gales in Hubei Province. Torrential Rain Disasters 2022, 41, 66–75. [Google Scholar] [CrossRef]
- Lei, L.; Sun, J.; Wang, G.; Guo, R. An experimental study of the summer convective weather categorical probability forecast based on the rapid updated cycle system for the Beijing area (BJ-RUC). Acta Meteorol. Sin. 2012, 70, 752–765. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, G.; Wu, H.; Shen, Y.; Li, X. Study of the forecasting method for the classified severe convection weather based on a meso-scale numerical model. Acta Meteorol. Sin. 2015, 73, 868–882. [Google Scholar] [CrossRef]
- Ma, S.; Wang, X.; Yu, X. Environmental parameter characteristics of severe wind with extreme thunderstorm. J. Appl. Meteor. Sci. 2019, 30, 292–301. [Google Scholar] [CrossRef]
- Cohen, A.E.; Coniglio, M.C.; Corfidi, S.F.; Corfidi, S.J. Discrimination of mesoscale convective system environments using sounding observations. Weather Forecast. 2007, 22, 1045–1062. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, X.; Yu, X. Comparative study of environmental characteristics of a windstorm and their impacts on storm structures. Acta Meteorol. Sin. 2013, 5, 839–852. [Google Scholar] [CrossRef]
- Zhou, K.; Zheng, Y.; Li, B.; Dong, W.; Zhang, X. Forecasting Different Types of Convective Weather: A Deep Learning Approach. J. Meteorol. Res. 2019, 33, 797–809. [Google Scholar] [CrossRef]
- Tang, W.; Zhou, Q.; Liu, X.; Zhu, W.; Mao, X. Anlyisis on Verification of National Severe Convective Weather Categorical Forecasts. Meteor. Mon. 2017, 43, 67–76. [Google Scholar] [CrossRef]
- Yu, X.; Zheng., Y. Advances in severe convective weather research and operational service in China. Acta Meteorol. Sin. 2020, 78, 391–418. [Google Scholar] [CrossRef]
- Tian, F.; Zheng, Y.; Zhang, T.; Zhang, X.; Mao, D.; Sun, J.; Zhao, S. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China. J. Meteorol. Res. 2015, 29, 370–384. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Crockett, J.; Sperow, K.; Ba, M.; Xin, L. Tuning AutoNowcaster Automatically. Weather Forecast. 2012, 27, 1568–1579. [Google Scholar] [CrossRef]
- Tang, J.; Guo, X.; Chang, Y.; Lu, G.; Qi, P. Temporospatial Distribution and Trends of Thunderstorm, Hail, Gale, and Heavy Precipitation Events over the Tibetan Plateau and Associated Mechanisms. J. Clim. 2021, 34, 9623–9646. [Google Scholar] [CrossRef]
- Kanwal, A.; Tahir, Z.R.; Asim, M.; Hayat, N.; Farooq, M.; Abdullah, M.; Azhar, M. Evaluation of Reanalysis and Analysis Datasets against Measured Wind Data for Wind Resource Assessment. Energy Environ. 2022, 0958305X2210840. [Google Scholar] [CrossRef]
- Kuchera, E.L.; Parker, M.D. Severe Convective Wind Environments. Weather Forecast. 2006, 21, 595–612. [Google Scholar] [CrossRef]
- Cintineo, J.L.; Pavolonis, M.J.; Sieglaff, J.M.; Lindsey, D.T. An Empirical Model for Assessing the Severe Weather Potential of Developing Convection. Weather Forecast. 2014, 29, 639–653. [Google Scholar] [CrossRef]
- Skinner, P.S.; Wheatley, D.M.; Knopfmeier, K.H.; Reinhart, A.E.; Choate, J.J.; Jones, T.A.; Creager, G.J.; Dowell, D.C.; Alexander, C.R.; Ladwig, T.T.; et al. Object-Based Verification of a Prototype Warn-on-Forecast System. Weather Forecast. 2018, 33, 1225–1250. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [Google Scholar] [CrossRef]
- Lin, P.; Chang, P.; Jou, B.J.; Wilson, J.W.; Roberts, R.D. Objective Prediction of Warm Season Afternoon Thunderstorms in Northern Taiwan Using a Fuzzy Logic Approach. Weather Forecast. 2012, 27, 1178–1197. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Ko, J.; Lee, G. Identification of Range Overlaid Echoes Using Polarimetric Radar Measurements Based on a Fuzzy Logic Approach. J. Atmos. Ocean. Technol. 2016, 33, 61–80. [Google Scholar] [CrossRef]
- Zhu, Y.; Niu, X.; Gu, C.; Dai, B.; Huang, L. A Fuzzy Clustering Logic Life Loss Risk Evaluation Model for Dam-Break Floods. Complexity 2021, 2021, 14. [Google Scholar] [CrossRef]
- Liu, S.; Wang, R.; Huang, J.; Liu, K. Intelligent Diagnosis Method of Metering Cabinet Health State Based on Multi-source Information and Fuzzy Comprehensive Evaluation. In Proceedings of the 2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO), Beijing, China, 15–17 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Bermowitz, R.J.; Zurndorfer, E.A. Automated Guidance for Predicting Quantitative Precipitation. Mon. Weather Rev. 1979, 107, 122–128. [Google Scholar] [CrossRef]
- Panofsky, H.A.; Brier, G.W. Some Applications of Statistics to Meteorology; Earth and Mineral Sciences Continuing Education, College of Earth and Mineral Sciences: State College, PA, USA, 1968; p. 224. [Google Scholar]
- Medasani, S.; Kim, J.; Krishnapuram, R. An Overview of Membership Function Generation Techniques for Pattern Recognition. Int. J. Approx. Reason. 1998, 19, 391–417. [Google Scholar] [CrossRef]
- Tyagi, B.; Naresh Krishna, V.; Satyanarayana, A.N.V. Study of Thermodynamic Indices in Forecasting Pre-Monsoon Thunderstorms over Kolkata during STORM Pilot Phase 2006–2008. Nat. Hazards 2011, 56, 681–698. [Google Scholar] [CrossRef]
- Maddox, R.A.; McCollum, D.M.; Howard, K.W. Large-Scale Patterns Associated with Severe Summertime Thunderstorms over Central Arizona. Weather Forecast. 1995, 10, 763–778. [Google Scholar] [CrossRef]
- Fuelberg, H.E.; Biggar, D.G. The preconvective environment of summer thunderstorms over the Florida panhandle. Weather Forecast. 1999, 9, 316–326. [Google Scholar] [CrossRef]
- Mazon, J.J.; Castro, C.L.; Adams, D.K.; Chang, H.; Carrillo, C.M.; Brost, J.J. Objective Climatological Analysis of Extreme Weather Events in Arizona during the North American Monsoon. J. Appl. Meteorol. Climatol. 2016, 55, 2431–2450. [Google Scholar] [CrossRef]
Physical Quantities | Membership Functions | a,b Value | |||
---|---|---|---|---|---|
REA_T | FRO_T | PER_W | EAS_A | ||
850 hPa Dew point (Td)/°C | ascending half ridge | a = 1, b = 9.3 | a = 13.3, b = 17.3 | a = 13.3, b = 18 | a = 16, b = 17.1 |
925 hPa Td/°C | ascending half ridge | a = 3, b = 13.5 | a = 16, b = 20 | a = 16.2, b = 20.5 | a = 18, b = 20.5 |
700 hPa Temperature-dew point spread (T−Td)/°C | ascending half ridge | a = 5, b = 7.2 | a = 2.9, b = 4.6 | a = 4.5, b = 7.9 | a = 3.8, b = 7.7 |
850 hPa T−Td/°C | descending half ridge | a = 10.5, b = 15.5 | a = 2.9, b = 4.5 | a = 5.4, b = 8.4 | a = 4.3, b = 6.1 |
Covective available potential energy (CAPE)/(J·kg−1) | ascending half ridge | a = 125, b = 830 | a = 900, b = 1380 | a = 1400, b = 2100 | a = 1300, b = 1600 |
Lifting index/°C | descending half ridge | a = −2.5, b = −1 | a = −4.6, b = −1.5 | a = −5, b = −2.5 | a = −5, b = −1.2 |
Showalter index/°C | descending half ridge | a = −1, b = 0 | a = −2.2, b = 0 | a = −2.5, b = 0 | a = −1.7, b = 0 |
K index/°C | - | - | a = 35, b = 38 | a = 32, b = 35.5 | a = 33, b = 35 |
DCAPE/(J·kg−1) | ascending half ridge | a = 600, b = 1000 | a = 400, b = 600 | a = 900, b = 1380 | a = 900, b = 1380 |
Maximum surface temperature in afternoon/°C | - | - | - | a = 33, b = 37 | a = 33, b = 37 |
T850 hPa−T500 hPa(T850−500)/°C | ascending half ridge | a = 26.6, b = 29.5 | a = 23.5, b = 25.3 | a = 24.5, b = 26.3 | a = 23, b = 26.2 |
500 hPa wind speed/(m·s−1) | ascending half ridge | a = 14, b = 17.3 | - | - | - |
3-h pressure change on the ground/hPa | descending half ridge | a = −2.2, b = −0 | a = −2.2, b = 0 | a = −2.2, b = 0 | a = −2.2, b = 0 |
Divergence on 925 hPa/(10−5 s−1) | descending half ridge | a = −1.6, b = 0 | a = −3.3, b = 0 | a = −0.5, b = 0 | a = −0.5, b = 0 |
Water vapor flux divergence on 925 hPa/(10−7 g·hPa−1·cm−2·s−1) | descending half ridge | a = −3.3, b = 0 | a = −5.4, b = 0 | a = −0.5, b = 0 | a = −0.5, b = 0 |
0–6 km vertical wind shear/(m·s−1) | ascending half ridge | a = 11.5, b = 16.2 | a = 10, b = 16 | - | - |
Physical Quantities | Percentile Statistics | REA_T | FRO_T | PER_W | EAS_A |
---|---|---|---|---|---|
850 hPa Td/°C | 25% | 5.9 | 16.3 | 16.5 | 16.6 |
50% | 9.3 | 17.4 | 18.0 | 17.2 | |
75% | 16.1 | 18.5 | 18.9 | 18.3 | |
925 hPa Td/°C | 25% | 8.3 | 19.2 | 19.6 | 19.1 |
50% | 13.5 | 20.4 | 20.7 | 20.5 | |
75% | 18.6 | 21.7 | 22.2 | 21.4 | |
700 hPa T−Td/°C | 25% | 5.1 | 3.1 | 4.5 | 3.8 |
50% | 7.2 | 4.7 | 7.9 | 7.7 | |
75% | 11.9 | 7.4 | 10.1 | 10.9 | |
850 hPa T−Td/°C | 25% | 7.8 | 2.2 | 3.8 | 2.9 |
50% | 10.6 | 3.0 | 5.5 | 4.3 | |
75% | 15.5 | 4.5 | 8.4 | 6.2 | |
CAPE/(J·kg−2) | 25% | 134.8 | 906.0 | 1429.0 | 1316.0 |
50% | 836.5 | 1396.0 | 2147.5 | 1600.0 | |
75% | 1357.3 | 2283.8 | 2577.8 | 2484.5 | |
Lifting index/°C | 25% | −4.0 | −6.1 | −7.3 | −7.0 |
50% | −2.5 | −4.7 | −5.1 | −4.9 | |
75% | −1.1 | −3.6 | −4.2 | −4.4 | |
Showalter index/°C | 25% | −2.6 | −4.0 | −3.5 | −2.3 |
50% | −0.6 | −2.1 | −2.5 | −1.6 | |
75% | 0.2 | −1.0 | −1.1 | −1.0 | |
K index/°C | 25% | 27.3 | 35.0 | 31.6 | 34.1 |
50% | 29.8 | 38.2 | 35.6 | 35.0 | |
75% | 37.6 | 39.5 | 38.5 | 37.6 | |
DCAPE/(J·kg−2) | 25% | 575.0 | 350.0 | 800.0 | 700.0 |
50% | 750.0 | 500.0 | 1000.0 | 900.0 | |
75% | 925.0 | 600.0 | 1200.0 | 1100.0 | |
T850−500 | 25% | 28.2 | 23.9 | 24.9 | 24.2 |
50% | 29.6 | 25.5 | 26.4 | 26.2 | |
75% | 32.8 | 27.1 | 27.4 | 27.0 | |
500 hPa wind speed/(m·s−2) | 25% | 9.5 | 7.6 | 4.5 | 4.2 |
50% | 14.0 | 11.0 | 6.8 | 6.9 | |
75% | 17.3 | 15.9 | 10.4 | 8.9 | |
Divergence on 925 hPa/(10−5 s−2) | 25% | −4.2 | −5.5 | −2.1 | −1.2 |
50% | −1.6 | −3.3 | 0.6 | 0.2 | |
75% | 0.9 | 0.1 | 1.9 | 2.7 | |
Water vapor flux divergence on 925 hPa/(10−7 g·hPa−1·cm−2·s−2) | 25% | −7.2 | −11.6 | −3.3 | −3.0 |
50% | −3.1 | −5.3 | 1.4 | 0.0 | |
75% | 1.3 | −0.1 | 5.4 | 6.4 | |
0–6 km vertical wind shear/(m·s−2) | 25% | 8.0 | 8.4 | 3.6 | 2.7 |
50% | 11.6 | 12.6 | 6.3 | 5.9 | |
75% | 16.2 | 16.0 | 9.8 | 8.3 |
Thunderstorm Probability Forecast Product ≥ 60% | Thunderstorm Probability Forecast Product ≥ 70% | CMA-MESO Reflectivity Factor ≥ 40 dBZ | |
---|---|---|---|
POD | 68.72% | 36.65% | 15.961% |
MAR | 31.28% | 63.35% | 84.039% |
FAR | 99.51% | 99.26% | 99.365% |
TS | 0.49% | 0.73% | 0.614% |
Type | Case Time | Continuous Probability Method | Bisection Method | ||||||
---|---|---|---|---|---|---|---|---|---|
POD | FAR | MAR | TS | POD | FAR | MAR | TS | ||
REA_T | 11 August 2019 | 50.06% | 62.76% | 49.94% | 27.16% | 0.13% | 94.44% | 99.87% | 0.12% |
14 August 2019 | 1.74% | 82.76% | 98.26% | 1.61% | 0.00% | 0.00% | 100.00% | 0.00% | |
15 August 2019 | 62.36% | 66.13% | 37.64% | 28.12% | 5.90% | 33.33% | 94.10% | 5.73% | |
18 August 2019 | 24.35% | 79.56% | 75.65% | 12.50% | 0.00% | 0.00% | 100.00% | 0.00% | |
30 June 2020 | 75.68% | 85.93% | 24.32% | 13.46% | 0.00% | 100.00% | 100.00% | 0.00% | |
FRO_T | 5 June 2019 | 72.53% | 72.04% | 27.47% | 25.28% | 75.24% | 67.12% | 24.76% | 29.67% |
4 May 2020 | 62.71% | 74.87% | 37.29% | 21.86% | 67.41% | 77.50% | 32.59% | 20.30% | |
12 June 2020 | 76.47% | 82.97% | 23.53% | 16.19% | 75.23% | 81.44% | 24.77% | 17.49% | |
10 May 2021 | 56.09% | 63.82% | 43.91% | 28.19% | 33.89% | 73.06% | 66.11% | 17.66% | |
PER_W | 2 July 2020 | 100.00% | 83.59% | 0.00% | 16.41% | 94.26% | 84.93% | 5.74% | 14.94% |
5 July 2020 | 37.93% | 95.63% | 62.07% | 4.08% | 3.45% | 98.73% | 96.55% | 0.93% | |
11 July 2020 | 76.18% | 74.61% | 23.82% | 23.53% | 69.59% | 69.93% | 30.41% | 26.58% | |
31 July 2020 | 38.06% | 85.39% | 61.94% | 11.80% | 19.03% | 80.84% | 80.97% | 10.56% | |
20 August 2020 | 39.56% | 92.50% | 60.44% | 6.73% | 0.00% | 100.00% | 100.00% | 0.00% | |
EAS_A | 8 August 2019 | 27.08% | 93.13% | 72.92% | 5.80% | 0.00% | 100.00% | 100.00% | 0.00% |
16 August 2020 | 55.00% | 76.25% | 45.00% | 19.89% | 0.00% | 100.00% | 100.00% | 0.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhong, M.; Chen, X.; Zhou, Z.; Xu, G.; Xu, G.; Dong, L. A Thunderstorm Gale Forecast Method Based on the Objective Classification and Continuous Probability. Atmosphere 2022, 13, 1308. https://doi.org/10.3390/atmos13081308
Guo Y, Zhong M, Chen X, Zhou Z, Xu G, Xu G, Dong L. A Thunderstorm Gale Forecast Method Based on the Objective Classification and Continuous Probability. Atmosphere. 2022; 13(8):1308. https://doi.org/10.3390/atmos13081308
Chicago/Turabian StyleGuo, Yinglian, Min Zhong, Xuan Chen, Zhimin Zhou, Guirong Xu, Guanyu Xu, and Liangpeng Dong. 2022. "A Thunderstorm Gale Forecast Method Based on the Objective Classification and Continuous Probability" Atmosphere 13, no. 8: 1308. https://doi.org/10.3390/atmos13081308
APA StyleGuo, Y., Zhong, M., Chen, X., Zhou, Z., Xu, G., Xu, G., & Dong, L. (2022). A Thunderstorm Gale Forecast Method Based on the Objective Classification and Continuous Probability. Atmosphere, 13(8), 1308. https://doi.org/10.3390/atmos13081308