Narratives and Benefits of Agricultural Technology in Urban Buildings: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Key Concepts
2.1.1. Ag-Tech
2.1.2. Controlled Environment Agriculture
2.1.3. Soil-Less Growing Systems
2.1.4. Urban Buildings
2.2. Methods
3. Results
3.1. Articles Included
3.2. Sample of Urban Agriculture Installations
3.3. Installations by Region
3.3.1. North America
3.3.2. Asia
3.3.3. Europe
3.4. Installation Soil-Less Growing Systems
3.5. Installation Types by Region
3.6. Documented Benefits
3.6.1. Water Use Reduction
3.6.2. Renewable Energy
3.6.3. Heat Transfer
3.6.4. CO2 Fertilisation
4. Discussion
4.1. Controlled Environment Type
4.2. Rooftop Greenhouses
4.3. Popular Narratives
4.4. Economic Viability
4.5. Buildings Integration
4.6. Limitations
4.7. Future Research
- A transparent data disclosure specifically from active commercial farms that enables research to be carried out to validate any claims of benefits or detriments from UA. Data from pilot sites and experiments is insufficient to determine the real-world effects of ag-tech in UA farms. The lack of transparency creates mistrust in the typically cited narratives, and therefore it is in the best interest of commercial players in the market to fully disclose their performance. This will enable further quantitative validation of the most popular narratives described in the sample, such as organic waste or water reuse and use of renewable sources of electricity, to report the tangible impact of these narratives on the real-world installations’ production of final products.
- An all-inclusive systematic review of CEA operating in commercial production for urban areas and the level of technological integration. This includes the identification of indicators for success to achieve economic sustainability and provide return on investment.
- A dedicated analysis of UA installations that use coupled systems using CEA with different environment types in building-integrated for renewable energy, heat transfer and CO2 fertilisation integration to assess the benefits of ag-tech integration.
- A full quantitative analysis of benefits of CEA-UA installations using LCA to compare supply chain impacts between different forms of ag-tech and also the performance of UA farming with conventional farming. LCA methods are not always applied using the same (or comparable) functional units, system boundaries and data sources, and therefore dedicated studies are needed to ensure full compatibility.
- The determination of the potential for biomass growth (production yield) as a function of energy use in the production system (building and CEA system) that enables an optimisation of quantities produced and inputs used towards reduction of environmental impacts.
- A specific analysis of the types of ag-tech that are better suited for each plant type or type of product grown in the installation, including their environmental performance.
- A full sustainability analysis of the installations that also assesses the socio-economic effects of production in the urban environments where the installations are located.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosales Carreón, J.; Worrell, E. Urban Energy Systems within the Transition to Sustainable Development. A Research Agenda for Urban Metabolism. Resour. Conserv. Recycl. 2017, 132, 258–266. [Google Scholar] [CrossRef]
- FAO. Food, Agriculture and Cities. In Challenges of Food and Nutrition Security, Agriculture and Ecosystem Management in an Urbanizing World; FAO: Rome, Italy, 2011; Volume 48. [Google Scholar]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Urban versus Conventional Agriculture, Taxonomy of Resource Profiles: A Review. Agron. Sustain. Dev. 2016, 36, 1–19. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Xydis, G. Plant Factories in the Water-Food-Energy Nexus Era: A Systematic Bibliographical Review. Food Secur. 2020, 12, 253–268. [Google Scholar] [CrossRef]
- Benis, K.; Ferrão, P. Commercial Farming within the Urban Built Environment—Taking Stock of an Evolving Field in Northern Countries. Glob. Food Sec. 2018, 17, 30–37. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Song, S.; Hou, Y.; Lim, R.B.H.; Gaw, L.Y.F.; Richards, D.R.; Tan, H.T.W. Comparison of Vegetable Production, Resource-Use Efficiency and Environmental Performance of High-Technology and Conventional Farming Systems for Urban Agriculture in the Tropical City of Singapore. Sci. Total Environ. 2022, 807, 150621. [Google Scholar] [CrossRef] [PubMed]
- Dorr, E.; Goldstein, B.; Horvath, A.; Aubry, C.; Gabrielle, B. Environmental Impacts and Resource Use of Urban Agriculture: A Systematic Review and Meta-Analysis. Environ. Res. Lett. 2021, 16, 093002. [Google Scholar] [CrossRef]
- Litskas, V.; Chrysargyris, A.; Stavrinides, M.; Tzortzakis, N. Water-Energy-Food Nexus: A Case Study on Medicinal and Aromatic Plants. J. Clean. Prod. 2019, 233, 1334–1343. [Google Scholar] [CrossRef]
- Benis, K.; Reinhart, C.F.; Ferrão, P. Putting Rooftops to Use—A Cost-Benefit Analysis of Food Production vs. Energy Generation under Mediterranean Climates. Cities 2018, 78, 166–179. [Google Scholar] [CrossRef]
- Maye, D. “Smart Food City”: Conceptual Relations between Smart City Planning, Urban Food Systems and Innovation Theory. City. Cult. Soc. 2018, 16, 18–24. [Google Scholar] [CrossRef]
- Martellozzo, F.; Landry, J.-S.; Plouffe, D.; Seufert, V.; Rowhani, P.; Ramankutty, N. Urban Agriculture: A Global Analysis of the Space Constraint to Meet Urban Vegetable Demand. Environ. Res. Lett. 2014, 9, 0640125. [Google Scholar] [CrossRef]
- Li, T.; Lalk, G.T.; Arthur, J.D.; Johnson, M.H.; Bi, G. Shoot Production and Mineral Nutrients of Five Microgreens as Affected by Hydroponic Substrate Type and Post-Emergent Fertilization. Horticulturae 2021, 7, 129. [Google Scholar] [CrossRef]
- Sharma, S.; Shree, B.; Sharma, D.; Kumar, S.; Kumar, V.; Sharma, R.; Saini, R. Vegetable Microgreens: The Gleam of next Generation Super Foods, Their Genetic Enhancement, Health Benefits and Processing Approaches. Food Res. Int. 2022, 155, 111038. [Google Scholar] [CrossRef]
- Orsini, F.; Dubbeling, M.; De Zeeuw, H.; Gianquinto, G. Urban Agriculture: Rooftop Urban Agriculture, 1st ed.; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Mohareb, E.; Heller, M.; Novak, P.; Goldstein, B.; Fonoll, X.; Raskin, L. Considerations for Reducing Food System Energy Demand While Scaling up Urban Agriculture. Environ. Res. Lett. 2017, 12, 125004. [Google Scholar] [CrossRef]
- Thomaier, S.; Specht, K.; Henckel, D.; Dierich, A.; Siebert, R.; Freisinger, U.B.; Sawicka, M. Farming in and on Urban Buildings: Present Practice and Specific Novelties of Zero-Acreage Farming (ZFarming). Renew. Agric. Food Syst. 2015, 30, 43–54. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A.; Hamm, M.W. Consolidating the Current Knowledge on Urban Agriculture in Productive Urban Food Systems: Learnings, Gaps and Outlook. J. Clean. Prod. 2018, 209, 1637–1655. [Google Scholar] [CrossRef]
- Butturini, M.; Marcelis, L.F.M. Vertical Farming in Europe: Present Status and Outlook. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production: Second Edition; Kozai, T., Niu, G., Takagaki, M., Eds.; Elsevier Inc.: Wageningen, Netherlands, 2019; pp. 77–91. [Google Scholar]
- AgFunder. AgFunder Invesment Research. Available online: https://agfunder.com/research/ (accessed on 1 June 2022).
- AgFunder. 2019 AgFunder AgriFood Tech Investing Report. Available online: https://agfunder.com/research/agfunder-agrifood-tech-investing-report-2019/ (accessed on 1 June 2022).
- AgFunder. 2021 AgFunder AgriFoodTech Investment Report. Available online: https://agfunder.com/research/2021-AgFunder-agrifoodtech-investment-report/ (accessed on 1 June 2022).
- Bulgari, R.; Baldi, A.; Ferrante, A.; Lenzi, A. Yield and Quality of Basil, Swiss Chard, and Rocket Microgreens Grown in a Hydroponic System. New Zeal. J. Crop Hortic. Sci. 2017, 45, 119–129. [Google Scholar] [CrossRef]
- Wong, C.E.; Teo, Z.W.N.; Shen, L.; Yu, H. Seeing the Lights for Leafy Greens in Indoor Vertical Farming. Trends Food Sci. Technol. 2020, 106, 48–63. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Bartzanas, T.; Xydis, G. Minimising the Energy Footprint of Indoor Food Production While Maintaining a High Growth Rate: Introducing Disruptive Cultivation Protocols. Food Control 2021, 130, 108290. [Google Scholar] [CrossRef]
- O’Sullivan, C.A.; Bonnett, G.D.; McIntyre, C.L.; Hochman, Z.; Wasson, A.P. Strategies to Improve the Productivity, Product Diversity and Profitability of Urban Agriculture. Agric. Syst. 2019, 174, 133–144. [Google Scholar] [CrossRef]
- Sparks, R.E.; Merton, R.; Iii, S. Design and Testing of a Modified Hydroponic Shipping Container System for Urban Food Production. Int. J. Appl. Agric. Sci. 2018, 4, 93–102. [Google Scholar]
- Benis, K.; Reinhart, C.; Ferrão, P. Building-Integrated Agriculture (BIA) In Urban Contexts: Testing A Simulation-Based Decision Support Workflow. In 15th IBPSA; Building Simulation: San Francisco, CA, USA, 2017; pp. 1798–1807. [Google Scholar]
- Montero, J.I.; Baeza, E.; Munoz, P.; Sanyé-Mengual, E.; Stanghellini, C. Technology for Rooftop Greenhouses. In Urban Agriculture: Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 83–101. [Google Scholar]
- Kimle, K.L. Building an Ecosystem for Agtech Startups. In Economics Technical Reports and White Papers; Iowa State University: Ames, IA, USA, 2018; p. 40. [Google Scholar]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Kozai, T., Niu, G., Takagaki, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Shamshiri, R.R.; Bojic, I.; van Henten, E.; Balasundram, S.K.; Dworak, V.; Sultan, M.; Weltzien, C. Model-Based Evaluation of Greenhouse Microclimate Using IoT-Sensor Data Fusion for Energy Efficient Crop Production. J. Clean. Prod. 2020, 263, 121303. [Google Scholar] [CrossRef]
- Alshrouf, A. Hydroponics, Aeroponic and Aquaponic as Compared with Conventional Farming. Am. Sci. Res. J. Eng. Technol. Sci. ISSN 2017, 27, 247–255. [Google Scholar]
- Benke, K.; Tomkins, B. Future Food-Production Systems: Vertical Farming and Controlled-Environment Agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Engler, N.; Krarti, M. Review of Energy Efficiency in Controlled Environment Agriculture. Renew. Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Halgamuge, M.N.; Bojovschi, A.; Fisher, P.M.J.; Le, T.C.; Adeloju, S.; Murphy, S. Internet of Things and Autonomous Control for Vertical Cultivation Walls towards Smart Food Growing: A Review. Urban For. Urban Green. 2021, 61, 127094. [Google Scholar] [CrossRef]
- Marvin, S.; Rutherford, J. Controlled Environments: An Urban Research Agenda on Microclimatic Enclosure. Urban Stud. 2018, 55, 1143–1162. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z. Advances in Greenhouse Automation and Controlled Environment Agriculture: A Transition to Plant Factories and Urban Agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Graamans, L.; van den Dobbelsteen, A.; Meinen, E.; Stanghellini, C. Plant Factories; Crop Transpiration and Energy Balance. Agric. Syst. 2017, 153, 138–147. [Google Scholar] [CrossRef]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant Factories versus Greenhouses: Comparison of Resource Use Efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Samangooei, M.; Sassi, P.; Lack, A. Soil-Less Systems vs. Soil-Based Systems for Cultivating Edible Plants on Buildings in Relation to the Contribution towards Sustainable Cities. Futur. Food J. Food, Agric. Soc. 2016, 4, 24–39. [Google Scholar]
- König, B.; Janker, J.; Reinhardt, T.; Villarroel, M.; Junge, R. Analysis of Aquaponics as an Emerging Technological Innovation System. J. Clean. Prod. 2018, 180, 232–243. [Google Scholar] [CrossRef]
- Van Gerrewey, T.; Boon, N.; Geelen, D. Vertical Farming: The Only Way Is Up? Agronomy 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Lubna, F.A.; Lewus, D.C.; Shelford, T.J.; Both, A.-J. What You May Not Realize about Vertical Farming. Horticulturae 2022, 8, 322. [Google Scholar] [CrossRef]
- Kozai, T.; Kubota, C.; Takagaki, M.; Maruo, T. Greenhouse Environment Control Technologies for Improving the Sustainability of Food Production. Acta Hortic. 2015, 1107, 1–13. [Google Scholar] [CrossRef]
- Zhang, Z.; Rod, M.; Hosseinian, F. A Comprehensive Review on Sustainable Industrial Vertical Farming Using Film Farming Technology. Sustain. Agric. Res. 2020, 10, 46. [Google Scholar] [CrossRef]
- Browne, A. Hydroponic Towering Agriculture vs. Traditional Soil Farming in Southern Arizona. Unpublished manuscript. Master’s Thesis, University of Arizona, Tucson, AZ, USA, 2018. [Google Scholar]
- Liu, T.; Yang, M.; Han, Z.; Ow, D.W. Rooftop Production of Leafy Vegetables Can Be Profitable and Less Contaminated than Farm-Grown Vegetables. Agron. Sustain. Dev. 2016, 36, 1–9. [Google Scholar] [CrossRef]
- Proksch, G.; Ianchenko, A.; Kotzen BProksch, G.; Ianchenko, A.; Kotzen, B. Aquaponics in the Built Environment. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 523–560. [Google Scholar]
- Wimmerova, L.; Keken, Z.; Solcova, O.; Bartos, L.; Spacilova, M. A Comparative LCA of Aeroponic, Hydroponic, and Soil Cultivations of Bioactive Substance Producing Plants. Sustainability 2022, 14, 2421. [Google Scholar] [CrossRef]
- Dorr, E.; Sanyé-Mengual, E.; Gabrielle, B.; Grard, B.J.P.; Aubry, C. Proper Selection of Substrates and Crops Enhances the Sustainability of Paris Rooftop Garden. Agron. Sustain. Dev. 2017, 37, 1–11. [Google Scholar] [CrossRef]
- Surendran, U.; Chandran, C.; Joseph, E.J. Hydroponic Cultivation of Mentha Spicata and Comparison of Biochemical and Antioxidant Activities with Soil-Grown Plants. Acta Physiol. Plant. 2017, 39, 1–14. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Wildeman, R. Vertical Farming: A Future Perspective or a Mere Conceptual Idea? Unpublished manuscript. Master's Thesis, University of Twente, Enschede, The Netherlands, 2020; p. 115. [Google Scholar]
- Nicholls, E.; Ely, A.; Birkin, L.; Basu, P.; Goulson, D. The Contribution of Small-Scale Food Production in Urban Areas to the Sustainable Development Goals: A Review and Case Study. Sustain. Sci. 2020, 15, 1585–1599. [Google Scholar] [CrossRef]
- Nadal, A.; Rodríguez-Cadena, D.; Pons, O.; Cuerva, E.; Josa, A.; Rieradevall, J. Feasibility Assessment of Rooftop Greenhouses in Latin America. The Case Study of a Social Neighborhood in Quito, Ecuador. Urban For. Urban Green. 2019, 44, 126389. [Google Scholar] [CrossRef]
- Szopinska-Mularz, M.; Lehmann, S. Urban Farming in Inner-City Multi-Storey Car-Parking Structures—Adaptive Reuse Potential. Futur. Cities Environ. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Anguelovski, I.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. Resolving Differing Stakeholder Perceptions of Urban Rooftop Farming in Mediterranean Cities: Promoting Food Production as a Driver for Innovative Forms of Urban Agriculture. Agric. Human Values 2016, 33, 101–120. [Google Scholar] [CrossRef]
- Benis, K.; Ferrao, P. Potential Mitigation of the Environmental Impacts of Food Systems through Urban and Peri-Urban Agriculture (UPA)—A Life Cycle Assessment Approach. J. Clean. Prod. 2016, 140, 1–12. [Google Scholar] [CrossRef]
- Suman, M. Urban Horticulture Prospective to Secure Food Provisions in Urban and Peri-Urban Environments. Int. J. Pure Appl. Biosci. 2019, 7, 133–140. [Google Scholar] [CrossRef]
- Biel, R. Sustainable Food Systems; UCL Press: London, UK, 2016. [Google Scholar]
- Schröder, P.; Vergragt, P.; Brown, H.S.; Dendler, L.; Gorenflo, N.; Matus, K.; Quist, J.; Rupprecht, C.D.D.; Tukker, A.; Wennersten, R. Advancing Sustainable Consumption and Production in Cities—A Transdisciplinary Research and Stakeholder Engagement Framework to Address Consumption-Based Emissions and Impacts. J. Clean. Prod. 2019, 213, 114–125. [Google Scholar] [CrossRef]
- Schuurmans, A.; Dyrol, S.; Guay, F. Buildings in Urban Regeneration. In Sustainable Cities—Auhtenticity, Ambition and Dream; Intech open: London, UK, 2018; Volume 2, pp. 41–59. [Google Scholar]
- D’Agostino, D.; Zangheri, P.; Castellazzi, L. Towards Nearly Zero Energy Buildings in Europe: A Focus on Retrofit in Non-Residential Buildings. Energies 2017, 10, 117. [Google Scholar] [CrossRef]
- Bohm, M. Urban Agriculture in and on Buildings in North America: The Unfulfilled Potential to Benefit Marginalized Communities. Built Environ. 2017, 43, 343–363. [Google Scholar] [CrossRef]
- Ercilla-Montserrat, M.; Izquierdo, R.; Belmonte, J.; Montero, J.I.; Muñoz, P.; De Linares, C.; Rieradevall, J. Building-Integrated Agriculture: A First Assessment of Aerobiological Air Quality in Rooftop Greenhouses (i-RTGs). Sci. Total Environ. 2017, 598, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Caplow, T. Building Integrated Agriculture: Philosophy and Practice. In Urban Futures 2030: Urban Development and Urban Lifestyles of the Future; Herausgegeben von der Heinrich-Böll-Stiftung: Berlin, Germany, 2009; pp. 48–51. [Google Scholar]
- Cooke, P. Future Shift for ‘Big Things’: From Starchitecture via Agritecture to Parkitecture. J. Open Innov. Technol. Mark. Complex. 2021, 7, 236. [Google Scholar] [CrossRef]
- Benis, K.; Reinhart, C.; Ferrão, P. Development of a Simulation-Based Decision Support Workflow for the Implementation of Building-Integrated Agriculture (BIA) in Urban Contexts. J. Clean. Prod. 2017, 147, 589–602. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Collins, A.M.; Coughlin, D.; Kirk, S. The Role of Google Scholar in Evidence Reviews and Its Applicability to Grey Literature Searching. PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ledesma, G.; Nikolic, J.; Pons-Valladares, O. Bottom-up Model for the Sustainability Assessment of Rooftop-Farming Technologies Potential in Schools in Quito, Ecuador. J. Clean. Prod. 2020, 274, 122993. [Google Scholar] [CrossRef]
- Muñoz-Liesa, J.; Royapoor, M.; López-Capel, E.; Cuerva, E.; Rufí-Salís, M.; Gassó-Domingo, S.; Josa, A. Quantifying Energy Symbiosis of Building-Integrated Agriculture in a Mediterranean Rooftop Greenhouse. Renew. Energy 2020, 156, 696–709. [Google Scholar] [CrossRef]
- Ercilla-Montserrat, M.; Sanjuan-Delmás, D.; Sanyé-Mengual, E.; Calvet-Mir, L.; Banderas, K.; Rieradevall, J.; Gabarrell, X. Analysis of the consumer’s perception of urban food products from a soilless system in rooftop greenhouses: a case study from the Mediterranean area of Barcelona (Spain). Agric. Hum. Values 2019, 36, 375–393. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Saha, K.K.; Rahman, M.M. Oliver MMH Effect of available solar irradiance on vertical farming in semi-open urban places. J. Sci. Technol. Environ. Inform. 2020, 10, 717–726. [Google Scholar] [CrossRef]
- Nadal, A.; Alamús, R.; Pipia, L.; Ruiz, A.; Corbera, J.; Cuerva, E.; Rieradevall, J.; Josa, A. Urban Planning and Agriculture. Methodology for Assessing Rooftop Greenhouse Potential of Non-Residential Areas Using Airborne Sensors. Sci. Total Environ. 2017, 601–602, 493–507. [Google Scholar] [CrossRef]
- Ebonyst.net. Urban Farm: Agricool Placed in Receivership. Vertical Farm Daily. Available online: https://www.verticalfarmdaily.com/article/9414249/urban-farm-agricool-placed-in-receivership/ (accessed on 1 June 2022).
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef]
- Singh, A.K.; Yang, X. GREENBOX Horticulture, an Alternative Avenue of Urban Food Production. Agric. Sci. 2021, 12, 1473–1489. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.; Joni, R. Opportunities and Challenges in Sustainability of Vertical Farming : A Review. J. Landsc. Ecol. 2018, 2050, 35–60. [Google Scholar] [CrossRef]
- Zhang, H.; Asutosh, A.; Hu, W. Implementing Vertical Farming at University Scale to Promote Sustainable Communities: A Feasibility Analysis. Sustainability 2018, 10, 4429. [Google Scholar] [CrossRef]
- Zareba, A.; Krzeminska, A.; Kozik, R. Urban Vertical Farming as an Example of Nature-Based Solutions Supporting a Healthy Society Living in the Urban Environment. Resources 2021, 10, 109. [Google Scholar] [CrossRef]
- Goodman, W.; Minner, J. Will the Urban Agricultural Revolution Be Vertical and Soilless? A Case Study of Controlled Environment Agriculture in New York City. Land Use Policy 2019, 8, 160–173. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Cerón-Palma, I.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. Integrating Horticulture into Cities: A Guide for Assessing the Implementation Potential of Rooftop Greenhouses (RTGs) in Industrial and Logistics Parks. J. Urban Technol. 2015, 22, 87–111. [Google Scholar] [CrossRef]
- Pons, O.; Nadal, A.; Sanyé-mengual, E.; Llorach-massana, P.; Rosa, M. Roofs of the Future : Rooftop Greenhouses to Improve Buildings Metabolism. Procedia Eng. 2015, 123, 441–448. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. An Environmental and Economic Life Cycle Assessment of Rooftop Greenhouse (RTG) Implementation in Barcelona, Spain. Assessing New Forms of Urban Agriculture from the Greenhouse Structure to the Final Product Level. Int. J. Life Cycle Assess. 2015, 20, 350–366. [Google Scholar] [CrossRef]
- Wood, J.; Wong, C.; Paturi, S. Vertical Farming: An Assessment of Singapore City. eTropic 2020, 19, 228–248. [Google Scholar] [CrossRef]
- Martin, M.; Poulikidou, S.; Molin, E. Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming. Sustainability 2019, 11, 6724. [Google Scholar] [CrossRef]
- Martin, M.; Molin, E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability 2019, 11, 4124. [Google Scholar] [CrossRef]
- Hort Americas. Lufa Farms Uses GE LEDS to Produce Locally Grown Food. In Horti-Facts; Hort Americas: Bedford, TX, USA, 2017. [Google Scholar]
- Infarm. Infarm Raises $200M to Accelerate Global Expansion of Climate Resilient Vertical Farms. Available online: https://www.infarm.com/infarm-raises-200m-to-accelerate-global-expansion-of-climate-resilient-vertical-farms/ (accessed on 1 June 2022).
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern Plant Cultivation Technologies in Agriculture under Controlled Environment: A Review on Aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Ianchenko, A.; Proksch, G. Urban Food Systems: Applying Life Cycle Assessment in Built Environments and Aquaponics. Build. Technol. Educ. Soc. 2019, 2019, 29. [Google Scholar]
- Putra, P.A.; Yuliando, H. Soilless Culture System to Support Water Use Efficiency and Product Quality: A Review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef]
- Sanjuan-Delmás, D.; Llorach-Massana, P.; Nadal, A.; Ercilla-Montserrat, M.; Muñoz, P.; Montero, J.I.; Josa, A.; Gabarrell, X.; Rieradevall, J. Environmental Assessment of an Integrated Rooftop Greenhouse for Food Production in Cities. J. Clean. Prod. 2018, 177, 326–337. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Testing the Environmental Performance of Urban Agriculture as a Food Supply in Northern Climates. J. Clean. Prod. 2016, 135, 984–994. [Google Scholar] [CrossRef]
- Kalantari, F.; Mohd Tahir, O.; Akbari Joni, R.; Aminuldin, N.A. The Importance of the Public Acceptance Theory in Determing the Succes of the Vertical Farming Projects. Manag. Res. Pract. 2018, 10, 2067–2462. [Google Scholar]
- Great Northern Hydroponics. Great Northern Hydroponics, Cogeneration. Available online: www.greatnorthern.farm (accessed on 1 June 2022).
- Intergrow. Intergrow Our Farm. Available online: https://intergrowgreenhouses.com/our-farm/ (accessed on 1 June 2022).
- Vilutiene, T.; Kalibatiene, D.; Hosseini, M.R.; Pellicer, E.; Zavadskas, E.K. Building Information Modeling (BIM) for Structural Engineering: A Bibliometric Analysis of the Literature. Adv. Civ. Eng. 2019, 2019, 1–19. [Google Scholar] [CrossRef]
- Marín, D.; Martín, M.; Serrot, P.H.; Sabater, B. Thermodynamic Balance of Photosynthesis and Transpiration at Increasing CO2 Concentrations and Rapid Light Fluctuations. BioSystems 2014, 116, 21–26. [Google Scholar] [CrossRef]
- Bao, J.; Lu, W.H.; Zhao, J.; Bi, X.T. Greenhouses for CO2 Sequestration from Atmosphere. Carbon Resour. Convers. 2018, 1, 183–190. [Google Scholar] [CrossRef]
- Cerón-Palma, I.; Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. Barriers and Opportunities Regarding the Implementation of Rooftop Eco.Greenhouses (RTEG) in Mediterranean Cities of Europe. J. Urban Technol. 2012, 19, 87–103. [Google Scholar] [CrossRef]
- Griffiths, M.; Eftekhari, M. Control of CO2 in a Naturally Ventilated Classroom. Energy Build. 2008, 40, 556. [Google Scholar] [CrossRef]
- Qabbal, L.; Younsi, Z.; Naji, H. An Indoor Air Quality and Thermal Comfort Appraisal in a Retrofitted University Building via Low-Cost Smart Sensor. Indoor Built Environ. 2022, 31, 586–606. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Orsini, F.; Oliver-Solà, J.; Rieradevall, J.; Montero, J.I.; Gianquinto, G. Techniques and Crops for Efficient Rooftop Gardens in Bologna, Italy. Agron. Sustain. Dev. 2015, 35, 1477–1488. [Google Scholar] [CrossRef]
- McCartney, L.; Lefsrud, M. Protected Agriculture in Extreme Environments: A Review of Controlled Environment Agriculture in Tropical, Arid, Polar, and Urban Locations. Appl. Eng. Agric. 2018, 34, 455–473. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in Agriculture, Recent Advances and Future Challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Kozai, T.; Kazuhiro, F.; Runkle, E.S. Integrated Urban Controlled Environment Agriculture Systems; Kozai, T., Kazuhiro, F., Runkle, E.S., Eds.; Springer: Singapore, 2016. [Google Scholar]
- Lee, S.; Lee, J. Beneficial Bacteria and Fungi in Hydroponic Systems: Types and Characteristics of Hydroponic Food Production Methods. In Scientia Horticulturae; Elsevier B.V.: Amsterdam, The Netherlands, 2015; pp. 206–215. [Google Scholar]
- Kikuchi, Y.; Kanematsu, Y.; Yoshikawa, N.; Okubo, T.; Takagaki, M. Environmental and Resource Use Analysis of Plant Factories with Energy Technology Options: A Case Study in Japan. J. Clean. Prod. 2018, 186, 703–717. [Google Scholar] [CrossRef]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and Sustainable Energy Saving Strategies for Greenhouse Systems: A Comprehensive Review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Buehler, D.; Junge, R. Global Trends and Current Status of Commercial Urban Rooftop Farming. Sustain. 2016, 8, 1–16. [Google Scholar] [CrossRef]
- Montero, J.I.; Muñoz, P.; Llorach, P.; Nadal, A.; Sanyé-Mengual, E.; Rieradevall, J. Development of a Building-Integrated Roof Top Greenhouse in Barcelona, Spain. Acta Hortic. 2017, 1170, 839–845. [Google Scholar] [CrossRef]
- Nemecek, T.; Jungbluth, N.; i Canals, L.M.; Schenck, R. Environmental Impacts of Food Consumption and Nutrition: Where Are We and What Is Next? Int. J. Life Cycle Assess. 2016, 21, 607–620. [Google Scholar] [CrossRef]
- Sala, S.; Anton, A.; McLaren, S.J.; Notarnicola, B.; Saouter, E.; Sonesson, U. In Quest of Reducing the Environmental Impacts of Food Production and Consumption. J. Clean. Prod. 2017, 140, 387–398. [Google Scholar] [CrossRef]
- Rodríguez-Delfin, A.; Gruda, N.; Eigenbrod, C.; Orsini, F.; Gianquinto, G. Soil Based and Simplified Hydroponics Rooftop Gardens. In Urban Agriculture: Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 61–81. [Google Scholar]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an Advanced Technique for Vegetable Production: An Overview. J. Soil Water Conserv. 2019, 17, 364. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Karim, F.; Gathenya, J.M. A Scoping Review of Roof Harvested Rainwater Usage in Urban Agriculture: Australia and Kenya in Focus. J. Clean. Prod. 2018, 202, 174–190. [Google Scholar] [CrossRef]
- Caputo, S.; Iglesias, P.; Rumble, H. Elements of Rooftop Agriculture Design. In Urban Agriculture: Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 39–58. [Google Scholar]
- Rostami, S.; Choobin, S.; Samani, B.H.; Esmaeili, Z.; Zareiforoush, H. Analysis and Modeling of Yield, CO2 Emissions, and Energy for Basil Production in Iran Using Artificial Neural Networks. Int. J. Agric. Manag. Dev. 2017, 7, 47–58. [Google Scholar]
- Montero, J.I.; Baeza, E.; Heuvelink, E.; Rieradevall, J.; Muñoz, P.; Ercilla, M.; Stanghellini, C. Productivity of a Building-Integrated Roof Top Greenhouse in a Mediterranean Climate. Agric. Syst. 2017, 158, 14–22. [Google Scholar] [CrossRef]
No | Installation | Start | Country | Type | Environment | Growing System | Purpose | References |
---|---|---|---|---|---|---|---|---|
1 | Sky Green Farm | 2009 | Singapore | BD | GH | VH | C | [36,38,68,77,79,80,86] |
2 | Verticrop TM | 2009 | Canada | RT | GH | VH | C | [36,38,79,81,86] |
3 | Gotham Greens—Greenpoint | 2011 | USA | RT | GH | VH | C | [3,36,38,57,65,68,83,85] |
4 | Mirai Company | 2015 | Japan | BD | SF | VH | C | [3,38,77,81] |
5 | PlantLab VF | 2011 | The Netherlands | BD | MF | VA | C | [3,38,77,79] |
6 | Vertical Harvest plans2 | 2012 | USA | BD | MF | VH | C | [38,68,79] |
7 | Green Sense Farms 1 | 2016 | China | BD | WH | VH | C | [38,86] |
8 | Green Sense Farms 2 | 2014 | USA | BD | WH | VH | C | [38,86] |
9 | Aero Farms | 2012 | USA | BD | WH | VA | C | [36,38,81,82,86] |
10 | Bright Farms | 2011 | USA | BD | GH | H | C | [3,38,57] |
11 | Lufa Farms 1 | 2013 | Canada | RT | GH | VH | C | [3,35,38,57,83,84,85] |
12 | Lufa Farms 2 | 2011 | Canada | RT | GH | VH | C | [35,38,83,84] |
13 | Freight Farms | 2010 | USA | SC | SC | VH | TP | [38] |
14 | Thanet Earth Farm | 2008 | UK | BD | SF | H | C | [38,49] |
15 | Gotham Greens—Pullman | 2015 | USA | RT | GH | VH | C | [65,81,82] |
16 | Gotham Greens—Gowanus | 2013 | USA | RT | GH | VH | C | [65,81,82] |
17 | Gotham Greens—Hollis | 2015 | USA | RT | GH | VH | C | [65,81,82] |
18 | Edenworks | 2013 | USA | RT | GH | A | C | [82] |
19 | Square Roots | 2016 | USA | SC | SC | VH | C | [82] |
20 | Farm.One | 2016 | USA | BD | WH | VH | C | [82] |
21 | Sky Vegetables | 2012 | USA | RT | GH | H | C | [82] |
22 | Eli Zabar: rooftop-grown | 1995 | USA | RT | GH | H | C | [17,82] |
23 | Oko Farms | 2013 | USA | RT | OD | A | C | [82] |
24 | Plenty Unlimited | 2014 | USA | BD | WH | VH | C | [35] |
25 | GrowX (now GrowY) | 2017 | The Netherlands | BD | WH | VH | C | [5] |
26 | Food Roof Farm | 2013 | USA | RT | CC | VH | C | [65] |
27 | GreenBox | 2019 | USA | BD | WH | H | Tech-provider | [78] |
28 | Ouroboros Farms | 2012 | USA | BD | GH | A | Commercial | [49] |
29 | Sustainable Harvesters | 2012 | USA | BD | GH | A | Commercial | [49] |
30 | Eco-ark greenhouse at Finn & Roots | USA | BD | GH | A | Commercial | [49] | |
31 | Superior Fresh Farms | 2015 | USA | BD | GH | A | Commercial | [49] |
32 | Blue Smart Farms | 2005 | Australia | BD | MF | A | Commercial | [49] |
33 | Ecco-jäger Aquaponik Dachfarm | Switzerland | RT | MF | A | Commercial | [49] | |
34 | BIGHs Ferme Abattoir | 2018 | Belgium | RT | GH | A | Commercial | [49] |
35 | Great Northern Hydroponics | 1998 | Canada | BD | GH | H | Commercial | [81] |
36 | Listny Cud | Poland | BD | SF | VH | Commercial | [81] | |
37 | Urbanika Farms | 2015 | Poland | BD | SF | VH | Commercial | [81] |
38 | Green Spirit Farms | 2011 | USA | BD | SF | VH | Commercial | [3,77] |
39 | Green Girls Produce | 2012 | USA | BD | SF | VH | Commercial | [68,77] |
40 | Grönska | 2014 | Sweden | BD | SF | VH | Tech-provider | [87,88] |
41 | IronOx | 2015 | USA | BD | WH | Hydro | Tech-provider | [36] |
42 | Spread Co | 2015 | Japan | BD | MF | VH | Commercial | [80] |
43 | Citiponics Farm | 2016 | Singapore | RT | OD | VH | Commercial | [86] |
44 | Orchidville | Singapore | BD | GH | A | Commercial | [86] | |
45 | WOHA | 2017 | Singapore | RT | OD | A | Commercial | [86] |
46 | Fairmont Singapore/Swissotel Stamford -Project | Singapore | RT | GH | A | Commercial | [86] | |
47 | Lufa Farms Inc. (Ville) | 2019 | Canada | RT | GH | VH | Commercial | [3,35] |
48 | Lufa Farms Inc. (Anjou) | 2017 | Canada | RT | GH | VH | Commercial | [3,35] |
49 | Intergrow | 1998 | USA | BD | GH | H | Commercial | [82] |
50 | Growing Underground | 2015 | UK | BD | SF | H | Commercial | [19,26] |
51 | Jones Food Company | 2018 | UK | BD | SF | VH | Commercial | [19] |
52 | Infarm | 2013 | Germany | BD | WH | VH | Tech-provider | [19] |
53 | B-Four Agro | 2006 | The Netherlands | BD | GH | A | Commercial | [19] |
54 | Byspire | 2016 | Norway | BD | SF | VH | Commercial | [19] |
55 | Deliscious | 2012 | The Netherlands | BD | GH | H | Commercial | [19] |
56 | Duurzame kost | 2015 | The Netherlands | BD | SF | A | Commercial | [19] |
57 | Tuinderij Bevelander | 1970 | The Netherlands | BD | GH | H | Commercial | [19] |
58 | Restaurant of the Future (restaurant) | The Netherlands | IS | CC | VH | Retailer | [19] | |
59 | The Green House (restaurant) | The Netherlands | RT | GH | H | Commercial | [19] | |
60 | Auchan (retailer) | Italy | IS | CC | VH | Retailer | [19] | |
61 | Auchan (retailer) | Luxemburg | IS | CC | VH | Retailer | [19] | |
62 | Coop Butiker & Stormarknader (retailer) | Sweden | IS | CC | VH | Retailer | [19] | |
63 | Edeka (retailer) | Germany | IS | CC | VH | Retailer | [19] | |
64 | Casino (retailer) | France | IS | CC | VH | Retailer | [19] | |
65 | Metro (retailer) | Germany | IS | CC | VH | Retailer | [19] | |
66 | Migros (retailer) | Switzerland | IS | CC | VH | Retailer | [19] | |
67 | Ikea (retailer) | Sweden | SC | SC | H | Retailer | [19] | |
68 | We the roots | 2017 | Canada | BD | WH | VH | Commercial | [68] |
Soil-Less Systems | Number in Sample | Description |
---|---|---|
Aquaponics | 14 | Recirculating aquaculture and hydroponic system for fish and vegetable production |
Hydroponics | 13 | The art of growing plants in water with nutrient solutions and without soil in floating beds or with nutrient films in a horizontal plane |
Vertical Hydroponics (VHs) | 39 | Hydroponic systems grown in a vertical plane or in multiple layers of stacked horizontal hydroponics systems |
Aeroponics (VAs) | 2 | Considered a variation of vertical hydroponics where plant roots do not require soil or substrate culture as this air–water cultivation system sprays a nutrient solution in a mist |
No | Installation | Type | Water Reduction | Heat Transfer | Renewable Energy | CO2 Fertilization | Organic Waste Reuse |
---|---|---|---|---|---|---|---|
1 | Sky Green Farm | BD | Yes | Sun direct | Yes | ||
2 | Verticrop TM | RT | Yes | Sun direct | |||
3 | Gotham Greens—Greenpoint | RT | Yes | Combination | Yes | ||
6 | Vertical Harvest Plant | BD | Yes | ||||
7 | Green Sense Farms 1 | BD | Yes | ||||
8 | Green Sense Farms 2 | BD | Yes | ||||
9 | Aero Farms | BD | Yes | Solar | |||
10 | Bright Farms | BD | Yes | Sun direct | Yes | ||
11 | Lufa Farms 1 | RT | BIA | BIA | |||
12 | Lufa Farms 2 | RT | BIA | ||||
13 | Freight Farms | SC | Yes | ||||
14 | Thanet Earth Farm | BD | Combination | ||||
15 | Gotham Greens—Pullman | RT | BIA | Combination | |||
16 | Gotham Greens—Gowanus | RT | Combination | ||||
17 | Gotham Greens—Hollis | RT | Combination | ||||
18 | Edenworks | RT | Sun direct | ||||
22 | Eli Zabar: rooftop-grown | RT | BIA | ||||
23 | Oko Farms | RT | Sun direct | ||||
24 | Plenty Unlimited | BD | Yes | ||||
26 | Food Roof Farm | RT | Rainwater | ||||
27 | GreenBox | BD | Sun direct | ||||
28 | Ouroboros Farms | BD | Yes | Sun direct | |||
29 | Sustainable Harvesters | BD | Yes | Sun direct | |||
30 | Eco-ark at Finn & Roots | BD | Yes | Solar | |||
31 | Superior Fresh Farms | BD | Yes | Sun direct | |||
32 | Blue Smart Farms | BD | Yes | ||||
33 | Ecco-jäger Aquaponik Dachfarm | RT | Yes | Yes | Sun direct | ||
34 | BIGHs Ferme Abattoir | RT | Yes | Sun direct | |||
36 | Great Northern Hydroponics | BD | Yes | Yes | Combination | Yes | Yes |
39 | Green Girls Produce | BD | Yes | ||||
40 | Grönska | BD | Yes | ||||
42 | Spread Co | BD | Yes | ||||
43 | Citiponics Farm | RT | Yes | Sun direct | |||
47 | Lufa Farms Inc. (Ville) | RT | Rainwater | ||||
48 | Lufa Farms Inc. (Anjou) | RT | Rainwater | ||||
49 | Intergrow | BD | Rainwater | Yes | Combination | Yes | Yes |
51 | Jones Food Company | BD | Yes | Solar | |||
54 | Byspire | BD | Yes | ||||
55 | Deliscious | BD | Rainwater | ||||
56 | Duurzame kost | BD | Yes | ||||
67 | Ikea | SC | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parkes, M.G.; Azevedo, D.L.; Domingos, T.; Teixeira, R.F.M. Narratives and Benefits of Agricultural Technology in Urban Buildings: A Review. Atmosphere 2022, 13, 1250. https://doi.org/10.3390/atmos13081250
Parkes MG, Azevedo DL, Domingos T, Teixeira RFM. Narratives and Benefits of Agricultural Technology in Urban Buildings: A Review. Atmosphere. 2022; 13(8):1250. https://doi.org/10.3390/atmos13081250
Chicago/Turabian StyleParkes, Michael G., Duarte Leal Azevedo, Tiago Domingos, and Ricardo F. M. Teixeira. 2022. "Narratives and Benefits of Agricultural Technology in Urban Buildings: A Review" Atmosphere 13, no. 8: 1250. https://doi.org/10.3390/atmos13081250
APA StyleParkes, M. G., Azevedo, D. L., Domingos, T., & Teixeira, R. F. M. (2022). Narratives and Benefits of Agricultural Technology in Urban Buildings: A Review. Atmosphere, 13(8), 1250. https://doi.org/10.3390/atmos13081250