Assessing the Impact of Lightning NOx Emissions in CMAQ Using Lightning Flash Data from WWLLN over the Contiguous United States
Abstract
:1. Introduction
2. Data and Methodology
2.1. Lightning Flash Data
2.2. Observations and Analysis Techniques
2.3. Model Configurations
3. The Comparison of Lightning Flashes Detected by NLDN and WWLLN and the Adaptation of WWLLN Data for LNOx Emissions
3.1. Temporal and Spatial Distributions
3.2. The Scaling of the WWLLN Lightning Flash Rate to Generate LNOx Emissions
4. Results and Analysis
4.1. Surface Air Quality
4.2. Vertical Profiles
4.2.1. Comparison with Ozonesonde Measurements
4.2.2. Comparison with OMI NO2 VCDs
4.3. Wet and Dry Nitrate Deposition
5. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Schumann, U.; Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 2007, 7, 3823–3907. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Archibald, A.T.; Maycock, A.C.; Telford, P.; Abraham, N.L.; Yang, X.; Braesicke, P.; Pyle, J.A. Lightning NOx, a key chemistry–climate interaction: Impacts of future climate change and consequences for tropospheric oxidising capacity. Atmos. Chem. Phys. 2014, 14, 9871–9881. [Google Scholar] [CrossRef] [Green Version]
- Murray, L.T. Lightning NOx and Impacts on Air Quality. Curr. Pollut. Rep. 2016, 2, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Pickering, K.E. Lightning NOx emissions and the Implications for Surface Air Quality over the Contiguous United States. EM (Pittsburgh Pa) 2018, 11, 1–6. [Google Scholar] [PubMed]
- Kang, D.; Mathur, R.; Pouliot, G.A.; Gilliam, R.C.; Wong, D.C. Significant ground-level ozone attributed to lightning-induced nitrogen oxides during summertime over the Mountain West States. Npj Clim. Atmos. Sci. 2020, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Choi, Y.; Mousavinezhad, S.; Kang, D.; Park, J.; Pouyaei, A.; Ghahremanloo, M.; Momeni, M.; Kim, H. Changes in the ozone chemical regime over the contiguous United States inferred by the inversion of NOx and VOC emissions using satellite observation. Atmos. Res. 2022, 270, 106076. [Google Scholar] [CrossRef] [PubMed]
- Simon, H.; Reff, A.; Wells, B.; Xing, J.; Frank, N. Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environ. Sci. Technol. 2015, 49, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Zhu, X.; Zhong, Q.; Yun, X.; Meng, W.; Li, B.; Ma, J.; Zeng, E.Y.; Tao, S. Spatial and temporal trends in global emissions of nitrogen oxides from 1960 to 2014. Environ. Sci. Technol. 2017, 51, 7992–8000. [Google Scholar] [CrossRef]
- Price, C.; Penner, J.; Prather, M. NOx from lightning. 2. Constraints from the global atmospheric electric circuit. J. Geophys. Res. 1997, 102, 5943–5951. [Google Scholar] [CrossRef] [Green Version]
- Stockwell, D.Z.; Giannakopoulos, C.; Plantevin, P.H.; Carver, G.D.; Chipperfield, M.P.; Law, K.S.; Pyle, J.A.; Shallcross, D.E.; Wang, K.Y. Modelling NOx from lightning and its impact on global chemical fields. Atmos. Environ. 1999, 33, 4477–4493. [Google Scholar] [CrossRef]
- Allen, D.J.; Pickering, K.E.; Pinder, R.W.; Henderson, B.H.; Appel, K.W.; Prados, A. Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model. Atmos. Chem. Phys. 2012, 12, 1737–1758. [Google Scholar] [CrossRef] [Green Version]
- Labrador, L.J.; von Kuhlmann, R.; Lawrence, M.G. The effects of lightning-produced NOx and its vertical distribution on atmospheric chemistry: Sensitivity simulations with MATCH-MPIC. Atmos. Chem. Phys. 2005, 5, 1815–1834. [Google Scholar] [CrossRef] [Green Version]
- Finney, D.L.; Doherty, R.M.; Wild, O.; Huntrieser, H.; Pumphrey, H.C.; Blyth, A.M. Using cloud ice flux to parametrize large-scale lightning. Atmos. Chem. Phys. 2014, 14, 12665–12682. [Google Scholar] [CrossRef] [Green Version]
- Finney, D.L.; Doherty, R.M.; Wild, O.; Abraham, N.L. The impact of lightning on tropospheric ozone chemistry using a new global lightning parameterization. Atmos. Chem. Phys. 2016, 16, 7507–7522. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.J.; Pickering, K.E. Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. 2002, 107, 4711–4731. [Google Scholar] [CrossRef]
- Kang, D.; Pickering, K.; Allen, D.; Foley, K.; Wong, D.; Mathur, R.; Roselle, R. Simulating Lightning NO Production in CMAQv5.2: Evolution of Scientific Updates. Geosci. Model Dev. 2019, 12, 3071–3083. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Foley, K.; Mathur, R.; Roselle, S.; Pickering, K.; Allen, D. Simulating Lightning NO Production in CMAQv5.2: Performance Evaluations. Geosci. Model Dev. 2019, 12, 4409–4424. [Google Scholar] [CrossRef]
- Murphy, M.J.; Cramer, J.A.; Said, R.K. Recent history of upgrades to the U.S. National Detection Network. J. Atmos. Ocean. Technol. 2021, 38, 573–581. [Google Scholar] [CrossRef]
- Murphy, M.S.; Konrad, C.E., II. Spatial and temporal patterns of thunderstorm events that produce cloud-to-ground lightning in the interior southeastern United States. Mon. Weather. Rev. 2005, 133, 1417–1420. [Google Scholar] [CrossRef]
- Mathur, R.; Xing, J.; Gilliam, R.; Sarwar, G.; Hogrefe, C.; Pleim, J.; Pouliot, G.; Roselle, S.; Spero, T.L.; Wong, D.C.; et al. Extending the Community Multiscale Air Quality (CMAQ) modeling system to hemispheric scales: Overview of process considerations and initial applications. Atmos. Chem. Phys. 2017, 17, 12449–12474. [Google Scholar] [CrossRef] [Green Version]
- Gilliam, R.C.; Herwehe, J.A.; Bullock, O.R., Jr.; Pleim, J.E.; Ran, L.; Campbell, P.C.; Foroutan, H. Establishing the suitability of the model for prediction across scales for global retrospective air quality modeling. J. Geophys. Res. Atmos. 2021, 126, e2020JD033588. [Google Scholar] [CrossRef] [PubMed]
- Abarca, S.F.; Corbosiero, K.L.; Galarneau, T.J., Jr. An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res. 2010, 115, D18206. [Google Scholar] [CrossRef]
- Sutton, M.A.; Mason, K.E.; Sheppard, L.J.; Sverdrup, H.; Haeuber, R.; Hicks, W.K. Nitrogen Deposition, Critical Loads and Biodiversity; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-7938-9. [Google Scholar] [CrossRef]
- Appel, K.W.; Foley, K.M.; Bash, J.O.; Pinder, R.W.; Dennis, R.L.; Allen, D.J.; Pickering, K. A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition estimates for 2002–2006. Geosci. Model Dev. 2011, 4, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Cummins, K.L.; Murphy, M.J. An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat. 2009, 51, 499–518. [Google Scholar] [CrossRef]
- Rudlosky, S.D.; Shea, D.T. Evaluation WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett. 2013, 40, 2344–2348. [Google Scholar] [CrossRef]
- Burgesser, R.E. Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS). Q. J. R. Meteorol. Soc. 2017, 143, 2809–2817. [Google Scholar] [CrossRef]
- Mach, D.M.; Christian, H.J.; Blakeslee, R.J.; Boccipio, D.J.; Goodman, S.J.; Boeck, W.L. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res. 2007, 112, D09210. [Google Scholar] [CrossRef]
- Kaplan, J.O.; Lau, K.H.-K. The WGLC global gridded lightning climatology and time series. Earth Syst. Sci. Data 2021, 13, 3219–3237. [Google Scholar] [CrossRef]
- Bucsela, E.J.; Krotkov, N.A.; Celarier, E.A.; Lamsal, L.N.; Swartz, W.H.; Bhartia, P.K.; Boersma, K.F.; Veefkind, J.P.; Gleason, J.F.; Pickering, K.E. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI. Atmos. Meas. Tech. 2013, 6, 2607–2626. [Google Scholar] [CrossRef] [Green Version]
- Benish, S.E.; Bash, J.O.; Foley, K.M.; Appel, K.W.; Hogrefe, C.; Gilliam, R.; Pouliot, G. Long-term Regional Trends of Nitrogen and Sulfur Deposition in the United States from 2002 to 2017. Atmos. Chem. Phys. Discuss. 2022; in review. [Google Scholar] [CrossRef]
- Appel, K.W.; Bash, J.O.; Fahey, K.M.; Foley, K.M.; Gilliam, R.C.; Hogrefe, C.; Hutzell, W.T.; Kang, D.; Mathur, R.; Murphy, B.N.; et al. The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: System updates and evaluation. Geosci. Model Dev. 2021, 14, 2867–2897. [Google Scholar] [CrossRef]
- Heath, N.K.; Pleim, J.E.; Gilliam, R.C.; Kang, D. A simple lightning assimilation technique for improving retrospective WRF simulations. J. Adv. Model. Earth Syst. 2016, 8, 1806–1824. [Google Scholar] [CrossRef]
- Emery, C.; Jung, J.; Koo, B.; Yarwood, G. Improvements to CAMx Snow Cover Treatments and Carbon Bond Chemical Mechanism for Winter Ozone. Final Report for Utah Department of Environmental Quality, Division of Air Quality, Salt Lake City, UT, August 2015. Available online: http://www.camx.com/files/udaq_snowchem_final_6aug15.pdf (accessed on 8 June 2022).
- Sarwar, G.; Gantt, B.; Schwede, D.; Foley, K.; Mathur, R.; Saiz-Lopez, A. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere. Environ. Sci. Technol. 2015, 49, 9203–9211. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, G.; Gantt, B.; Foley, K.; Fahey, K.; Spero, T.L.; Kang, D.; Mathur, R.; Foroutan, H.; Xing, J.; Sherwen, T.; et al. Influence of bromine and iodine chemistry on annual, seasonal, diurnal, and background ozone: CMAQ simulations over the Northern Hemisphere. Atmos. Environ. 2019, 213, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Sarwar, G.; Gantt, B.; Foley, K.; Kang, D.; Fahey, K.; Mathur, R.; Henderson, B.H.; Pye, H.O.T.; Zhang, Y.; et al. Impact of dimethylsulfide chemistry on air quality over the Northern Hemisphere. Atmos. Environ. 2021, 244, 117961. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, M.L.; Holzworth, R.H.; Brundell, J.B.; Rodger, C.J. Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci. 2012, 47, RS6005. [Google Scholar] [CrossRef]
- Cummins, K.L.; Murphy, M.J.; Bardo, E.A.; Hiscox, W.L.; Pyle, R.B.; Pifer, A.E. A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. 1998, 103, 9035–9044. [Google Scholar] [CrossRef]
- Goodman, S.J.; Blakeslee, R.J.; Koshak, W.J.; Mach, D.; Baiely, J.; Buechler, D.; Carey, L.; Schultz, C.; Bateman, M.; McCaul, E., Jr.; et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013, 125–126, 34–49. [Google Scholar] [CrossRef] [Green Version]
Month | Land | Ocean |
---|---|---|
January | 0.76 | 0.37 |
February | 0.70 | 0.35 |
March | 0.85 | 0.52 |
April | 1.04 | 0.52 |
May | 1.57 | 0.75 |
June | 2.21 | 0.82 |
July | 2.99 | 0.96 |
August | 2.64 | 0.86 |
September | 1.92 | 0.73 |
October | 1.16 | 0.54 |
November | 0.86 | 0.35 |
December | 0.50 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.; Hogrefe, C.; Sarwar, G.; East, J.D.; Madden, J.M.; Mathur, R.; Henderson, B.H. Assessing the Impact of Lightning NOx Emissions in CMAQ Using Lightning Flash Data from WWLLN over the Contiguous United States. Atmosphere 2022, 13, 1248. https://doi.org/10.3390/atmos13081248
Kang D, Hogrefe C, Sarwar G, East JD, Madden JM, Mathur R, Henderson BH. Assessing the Impact of Lightning NOx Emissions in CMAQ Using Lightning Flash Data from WWLLN over the Contiguous United States. Atmosphere. 2022; 13(8):1248. https://doi.org/10.3390/atmos13081248
Chicago/Turabian StyleKang, Daiwen, Christian Hogrefe, Golam Sarwar, James D. East, J. Mike Madden, Rohit Mathur, and Barron H. Henderson. 2022. "Assessing the Impact of Lightning NOx Emissions in CMAQ Using Lightning Flash Data from WWLLN over the Contiguous United States" Atmosphere 13, no. 8: 1248. https://doi.org/10.3390/atmos13081248
APA StyleKang, D., Hogrefe, C., Sarwar, G., East, J. D., Madden, J. M., Mathur, R., & Henderson, B. H. (2022). Assessing the Impact of Lightning NOx Emissions in CMAQ Using Lightning Flash Data from WWLLN over the Contiguous United States. Atmosphere, 13(8), 1248. https://doi.org/10.3390/atmos13081248