Urban Residential CO2 from Spatial and Non-Spatial Perspectives: Regional Difference between Northern and Southern China
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data
3.2. Calculation of Indicators
3.2.1. Income Level and Income Inequality
3.2.2. Urban Compactness and Cohesion Indicators
3.3. Spatial Economic Model
4. Results and Discussion
4.1. Spatio-Temporal Variation of CO2 Emissions
4.2. The Roles of Income in Changes of CO2 Emissions
4.2.1. Selection of Spatial Model
4.2.2. Estimation Results of Spatial Model
4.2.3. Spillover Effects
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014. [Google Scholar]
- Lu, H.L.; Liu, G.F.; Zhang, C.R.; Okuda, T. Approaches to quantifying carbon emissions from degradation in pan-tropic forests-implications for effective REDD monitoring. Land Degrad. 2019, 31, 1–16. [Google Scholar] [CrossRef]
- Hoornweg, D.; Sugar, L.; Trejos Gómez, C.L. Cities and greenhouse gas emissions: Moving forward. Environ. Urban. 2011, 23, 207–227. [Google Scholar] [CrossRef]
- Ottelin, J.; Heinonen, J.; Junnila, S. Carbon footprint trends of metropolitan residents in Finland: How strong mitigation policies affect different urban zones. J. Clean. Prod. 2018, 170, 1523–1535. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Gibson, J.; Zhao, Z.; Xu, H. How does urbanization affect residential CO2 emissions? An analysis on urban agglomerations of China. J. Clean. Prod. 2019, 209, 876–885. [Google Scholar]
- Chen, Y.L.; Zhao, J.C.; Lai, Z.Z.; Wang, Z.; Xia, H. Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis. Renew. Energy 2019, 140, 341–353. [Google Scholar] [CrossRef]
- Song, M.; Wu, J.; Song, M.R.; Zhang, L.Y.; Zhu, Y.X. Spatiotemporal regularity and spillover effects of carbon emission intensity in China’s Bohai Economic Rim. Sci. Total Environ. 2020, 740, 140184. [Google Scholar] [CrossRef]
- Lin, S.; Wang, S.; Marinova, D.; Zhao, D.; Hong, J. Impacts of urbanization and real economic development on CO2 emissions in non-high income countries: Empirical research based on the extended STIRPAT model. J. Clean. Prod. 2017, 166, 952–966. [Google Scholar] [CrossRef]
- Shi, K.F.; Yu, B.L.; Zhou, Y.Y.; Chen, Y.; Yang, C.S.; Chen, Z.Q.; Wu, J.P. Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels. Appl. Energy 2019, 233–234, 170–181. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Energy Technology Perspectives 2012; International Energy Agency: Paris, France, 2012; pp. 32–40. [Google Scholar]
- Guan, D.; Liu, Z.; Geng, Y.; Lindner, S.; Hubacek, K. The gigatonne gap in China’s carbon dioxide inventories. Nat. Clim. Chang. 2012, 2, 672. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y. Features and influencing factors of carbon emissions indicators in the perspective of residential consumption: Evidence from Beijing, China. Ecol. Indic. 2016, 61, 634–645. [Google Scholar] [CrossRef]
- BP Statistical Review of World Energy. 2021. Available online: https://www.bp.com/content/dam/bp/country-sites/zh_cn/china/home/reports/statistical-review-of-world-energy/2021/BP_Stats_2021.pdf (accessed on 18 December 2021).
- Bai, Y.; Deng, X.; Zhang, Q.; Wang, Z. Measuring environmental performance of industrial sub-sectors in China: A stochastic metafrontier approach. Phys. Chem. Earth Parts A/B/C 2017, 101, 3–12. [Google Scholar] [CrossRef]
- Fan, J.L.; Yu, H.; Wei, Y.M. Residential energy-related carbon emissions in urban and rural China during 1996–2012: From the perspective of five end-use activities. Energy Build. 2015, 96, 201–209. [Google Scholar] [CrossRef]
- Fan, J.L.; Liao, H.; Liang, Q.M.; Tatano, H.; Liu, F.C.; Wei, Y.M. Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis. Appl. Energy 2013, 101, 323–332. [Google Scholar] [CrossRef]
- Cai, J.; Yin, H.; Varis, O. Impacts of urbanization on water use and energy-related CO2 emissions of residential consumption in China: A spatio-temporal analysis during 2003–2012. J. Clean. Prod. 2018, 194, 23–33. [Google Scholar] [CrossRef]
- Zhu, Q.; Peng, X.; Wu, K. Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model. Energy Policy 2012, 48, 618–626. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Lu, H.L.; Liu, G.F. Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting. Appl. Energy 2014, 131, 297–306. [Google Scholar] [CrossRef]
- Baiocchi, G.; Minx, J.; Hubacek, K. The impact of social factors and consumer behavior on carbon dioxide emissions in the United Kingdom: A regression based on input–output and geodemographic consumer segmentation data. J. Ind. Ecol. 2010, 14, 50–72. [Google Scholar] [CrossRef]
- Zhu, Z.; Shen, Y.; Huang, M. Empirical study on low-carbon consumption and factors of carbon emission—Based on Hangzhou. Surv. Resour. Dev. 2011, 27, 831–834. [Google Scholar]
- Zhang, J.; Yu, B.; Cai, J.; Wei, Y.M. Impacts of household income change on CO2 emissions: An empirical analysis of China. J. Clean. Prod. 2017, 157, 190–200. [Google Scholar] [CrossRef]
- Wu, S.; Lei, Y.; Li, S. CO2 emissions from household consumption at the provincial level and interprovincial transfer in China. J. Clean. Prod. 2019, 210, 93–104. [Google Scholar] [CrossRef]
- Zang, X.; Zhao, T.; Wang, J.; Guo, F. The effects of urbanization and household-related factors on residential direct CO2 emissions in Shanxi, China from 1995 to 2014: A decomposition analysis. Atmos. Pollut. Res. 2017, 8, 297–309. [Google Scholar] [CrossRef]
- Miao, L. Examining the impact factors of urban residential energy consumption and CO2 emissions in China–Evidence from city-level data. Ecol. Indic. 2017, 73, 29–37. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Yang, H.; Chuai, X.; Li, Y.; Qu, J.; Zhang, Z. Situation and determinants of household carbon emissions in Northwest China. Habitat Int. 2016, 51, 178–187. [Google Scholar] [CrossRef]
- Han, L.; Xu, X.; Han, L. Applying quantile regression and Shapley decomposition to analyzing the determinants of household embedded carbon emissions: Evidence from urban China. J. Clean. Prod. 2015, 103, 219–230. [Google Scholar] [CrossRef]
- Ding, Y.; Niu, S. Spatial difference analysis of residential energy consumption, income and carbon emissions in China. Int. J. Energy Sect. Manag. 2017, 11, 541–556. [Google Scholar] [CrossRef]
- Nie, H.; Kemp, R.; Xu, J.; Vasseur, V.; Fan, Y. Drivers of urban and rural residential energy consumption in China from the perspectives of climate and economic effects. J. Clean. Prod. 2018, 172, 2954–2963. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Wang, S.; Liu, Y. Spatial-temporal characteristics and drivers of the regional residential CO2 emissions in China during 2000–2017. J. Clean. Prod. 2020, 276, 124116. [Google Scholar] [CrossRef]
- Zhu, C.; Wan, G. Rising inequality in China and the move to a balanced economy. ChinaWorld Econ. 2012, 20, 83–104. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, S.; Cheung, H.Y. From income and housing wealth inequalities to emissions inequality: Carbon emissions of households in China. J. Hous. Built Environ. 2017, 32, 231–252. [Google Scholar] [CrossRef]
- Boyce, J.K. Inequality as a cause of environmental degradation. Ecol. Econ. 1994, 11, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Torras, M.; Boyce, J.K. Income, inequality, and pollution: A reassessment of the environmental Kuznets curve. Ecol. Econ. 1998, 25, 147–160. [Google Scholar] [CrossRef]
- Heil, M.T.; Selden, T.M. Carbon emissions and economic development: Future trajectories based on historical experience. Environ. Dev. Econ. 2001, 6, 63–83. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, H.; Zhang, Q. Will income inequality affect environmental quality? Analysis based on China’s provincial panel data. Ecol. Indic. 2016, 67, 533–542. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, S.; Song, M. Decomposing inequality in energy-related CO2 emissions by source and source increment: The roles of production and residential consumption. Energy Policy 2017, 107, 698–710. [Google Scholar] [CrossRef]
- Khan, A.Q.; Saleem, N.; Fatima, S.T. Financial development, income inequality, and CO2 emissions in Asian countries using STIRPAT model. Environ. Sci. Pollut. Res. 2018, 25, 6308–6319. [Google Scholar] [CrossRef]
- Hailemariam, A.; Dzhumashev, R.; Shahbaz, M. Carbon emissions, income inequality and economic development. Empir. Econ. 2019, 59, 1139–1159. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Z.; Sheng, P. Income distribution, human capital and environmental quality: Empirical study in China. Energy Procedia 2011, 5, 1689–1696. [Google Scholar]
- Knight, K.W.; Schor, J.B.; Jorgenson, A.K. Wealth inequality and carbon emissions in high-income countries. Soc. Curr. 2017, 4, 403–412. [Google Scholar] [CrossRef]
- Baloch, M.A.; Danish, K.S.U.; Ulucak, Z.; Ahmad, A. Analyzing the relationship between poverty, income inequality, and CO2 emission in Sub-Saharan African countries. Sci. Total Environ. 2020, 740, 139867. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, W. Panel estimation for income inequality and CO2 emissions: A regional analysis in China. Appl. Energy 2014, 136, 382–392. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Zhang, W.; Li, J.; Kong, Y. Examining the effects of income inequality on CO2 emissions: Evidence from non-spatial and spatial perspectives. Appl. Energy 2019, 236, 163–171. [Google Scholar] [CrossRef]
- Jorgenson, A.K. Inequality and the carbon intensity of human well-being. J. Environ. Stud. Sci. 2015, 5, 277–282. [Google Scholar] [CrossRef]
- Grunewald, N.; Klasen, S.; Martínez-Zarzoso, I.; Muris, C. Income Inequality and CarbonE. Courant Research Centre: Poverty, Equity and Growth; Discussion Papers; Georg-August-Universität Göttingen: Goettingen, Germany, 2011. [Google Scholar]
- Gangadharan, L.; Valenzuela, M.R. Interrelationships between income, health and the environment: Extending the Environmental Kuznets Curve hypothesis. Ecol. Econ. 2001, 36, 513–531. [Google Scholar] [CrossRef] [Green Version]
- Heerink, N.; Mulatu, A.; Bulte, E. Income inequality and the environment: Aggregation bias in environmental Kuznets curves. Ecol. Econ. 2001, 38, 359–367. [Google Scholar] [CrossRef]
- Kusumawardani, D.; Dewi, A.K. The effect of income inequality on carbon dioxide emissions: A case study of Indonesia. Heliyon 2020, 6, e04772. [Google Scholar] [CrossRef]
- Baležentis, T.; Liobikienė, G.; Štreimikienė, D.; Sun, K. The impact of income inequality on consumption-based greenhouse gas emissions at the global level: A partially linear approach. J. Environ. Manag. 2020, 267, 110635. [Google Scholar] [CrossRef]
- Borghesi, S. Income inequality and the environmental Kuznets curve. In Environment, Inequality and Collective Action; Climate Change and Sustainable Development: Milan, Italy, 2006. [Google Scholar]
- Policardo, L. Is democracy good for the environment? Quasi-experimental evidence from regime transitions. Environ. Resour. Econ. 2016, 64, 275–300. [Google Scholar] [CrossRef] [Green Version]
- Golley, J.; Meng, X. Income inequality and carbon dioxide emissions: The case of Chinese urban households. Energy Econ. 2012, 34, 1864–1872. [Google Scholar] [CrossRef]
- Jorgenson, A.K.; Schor, J.B.; Huang, X.; Fitzgerald, J. Income inequality and residential carbon emissions in the United States: A preliminary analysis. Hum. Ecol. Rev. 2015, 22, 93–106. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. The inequality of China’s regional residential CO2 emissions. Sustain. Prod. Consum. 2021, 27, 2047–2057. [Google Scholar] [CrossRef]
- Miao, L.; Gu, H.; Zhang, X.; Zhen, W.; Wang, M. Factors causing regional differences in China’s residential CO2 emissions—evidence from provincial data. J. Clean. Prod. 2019, 224, 852–863. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y. Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China. Appl. Energy 2016, 180, 800–809. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C. What are the impacts of demographic structure on CO2 emissions? A regional analysis in China via heterogeneous panel estimates. Sci. Total Environ. 2019, 650, 2021–2031. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xu, S.; Shen, W.; Long, R.; Chen, H. Impact of urbanization on energy related CO2 emission at different development levels: Regional difference in China based on panel estimation. J. Clean. Prod. 2017, 140, 1719–1730. [Google Scholar] [CrossRef]
- Cole, M.A.; Neumayer, E. Examining the impact of demographic factors on air pollution. Popul. Environ. 2004, 26, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Liddle, B. What are the carbon emissions elasticities for income and population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates. Glob. Environ. Chang. 2015, 31, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Ji, G.; Yue, Y.L.; Lai, Z.; Chen, Y.; Yang, D.; Yang, X.; Wang, Z. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets. Appl. Energy 2019, 235, 612–624. [Google Scholar] [CrossRef]
- Shi, K.F.; Xu, T.; Li, Y.Q.; Chen, Z.Q.; Gong, W.K.; Wu, J.P.; Yu, B.L. Effects of urban forms on CO2 emissions in China from a multi-perspective analysis. J. Environ. Manag. 2020, 262, 110300. [Google Scholar] [CrossRef]
- LeSage, J.P.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall Press, TaylorFrancis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Wang, H.J.; Kong, C.L. The research of spatial spillover effect of airport economy on regional economic growth from the dual circulation. J. Manag. 2021, 34, 1–14. [Google Scholar]
- Galvin, R.; Sunikka-Blank, M. Economic inequality and household energy consumption in high-income countries: A challenge for social science based energy re-search. Ecol. Econ. 2018, 153, 78–88. [Google Scholar] [CrossRef]
- Guo, L. Income inequality, household consumption and CO2 emissions in China. Singap. Econ. Rev. 2018, 63, 1740023. [Google Scholar] [CrossRef]
- Demir, C.; Cergibozan, R.; Gök, A. Income inequality and CO2 emissions: Empirical evidence from Turkey. Energy Environ. 2018, 30, 444–461. [Google Scholar] [CrossRef]
- Ma, X.; Chen, D.; Lan, J.; Li, C. The mathematical treatment for effect of income and urban-rural income gap on indirect carbon emissions from household consumption. Environ. Sci. Pollut. Res. 2020, 27, 36231–36241. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Du, L.; Lu, J.; Wang, J.; Li, H.Z.; Hashimi, M.Z. Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve? Energy 2017, 123, 164–172. [Google Scholar] [CrossRef]
- Ali, W.; Abdullah, A.; Azam, M. Re-visiting the environmental Kuznets curve hypothesis for Malaysia: Fresh evidence from ARDL bounds testing approach. Renew. Sustain. Energy Rev. 2017, 77, 990–1000. [Google Scholar] [CrossRef]
- Apergis, N.; Christou, C.; Gupta, R. Are there environmental Kuznets curves for US state-level CO2 emissions? Renew. Sustain. Energy Rev. 2017, 69, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Al-Mulali, U.; Ozturk, I. The investigation of environmental Kuznets curve hypothesis in the advanced economies: The role of energy prices. Renew. Sustain. Energy Rev. 2016, 54, 1622–1631. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Qiang, W.; Wu, K.; Wang, X. Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions. Appl. Energy 2020, 261, 114409. [Google Scholar] [CrossRef]
- Wu, R. From the Fifth to the seventh national population census in China: The spatio-temporal coupling of population distribution and economic growth as well as the regional balanced development. J. East China Norm. Univ. Humanit. Soc. Sci. 2021, 53, 174–183. [Google Scholar]
- Lu, H.L.; Liu, G.F.; Miao, C.H.; Zhang, C.; Cui, Y.; Zhao, J. Spatial pattern of residential carbon dioxide emissions in a rapidly urbanizing Chinese city and its mismatch effect. Sustainability 2018, 10, 827. [Google Scholar] [CrossRef] [Green Version]
Test Statistic | CO2 per Capita | CO2 per Unit Area | ||||
---|---|---|---|---|---|---|
Total Cities (Model I) | Northern Cities (Model II) | Southern Cities (Model III) | Total Cities (Model IV) | Northern Cities (Model V) | Southern Cities (Model VI) | |
Hausman test-statistic | 263.652 *** | 142.866 *** | 114.239 *** | 272.098 *** | 126.472 *** | 102.608 *** |
LR-test joint significance spatial fixed effects | 5157.994 *** | 3376.547 *** | 1305.495 *** | 5024.072 *** | 3354.327 *** | 1234.572 *** |
LR-test joint significance time-period fixed effects | 480.199 *** | 305.417 *** | 281.511 *** | 472.202 *** | 300.23 *** | 267.546 *** |
Wald_spatial_lag | 112.568 *** | 123.189 *** | 33.044 *** | 145.670 *** | 97.46 *** | 45.126 *** |
LR_spatial_lag | 114.724 *** | 123.281 *** | 34.391 *** | 146.718 *** | 94.456 *** | 45.266 *** |
Wald_spatial_error | 30.595 *** | 63.194 *** | 25.226 *** | 51.428 *** | 49.549 *** | 27.071 *** |
LR_spatial_error | 68.557 *** | 70.956 *** | 27.684 *** | 54.654 *** | 54.922 *** | 29.696 *** |
Variables | Total Cities | Northern Cities | Southern Cities | |||
---|---|---|---|---|---|---|
Coefficient | t-Statistic | Coefficient | t-Statistic | Coefficient | t-Statistic | |
Dependent Variable: CO2 per Capita | ||||||
W*dep.var. | 0.466 *** | 21.769 | 0.354 *** | 10.389 | 0.204 *** | 5.318 |
lnGini | −0.024 * | −1.672 | 0.000 | 0.03 | −0.016 | −0.636 |
lnIncome | 0.149 *** | 3.854 | 0.118 *** | 2.692 | 0.083 | 1.298 |
lnPGDP | 0.695 *** | 6.475 | 1.624 *** | 9.724 | 0.440 *** | 2.957 |
ln2PGDP | −0.03 *** | −5.104 | −0.074 *** | −8.836 | −0.017 ** | −1.991 |
lnPD | −0.355 *** | −15.483 | −0.355 *** | −11.952 | −0.372 *** | −11.068 |
lnRR | 0.036 | 1.557 | 0.015 | 0.587 | 0.097 ** | 2.449 |
lnCI | 0.651 *** | 27.222 | 0.718 *** | 22.427 | 0.584 *** | 16.994 |
lnCOM | 0.053 | 1.37 | 0.095 ** | 2.164 | −0.003 | −0.052 |
lnCOH | 0.026 | 0.689 | −0.059 | −1.039 | 0.119 ** | 2.305 |
W*Gini | −0.077 ** | −2.058 | 0.12 *** | 2.722 | −0.094 | −1.313 |
W*lnIncome | 0.082 | 0.931 | −0.170 | −1.434 | −0.335 ** | −2.182 |
W*lnPGDP | −0.005 | −0.023 | −1.081 *** | −3.284 | 0.115 | 0.37 |
W*ln2PGDP | −0.008 | −0.702 | 0.047 *** | 2.859 | 0.004 | 0.251 |
W*lnPD | 0.165 *** | 3.022 | 0.218 *** | 2.745 | −0.026 | −0.312 |
W*lnRR | −0.100 | −1.613 | −0.224 *** | −3.401 | 0.216 * | 1.801 |
W*lnCI | −0.337 *** | −7.364 | −0.491 *** | −7.256 | −0.322 *** | −4.105 |
W*lnCOM | −0.172 ** | −2.316 | −0.041 | −0.461 | −0.283 ** | −2.373 |
W*lnCOH | −0.477 *** | −5.718 | −0.566 *** | −4.013 | −0.132 | −1.019 |
σ2 | 0.055 | 0.037 | 0.070 | |||
R2 | 0.864 | 0.910 | 0.664 | |||
Log-Likelihood | 204.195 | 602.147 | −142.658 | |||
Dependent Variable: CO2 per Unit Area | ||||||
W*dep.var. | 0.452 *** | 20.787 | 0.336 *** | 9.697 | 0.207 *** | 5.410 |
lnGini | −0.027 * | −1.763 | −0.002 | −0.107 | −0.018 | −0.685 |
lnIncome | 0.159 *** | 3.936 | 0.138 *** | 3.038 | 0.077 | 1.141 |
lnPGDP | 0.786 *** | 7.002 | 1.722 *** | 9.942 | 0.565 *** | 3.631 |
ln2PGDP | −0.035 *** | −5.739 | −0.08 *** | −9.129 | −0.024 *** | −2.759 |
lnPD | 0.664 *** | 27.737 | 0.651 *** | 21.097 | 0.652 *** | 18.511 |
lnRR | −0.940 *** | −38.784 | −0.951 *** | −35.415 | −0.882 *** | −21.381 |
lnCI | 0.685 *** | 27.388 | 0.782 *** | 23.541 | 0.595 *** | 16.546 |
lnCOM | 0.086 ** | 2.149 | 0.121 *** | 2.639 | 0.032 | 0.481 |
lnCOH | −0.004 | −0.112 | −0.105 * | −1.78 | 0.108 ** | 2.01 |
W*Gini | −0.077 ** | −1.969 | 0.147 *** | 3.218 | −0.126 * | −1.675 |
W*lnIncome | 0.092 | 0.996 | −0.139 | −1.123 | −0.374 ** | −2.328 |
W*lnPGDP | 0.192 | 0.876 | −0.765 ** | −2.228 | 0.346 | 1.059 |
W*ln2PGDP | −0.017 | −1.506 | 0.033 * | 1.921 | −0.009 | −0.509 |
W*lnPD | −0.343 *** | −5.922 | −0.121 | −1.413 | −0.301 *** | −3.436 |
W*lnRR | 0.347 *** | 5.099 | 0.111 | 1.412 | 0.405 *** | 3.154 |
W*lnCI | −0.331 *** | −6.897 | −0.514 *** | −7.270 | −0.335 *** | −4.092 |
W*lnCOM | −0.217 *** | −2.783 | −0.111 | −1.204 | −0.292 ** | −2.349 |
W*lnCOH | −0.403 *** | −4.627 | −0.45 *** | −3.086 | −0.061 | −0.447 |
σ2 | 0.061 | 0.039 | 0.077 | |||
R2 | 0.871 | 0.918 | 0.745 | |||
Log-Likelihood | 2.809 | 519.668 | −246.729 |
Variables | Total Cities | Northern Cities | Southern Cities | |||
---|---|---|---|---|---|---|
Direct Effects | Indirect Effects | Direct Effects | Indirect Effects | Direct Effects | Indirect Effects | |
Dependent Variable: CO2 per Capita | ||||||
lnGini | −0.030 * (−1.962) | −0.159 ** (−2.359) | 0.006 (0.409) | 0.181 *** (2.688) | −0.019 (−0.737) | −0.124 (−1.362) |
lnIncome | 0.160 *** (4.253) | 0.275 * (1.696) | 0.112 ** (2.546) | −0.185 (−1.006) | 0.077 (1.182) | −0.393 ** (−2.089) |
lnPGDP | 0.717 *** (6.592) | 0.570 * (1.657) | 1.595 *** (9.86) | −0.762 * (−1.689) | 0.445 *** (3.029) | 0.261 (0.713) |
ln2PGDP | −0.031 *** (−5.303) | −0.039 ** (−2.174) | −0.073 *** (−9.015) | 0.032 (1.399) | −0.017 ** (−2.022) | 0.001 (0.025) |
lnPD | −0.355 *** (−15.182) | 0.000 (0.000) | −0.351 *** (−11.326) | 0.139 (1.154) | −0.375 *** (−10.905) | −0.125 (−1.249) |
lnRR | 0.031 (1.311) | −0.147 (−1.350) | 0.005 (0.180) | −0.331 *** (−3.408) | 0.103 ** (2.562) | 0.284 * (1.892) |
lnCI | 0.649 *** (28.345) | −0.062 (−0.893) | 0.707 *** (22.357) | −0.361 *** (−3.820) | 0.579 *** (16.757) | −0.247 ** (−2.575) |
lnCOM | 0.042 (1.096) | −0.269 ** (−2.161) | 0.096 ** (2.257) | −0.016 (−0.129) | −0.016 (−0.250) | −0.345 ** (−2.402) |
lnCOH | −0.006 (−0.149) | −0.832 *** (−5.600) | −0.085 (−1.423) | −0.902 *** (−4.418) | 0.116 ** (2.110) | −0.143 (−0.855) |
Dependent Variable: CO2 per Unit Area | ||||||
lnGini | −0.032 ** (−2.053) | −0.157 ** (−2.233) | 0.005 (0.264) | 0.214 *** (3.234) | −0.021 (−0.806) | −0.163 * (−1.701) |
lnIncome | 0.170 *** (4.140) | 0.291 * (1.822) | 0.134 *** (2.853) | −0.132 (−0.733) | 0.068 (1.031) | −0.448 ** (−2.258) |
lnPGDP | 0.818 *** (7.192) | 0.964 *** (2.785) | 1.719 *** (10.404) | −0.267 (−0.575) | 0.581 *** (3.681) | 0.575 (1.433) |
ln2PGDP | −0.037 *** (−6.008) | −0.058 *** (−3.302) | −0.080 *** (−9.572) | 0.009 (0.383) | −0.025 *** (−2.816) | −0.017 (−0.788) |
lnPD | 0.662 *** (27.910) | −0.073 (−0.769) | 0.653 *** (20.318) | 0.140 (1.154) | 0.648 *** (17.818) | −0.203 ** (−2.039) |
lnRR | −0.943 *** (−39.273) | −0.131 (−1.147) | −0.960 *** (−34.683) | −0.297 *** (−3.035) | −0.877 *** (−20.402) | 0.275 * (1.719) |
lnCI | 0.683 *** (27.193) | −0.039 (−0.538) | 0.772 *** (22.398) | −0.371 *** (−3.763) | 0.59 *** (16.631) | −0.264 *** (−2.626) |
lnCOM | 0.074 * (1.829) | −0.315 ** (−2.422) | 0.117 *** (2.619) | −0.106 (−0.782) | 0.027 (0.404) | −0.360 ** (−2.439) |
lnCOH | −0.026 (−0.653) | −0.715 *** (−4.881) | −0.122 ** (−2.045) | −0.714 *** (−3.324) | 0.106 ** (2.052) | −0.048 (−0.290) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Ren, S. Urban Residential CO2 from Spatial and Non-Spatial Perspectives: Regional Difference between Northern and Southern China. Atmosphere 2022, 13, 1240. https://doi.org/10.3390/atmos13081240
Zhao J, Ren S. Urban Residential CO2 from Spatial and Non-Spatial Perspectives: Regional Difference between Northern and Southern China. Atmosphere. 2022; 13(8):1240. https://doi.org/10.3390/atmos13081240
Chicago/Turabian StyleZhao, Jincai, and Shixin Ren. 2022. "Urban Residential CO2 from Spatial and Non-Spatial Perspectives: Regional Difference between Northern and Southern China" Atmosphere 13, no. 8: 1240. https://doi.org/10.3390/atmos13081240
APA StyleZhao, J., & Ren, S. (2022). Urban Residential CO2 from Spatial and Non-Spatial Perspectives: Regional Difference between Northern and Southern China. Atmosphere, 13(8), 1240. https://doi.org/10.3390/atmos13081240