Assessment of Changing Agroclimatic Conditions in Poland Based on Selected Indicators
Abstract
:1. Introduction
2. Materials and Methods
- Td—mean daily air temperature, °C.
- Td—mean daily air temperature, °C;
- Tbase—threshold air temperature, °C.
- tmwm—mean air temperature of the warmest month, °C;
- φ—latitude.
3. Results
3.1. Mean Air Temperature in the Period from April to October
3.2. SAT
3.3. GDD
3.4. LTI
3.5. Regions of Thermal Resources
4. Discussion and Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Bootsma, A. Long term (100 yr) climatic trends for agriculture at selected locations in Canada. Clim. Chang. 1994, 26, 65–88. [Google Scholar] [CrossRef]
- Karing, P.; Kallis, A.; Tooming, H. Adaptation principles of agriculture to climate change. Clim. Res. 1999, 12, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.D.; Ahas, R.; Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Chang. Biol. 2006, 12, 343–351. [Google Scholar] [CrossRef]
- Cross, H.Z.; Zuber, M.S. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron. J. 1972, 64, 351–355. [Google Scholar] [CrossRef]
- Russelle, M.P.; Wilhelm, W.W.; Olson, R.A.; Power, J.F. Growth analysis based on degree days. Crop. Sci. 1984, 24, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.; Bootsma, A. Analyses of growing degree-days for agriculture in Atlantic Canada. Clim. Res. 1993, 3, 169–176. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Haggerty, B.; Mazer, S.J. The Phenology Handbook; Santa Barbara Phenology Stewardship Program; University of California: Santa Barbara, CA, USA, 2008; 111p. [Google Scholar]
- Kolářová, E.; Nekovář, J.; Adamík, P. Long-term temporal changes in central European tree phenology (1946–2010) confirm the recent extension of growing seasons. Int. J. Biometeorol. 2014, 58, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Førland, E.J.; Skaugen, T.E.; Benestad, R.E.; Hanssen-Bauer, I.; Tveito, O.E. Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arct. Antarct. Alp. Res. 2004, 36, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.G.; Archer, S.R.; Birdsey, R.A.; Dahm, C.N.; Heath, L.S.; Hicke, J.A.; Hollinger, D.Y.; Huxman, T.E.; Okin, G.S.; Oren, R.; et al. Land Resources: Forest and Arid Lands. In The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States; United States Climate Change Science Program Synthesis and Assessment Product; Backlund, P., Janetos, A., Schimel, D., Eds.; U.S. Environmental Protection Agency: Washington, DC, USA, 2008; pp. 75–120. [Google Scholar]
- Fagre, D.B.; Charles, C.W.; Allen, C.D.; Birkeland, C.; Chapin, F.S.; Groffman, P.M.; Guntenspergen, G.R.; Knapp, A.K.; McGuire, A.D.; Mulholland, P.J.; et al. Case Studies. In Thresholds of Climate Change in Ecosystems; United States Climate Change Science Program Synthesis and Assessment Product; U.S. Environmental Protection Agency: Washington, DC, USA, 2009; pp. 15–34. [Google Scholar]
- Ceglar, A.; Zampieri, M.; Toreti, A.; Dentener, F. Observed northward migration of agroclimatezones in Europe will further accelerate under climate change. Earth’s Future 2019, 7, 1088–1101. [Google Scholar] [CrossRef] [Green Version]
- Peltonen-Sainio, P.; Jauhiainen, L. Large zonal and temporal shifts in crops and cultivars coincide with warmer growing seasons in Finland. Reg. Environ. Chang. 2020, 20, 89. [Google Scholar] [CrossRef]
- Kopeć, B. Uwarunkowania termiczne wegetacji winorośli na obszarze południowo-wschodniej części Polski. Infrastrukt. Ekol. Teren. Wiej. 2009, 4, 251–262. [Google Scholar]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor. Appl. Climatol. 2019, 135, 1517–1530. [Google Scholar] [CrossRef] [Green Version]
- Szwejkowski, Z.; Kuchar, L.; Dragańska, E.; Cymes, I.; Cymes, I. Current and future agroclimate conditions in Poland in perspective of climate change. Acta Agrophys. 2017, 24, 355–364. [Google Scholar]
- Cesaraccio, C.; Spano, D.; Duce, P.; Snyder, R.L. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 2001, 45, 161–169. [Google Scholar] [CrossRef]
- Matzarakis, A.; Ivanova, D.; Balafoutis, C.; Makrogiannis, T. Climatology of growing degree days in Greece. Clim. Res. 2007, 34, 233–240. [Google Scholar] [CrossRef]
- Fealy, R.; Fealy, R.M. The spatial variation in degree days derived from locational attributes for the 1961 to 1990 period. Irish. J. Agric. Food. Res. 2008, 47, 1–11. [Google Scholar]
- Hakala, K.; Hannukkala, A.; Huusela-Veistola, E.; Jalli, M.; Peltonen-Sainio, P. Pests and diseases in a changing climate a major challenge for Finnish crop production. Agric. Food Sci. 2011, 20, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Juroszek, P.; von Tiedemann, A. Climate change and potential future risks through wheat diseases: A review. Eur. J. Plant Pathol. 2013, 136, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, W.; Nawalany, G. New Approach to Determine the Sum of the Active Temperatures (SAT) Exemplified by Weather Conditions of Western Malopolska. In Infrastructure and Environment; Krakowiak-Bal, A., Vaverkova, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 203–216. [Google Scholar] [CrossRef]
- Jackson, D.I.; Schuster, D. The Production of Grapes and Wine in Cool Climates; Butterworths: Wellington, New Zealand, 1987. [Google Scholar]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Goldammer, T. Grape Grower’s Handbook: A Guide to Viticulture for Wine Production; Apex Publishers: Holland-on-Sea, UK, 2018. [Google Scholar]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Lisek, J. Climatic factors affecting development and yielding of grapevine in central Poland. J. Fruit Ornam. Plant Res. 2008, 286, 285–293. [Google Scholar]
- Kryza, M.; Szymanowski, M.; Błaś, M.; Migała, K.; Werner, M.; Sobik, M. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Chech Republic transboundary region for wine grapes cultivation. Theor. Appl. Climatol. 2015, 122, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.S.; Logan, J.; Coffey, D.L. Mathematical formulas for calculating the base temperature for growing degree-days. Agric. For. Meteorol. 1995, 74, 61–74. [Google Scholar] [CrossRef]
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Bonhomme, R. Bases and limits to using ‘degree.day’ units. Eur. J. Agron. 2000, 13, 1–10. [Google Scholar]
- Miller, P.; Lanier, W.; Brandt, S. Using Growing Degree Days to Predict Plant Stages; MT00103 AG 7/2001; Montana State University Extension Service: Bozeman, MO, USA, 2001. [Google Scholar]
- Carter, T.R. Changes in the thermal growing season in Nordic countries during the past century and prospects for the future. Agric. Food Sci. 1998, 7, 161–179. [Google Scholar] [CrossRef]
- Worthington, C.; Hutchinson, C. Accumulated growing degree days as a model to determine key developmental stages and evaluate yield and quality of potato in Northeast Florida. Proc. Fla. State Hortic. Soc. 2005, 118, 98–101. [Google Scholar]
- Łysiak, G. The Sum of Active Temperatures as a Method of Determining the Optimum Harvest Date of ‘Šampion’ and ‘Ligol’ Apple Cultivars. Acta Sci. Pol. Hort. Cultus 2012, 11, 3–13. [Google Scholar]
- Herms, D. Using Degree-Days and Plant Phenology to Predict Pest Activity. In IPM (Integrated Pest Management) of Midwest Landscapes; Krischik, V., Davidson, J., Eds.; Minnesota Agricultural Experiment Station Publication 58–07645; Minnesota Agricultural Experiment Station: St. Paul, MN, USA, 2004; pp. 49–59. [Google Scholar]
- Juszczak, R.; Leśny, J.; Olejnik, J. Sumy temperatur efektywnych jako element prognozy agrometeorologicznej wielkopolskiego internetowego serwisu informacji agrometeorologicznej (WISIA). Acta Agrophys. 2008, 12, 409–426. [Google Scholar]
- Nyéki, J.; Soltész, M. Floral Biology of Temperate Zone Fruit Trees and Small Fruits; Akademiai Kiado: Budapest, Hungary, 1996. [Google Scholar]
- Snyder, R.L.; Spano, D.; Cesaraccio, C.; Duce, P. Determining degree-day thresholds from field observations. Int. J. Biometeorol. 1999, 42, 177–182. [Google Scholar] [CrossRef]
- Zavalloni, C.; Andresen, J.A.; Flore, J.A. Phenological models of flower bud stages and fruit growth of “Montmorency” sour cherry based on growing degree-day accumulation. J. Am. Soc. Hortic. Sci. 2006, 131, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Matzneller, P.; Blümel, K.; Chmielewski, F.-M. Models for the beginning of sour cherry blossom. Int. J. Biometeorol. 2014, 58, 703–715. [Google Scholar] [CrossRef]
- Grigorieva, E.; Matzarakis, A. Growing Degree Days at the Russian Far East. 2005. Available online: http://www.urbanclimate.net/matzarakis/papers/BIOMET7_Grigorieva_Matzarakis_44_49.pdf (accessed on 25 April 2022).
- Jackson, D.I.; Cherry, N.J. Prediction of a district’s grape-ripening capacity using a latitude- temperature index (LTI). Am. J. Enol. Vitic. 1988, 39, 19–28. [Google Scholar]
- Salmi, T.; Maatta, A.; Anttila, P.; Ruoho-Airola, T.; Amnel, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS; Publications on Air Quality; Finnish Meteorological Institute: Helsinki, Finland, 2002; Volume 31, pp. 1–35. [Google Scholar]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Oxford, UK, 2011. [Google Scholar]
- Koźmiński, C.; Mąkosza, A.; Michalska, B.; Nidzgorska-Lencewicz, J. Thermal Conditions for Viticulture in Poland. Sustainability 2020, 12, 5665. [Google Scholar] [CrossRef]
- Sulikowska, A.; Wypych, A.; Ustrnul, Z.; Czekierda, D. Zmienność zasobów termicznych w Polsce w aspekcie obserwowanych zmian klimatu. Acta Sci. Pol. Form. Circumiectus 2016, 15, 127–139. [Google Scholar] [CrossRef]
- Ruosteenoja, K.; Räisänen, J.; Pirinenet, P. Projected changes in thermal seasons and the growing season in Finland. Int. J. Climatol. 2011, 31, 1473–1487. [Google Scholar] [CrossRef]
- Ruosteenoja, K.; Räisänen, J.; Venäläinen, A.; Kämäräinenet, M. Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. Int. J. Climatol. 2016, 36, 3039–3055. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.; Barbosa, P. European degree-day climatologies and trends for the period 1951–2011. Int. J. Climatol. 2015, 36, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Wypych, A.; Sulikowska, A.; Ustrnul, Z.; Czekierda, D. Variability of growing degree days in Poland in response to ongoing climate changes in Europe. Int. J. Biometeorol. 2017, 61, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehtonen, I.; Pirinen, P. 2018: An exceptionally warm thermal growing season in Finland. FMI’s Clim. Bull. Res. Lett. 2019, 1, 5. [Google Scholar] [CrossRef]
- Polonskii, A.B. Atlantic multidecadal oscillation and its manifestations in the Atlantic-European region. Phys. Oceanogr. 2008, 18, 227–236. [Google Scholar] [CrossRef]
- Bosak, W. Uprawa Winorośli i Winiarstwo w Małym Gospodarstwie na Podkarpaciu; Polski Instytut Winorośli i Wina: Kraków, Poland, 2004. [Google Scholar]
- Robinson, J. The Oxford Companion to Wine; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Kuleba, M. Ampelografia Zielonej Góry; Pro Libris: Zielona Góra, Poland, 2005. [Google Scholar]
- Ostrowski, S.; Kaszuba, M.; Gajewski, K. Uprawa Winorośli i Amatorskie Przetwórstwo Winogron; Lubuskie Stowarzyszenie Winiarskie: Zielona Góra, Poland, 2004; p. 78. [Google Scholar]
- Winkler, J.A.; Andresen, J.A.; Guentchev, G.; Kriegel, R.D. Possible impacts of projected temperature change on commercial fruit production in the Great Lakes region. J. Great Lakes Res. 2002, 28, 608–625. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Walther, A.; Chen, D. Twentieth-century trends in the thermal growing season in the Greater Baltic area. Clim. Chang. 2008, 87, 405–419. [Google Scholar] [CrossRef]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvåg, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rötter, R.; Iglesias, A.; Orlandini, S.; et al. Agroclimatic conditions in Europe under climate change. Glob. Chang. Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef] [Green Version]
- Chmielewski, F.M.; Rötzer, T. Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim. Res. 2002, 19, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Jatczak, K.; Walawender, J. Average rate of phenological changes in Poland according to climatic changes—Evaluation and mapping. Adv. Sci. Res. 2009, 3, 123–126. [Google Scholar] [CrossRef]
- Faber, A.; Jarosz, Z.; Król, A. Wpływ zmian klimatu na efektywność wykorzystywania azotu oraz jego straty. Zesz. Nauk. SGGW 2019, 19, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Graczyk, D.; Kundzewicz, Z. Changes of temperature-related agroclimatic indices in Poland. Theor. Appl. Climatol. 2016, 124, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Pińskwar, I. Projections of Changes in Precipitation Extremes in Poland; Monografie Komitetu Gospodarki Wodnej PAN: Warszawa, Poland, 2010; 153p. [Google Scholar]
- Sadowski, M.; Wyszyński, Z.; Górski, T.; Liszewska, M.; Olecka, A.; Łoboda, T.; Pietkiewicz, S. Adaptacja Produkcji Rolnej w Województwie Podlaskim do Oczekiwanych Zmian Klimatu; IOŚ: Warszawa, Poland, 2009. [Google Scholar]
- Nieróbca, A.; Kozyra, J. Wpływ Warunków Pogodowych na Plonowanie Kukurydzy w Polsce; Materiały Konferencyjne: Produkcja i Wykorzystanie Kukurydzy Uprawianej na Cele Spożywcze i Przemysłowe; IUNG: Sielinko, Poland, 2010; pp. 29–30. [Google Scholar]
- Maciejczak, M.; Mikiciuk, J. Climate change impact on viticulture in Poland. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takáč, J.; Ruget, F.; Ferrise, R.; et al. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. USA 2018, 116, 201804387. [Google Scholar] [CrossRef] [Green Version]
Parameter | Region A | Region B | Region C | Region D | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | ||
Tavr Apr–Oct | Value | 14.2 | 14.4 | 14.2 | 13.9 | 14.2 | 13.8 | 13.5 | 13.3 | 0.2 | 12.8 | 13.1 | 12.5 |
Change/10 years | 0.4 | 0.5 | 0.3 | 0.4 | 0.4 | 0.3 | 0.4 | 0.2 | 0.2 | 0.3 | 0.4 | 0.3 | |
LTI | Value | 155.7 | 182.5 | 135.7 | 157.2 | 185.3 | 129.8 | 163.8 | 103.4 | 60.4 | 106.7 | 122.2 | 89.3 |
Change/10 years | 4.7 | 6.1 | 3.7 | 4.6 | 6.1 | 3.3 | 3.3 | 4.8 | 1.8 | 2.5 | 2.8 | 2.0 | |
SAT | Value | 2737.9 | 2776.7 | 2717.1 | 2665.6 | 2720.9 | 2618.3 | 2557.2 | 2489.7 | 67.5 | 2364.8 | 2428.4 | 2293.4 |
Change/10 years | 109.3 | 132.1 | 89.5 | 102.0 | 111.9 | 86.7 | 95.8 | 54.7 | 41.1 | 85.8 | 100.0 | 63.0 | |
GDD0 | Value | 3477.1 | 3533.7 | 3458.0 | 3337.1 | 3389.2 | 3248.4 | 3329.6 | 3163.0 | 166.6 | 3038.7 | 3105.3 | 2895.7 |
Change/10 years | 122.9 | 151.9 | 86.6 | 109.8 | 117.5 | 100.1 | 104.6 | 60.9 | 43.7 | 105.5 | 124.9 | 81.0 | |
GDD5 | Value | 2088.4 | 2126.7 | 2065.3 | 2011.9 | 2057.3 | 1963.0 | 1918.7 | 1865.0 | 53.7 | 1757.6 | 1814.3 | 1691.8 |
Change/10 years | 2088.4 | 2126.7 | 2065.3 | 2011.9 | 2057.3 | 1963.0 | 1918.7 | 1865.0 | 53.7 | 1757.6 | 1814.3 | 1691.8 | |
GDD10 | Value | 1060.7 | 1079.6 | 1045.5 | 1024.0 | 1063.8 | 1002.0 | 959.6 | 895.4 | 64.2 | 837.8 | 882.1 | 784.1 |
Change/10 years | 1060.7 | 1079.6 | 1045.5 | 1024.0 | 1063.8 | 1002.0 | 959.6 | 895.4 | 64.2 | 837.8 | 882.1 | 784.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyga-Pluta, K. Assessment of Changing Agroclimatic Conditions in Poland Based on Selected Indicators. Atmosphere 2022, 13, 1232. https://doi.org/10.3390/atmos13081232
Szyga-Pluta K. Assessment of Changing Agroclimatic Conditions in Poland Based on Selected Indicators. Atmosphere. 2022; 13(8):1232. https://doi.org/10.3390/atmos13081232
Chicago/Turabian StyleSzyga-Pluta, Katarzyna. 2022. "Assessment of Changing Agroclimatic Conditions in Poland Based on Selected Indicators" Atmosphere 13, no. 8: 1232. https://doi.org/10.3390/atmos13081232
APA StyleSzyga-Pluta, K. (2022). Assessment of Changing Agroclimatic Conditions in Poland Based on Selected Indicators. Atmosphere, 13(8), 1232. https://doi.org/10.3390/atmos13081232