Spatial and Temporal Analysis of Extreme Climate Events over Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodologies
2.2.1. Sen’s Slope Estimator Test
2.2.2. Mann–Kendall (MK) Rank Correlation Test
2.2.3. MK Trend Model
2.2.4. Inverse Distance Weighted (IDW) Approach
2.2.5. SPI
2.2.6. The Flow Chart for the Methodology
3. Results
3.1. Temporal Trend Analysis of Regional Mean Precipitation and Frequency of Drought and Flood Events
3.2. Results of Mann–Kendall Rank Correlation Test
3.3. Temporal Characteristics of Climate Anomaly Category Frequency
3.4. Spatial Distribution of Occurrence Frequency of Climate Anomalies
3.5. Z-Space Feature Mapping
3.6. Mapping the Spatial Distribution of Different Climate Anomalies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Lu, J.; Li, L. Analysis of multi-scale drought and flood characteristics in Liaoning Province based on SPEI. J. China Inst. Water Resour. Hydropower Res. 2021, 19, 210–220. [Google Scholar]
- Zhao, J.; Chen, L.; Zhang, D. Characteristics and Causes for the Climate Anomalies over China Summer 2021. Meteorol. Mon. 2022, 48, 107–121. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, J.; Teng, Z. Drought and Flood Evolution Law and Trend Prediction Analysis Based on SPI Index in Zuojiang River Basin. Water Power 2021, 48, 31–38. [Google Scholar] [CrossRef]
- Cao, Q.; Hao, Z.; Fu, X.; Hao, J.; Lu, C. Analysis of Spatial-Temporal Changes of Extreme Climatic Elements in China from 1960 to 2017. Yellow River 2020, 42, 11–17. [Google Scholar] [CrossRef]
- Li, Q.; Ma, Q. Extreme Precipitation Features ofArid Regions in Northwest of China. Sci. Geogr. Sin. 2014, 34, 1134–1138. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Liu, Y. The Effects of Precipitation Concentration on Drought/Flood Events in Northeast China Based on CI and SPI. China Rural. Water Hydropower 2019, 11, 151–154. [Google Scholar] [CrossRef]
- Gu, X. Research on Evaluat ion T echnology of Abnormal Climate Effect on Agricultural Product ion. Meteorol. Mon. 2000, 26, 31–35. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, C.; Zheng, H.; Wu, L.X. Responses of river runoff to climate change based on nonlinear mixed regression model in Chaohe River Basin of Hebei Province, China. Chin. Geogr. Sci. 2010, 20, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Dawood, M.; Rahman, A.U.; Ullah, S.; Rahman, G.; Azam, K. Spatio-temporal analysis of temperature variability, trend, and magnitude in the Hindu Kush region using Monte Carlo and Sen’s slope approaches. Arab. J. Geosci. 2018, 11, 471. [Google Scholar] [CrossRef]
- Dutra, E.; Di Giuseppe, F.; Wetterhall, F.; Pappenberger, F. Seasonal forecasts of droughts in African basins using the Standardized Precipitation Index. Hydrol. Earth Syst. Sci. 2013, 17, 2359–2373. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, P. Climate changes over the Arctic land during 1979–2017. Resour. Sci. 2021, 43, 1260–1274. [Google Scholar] [CrossRef]
- Liu, l.; Ren, L.; Hong, Y.; Zhu, Y.; Yang, X. Sensitivity analysis of standardization procedures in drought indices to varied input data selections. J. Hydrol. 2016, 538, 817–830. [Google Scholar] [CrossRef]
- An, J.; Fu, B.; Li, W.; Peng, S.; Li, B. Future Prediction of Typical Extreme Climatic Indices and Population Exposure to High Temperature in East Asia. Acta Sci. Nat. Univ. Pekin. 2020, 56, 884–892. [Google Scholar] [CrossRef]
- Liang, F.; Liu, D.; Wang, W.; Zhang, F.; Yu, F. Temporal and spatial variability of summer extreme precipitation events in Northeast China during 1961–2013. Arid. Land Geogr. 2016, 39, 565–572. [Google Scholar] [CrossRef]
- Heim, R.R., Jr. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, Q.; Han, J. Spatial and temporal characteristics of drought in Northeast China at present and future climate change based on SPI. J. Meteorol. Sci. 2021, 41, 136–142. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, G. Theoratical Study and Research Prospect on Drought Indices. Adv. Earth Sci. 2004, 6, 982–991. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Weiss, A.; Hu, Q. An evaluation of the Standardized Precipitation Index, the China-Z Index and the statistical Z-Score. Int. J. Climatol. 2001, 21, 745–758. [Google Scholar] [CrossRef]
- Ullah, I.; Yuanjie, Z.; Ali, S.; Rahman, G. Rainfall and drought variability in spatial and temporal context in Lop Nor region, South Xinjiang, China, during 1981–2018. Arab. J. Geosci. 2020, 13, 438. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B.; Saunders, M.A. Seasonal prediction of European spring precipitation from El Niño-Southern Oscillation and Local sea-surface temperatures. Int. J. Climatol. 2002, 22, 1–14. [Google Scholar] [CrossRef]
- Manatsa, D.; Mukwada, G.; Siziba, E.; Chinyanganya, T. Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the Standardized Precipitation Index (SPI). Theor. Appl. Climatol. 2010, 102, 287–305. [Google Scholar] [CrossRef]
- Widhalm, M.; Wall, N.; Svoboda, M.; Hayes, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Svoboda, M.D.; Hayes, M.J.; Wilhite, D.A.; Wen, F. Appropriate of the standardized precipitation index in arid locations and dry seasons. Int. J. Climatol. 2007, 27, 65–79. [Google Scholar] [CrossRef]
- Yacoub, E.; Tayfur, G. Spatial and temporal of variation of meteorological drought and precipitation trend analysis over whole Mauritania. J. Afr. Earth Sci. 2020, 163, 103761. [Google Scholar] [CrossRef]
- Cheval, S.; Busuioc, A.; Dumitrescu, A.; Birsan, M.V. Spatiotemporal variability of meteorological drought in Romania using the standardized precipitation index (SPI). Clim. Res. 2014, 60, 235–248. [Google Scholar] [CrossRef]
- Wu, J.; Sheng, Z.; Du, J.; Zhang, Y.; Zhang, J. Spatiotemporal Change Patternes of Temperature and Precipitation in Northeast China from 1956 to 2017. Res. Soil Water Conserv. 2021, 28, 340–347. [Google Scholar] [CrossRef]
- Ma, J.; Xu, Y.; Pan, J. Drought tendency based on standardized precipitation index (SPI) and relative moisture index over Northeast China from May to September during 1961–2009. J. Meteorol. Environ. 2012, 28, 90–95. [Google Scholar] [CrossRef]
- Ye, L.; Zhou, J.; Zeng, X.; Zhang, H.; Lu, P.; Sun, X. Application of SPEI for the changes of drought in jialing river basin under climate change. Resour. Environ. Yangtze Basin 2015, 24, 943–948. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2012, 3, 52–58. [Google Scholar] [CrossRef]
- Liang, F.; Liu, D.; Wang, W.; Zhang, F.; Wang, X. Temporal and Spatial Distributions of Drought in Northeast China in 1961-2014 Based on Standardized Precipitation on Evapotranspiration Index. J. Desert Res. 2017, 37, 148–157. [Google Scholar] [CrossRef]
- Lu, H.; Mo, X.; Meng, D.; Liu, S. Analyzing Spatiotemporal Patterns of Meteorological Drought and Its Responses to Climate Change Across Northeast China. Sci. Geogr. Sin. 2015, 35, 1051–1059. [Google Scholar] [CrossRef]
- LI, Y.; Li, Y. Advances in Adaptability of Meteorological Drought Indices in China. J. Arid. Meteorol. 2017, 35, 709–723. [Google Scholar] [CrossRef]
- Shen, Y.; Li, H.; Lei, Y. Research Review on Application of Drought Index. South North Water Transf. Water Sci. Technol. 2013, 11, 128–133. [Google Scholar] [CrossRef]
- Li, Q.; Dong, W.; Li, W.; Gao, X.; Jones, P.; Kennedy, J.; Parker, D. Assessment of the uncertainties in temperature change in China during the last century. Chin. Sci. Bull. 2010, 55, 1974–1982. [Google Scholar] [CrossRef]
- Li, L.; Zhu, X.; Sun, Z.; Zhang, J. Establishment and application of rainstorm flood disaster risk assessment model in Liaoning Province. J. Beijing Noraml Univ. (Nat. Sci.) 2015, 51, 49–56. [Google Scholar] [CrossRef]
- Sheng, W.; Xue, L.; Dai, K.; Xu, L. Inverse Distance Weighted Interpolation Algorithm Based on Image Edge Preserving. Sci. Technol. Eng. 2021, 21, 13793–13800. [Google Scholar]
- Zhao, Y.; Deng, Q. Impact of Inverse Distance Weighted Interpolation Parameters on Rill DEM Accuracy. J. China West Norm. Univ. (Nat. Sci.) 2022, 48, 1–11. [Google Scholar]
- Yu, X.; He, X.; Zheng, H.; Guo, R.; Ren, Z.; Zhang, D.; Lin, J. Spatial and temporal analysis of drought risk during the crop-growing season over northeast China. Nat. Hazards 2013, 71, 275–289. [Google Scholar] [CrossRef]
- Huang, S.; Huang, Q.; Wang, Y.; Chen, Y. Evolution of drought characteristics in the Weihe River Basin based on standardized precipitation index. J. Nat. Disasters 2015, 24, 15–22. [Google Scholar] [CrossRef]
- Han, D.; Yang, G.; Yan, D.; Fang, H. Spatial-temporal Feature Analysis of Drought and Flood in Northeast China in Recent 50 Years. Water Resour. Power 2014, 32, 5–8. [Google Scholar]
- Fan, Q.; Fang, J.; Li, X. Characteristics of dry-wet change in Northeast China during 1965–2015. Heilongjiang Meteorol. 2019, 36, 10–11+32. [Google Scholar] [CrossRef]
- Tang, B.; Yan, J.; Wang, L.; Liu, Y. Changes of precipitation events in Northeast China from 1960 to 2014. Resour. Sci. 2015, 37, 2514–2523. [Google Scholar]
- Gong, Q.; Wang, H.; Zhang, Y.; Wang, Y.; Cui, Y.; Zhou, X.; Zhang, H. Climate change and its impacts on extreme climate events in Liaoning Province of Northeast China. Chin. J. Ecol. 2013, 32, 1525–1531. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, W.; Li, Q.; Zhao, C.; Zhou, X.; Ao, X.; Yu, J. Homogeneity Test and Correction of Monthly Temperature in Northeast China. Meteorol. Mon. 2019, 45, 240–250. [Google Scholar] [CrossRef]
- Li, B.; Zhou, X.; Zhao, Z.; Wang, J.; Wang, S.; Shang, K.; Li, P. Change Features of Different Types and Grades of Precipitation Event in Northeast China in Recent 50 years. Plateau Meteorol. 2013, 32, 1414–1424. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, Z. Decadal variation of rainfall in May over Northeast China since the early 21st century and possible causes. Clim. Chang. Res. 2019, 15, 12–22. [Google Scholar] [CrossRef]
- Yang, Y.; Li, K.; Zhang, J.; Wei, S.; Liu, C.; Wang, C. Climatic Suitability Analysis of Millet Growing Season in Northern China Region in the Context of Climate Warming. Chin. J. Agrometeorol. 2022, 43, 215–228. [Google Scholar] [CrossRef]
- Yang, X.; Xu, Z.; Zuo, D.; Cai, S. Spatiotemporal evolution characteristics of drought-waterlogging in three provinces of Northeast China in past 55 years. J. Nat. Disasters 2016, 25, 9–19. [Google Scholar] [CrossRef]
- Feng, D.; Cheng, Z.; Wu, Q.; Zhu, J.; Qu, H.; Li, J. Meteorological drought characteristics in Northeast China from 1961 to 2014 based on the comprehensive monitoring index analysis. J. Arid. Land Resour. Environ. 2017, 31, 118–124. [Google Scholar] [CrossRef]
- Cui, N.; Yin, Q. Impacts of Climate Change on Grain Production in Northeast China and Countermeasures. J. Catastrophol. 2022, 37, 52–57. [Google Scholar] [CrossRef]
Drought Index | Analyzed Variable | Application and Evaluation |
---|---|---|
Standardized Precipitation Evapotranspiration Index (SPEI) | Precipitation and evapotranspiration | It can perform multi-timescale calculations and has better applicability than that of other indexes [28]. |
Palmer Drought Severity Index (PDSI) | Rainfall and temperature data | It is suitable for drought research under the condition of global warming; however, its parameters are difficult to obtain and results can be subjective. Thus, there is significant uncertainty when evaluating droughts and floods [21,29,30]. |
Standardized Precipitation Index (SPI) | Precipitation | Relevant data are easy to obtain with this index since it has multi-timescale characteristics and exhibits a stable computational performance [10,31]. |
Relative Moisture Index (MI) | Precipitation | The calculation is simple and can represent the drought conditions at different timescales [32]. Only single factors such as precipitation or soil moisture are considered [1,33]. |
Index Value | Classification |
---|---|
2.0 and above | Extremely wet |
1.5 to 1.99 | Very wet |
1.0 to 1.49 | Moderately wet |
0.99 to −0.99 | Near normal |
−1.0 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
−2.0 and below | Extremely dry |
SPI Value (Absolute Value of the Index) | Category |
---|---|
2.0 and above | Extreme climate events |
1.5 to 1.99 | Severe climate events |
1.0 to 1.49 | Moderate climate events |
0.0 to 0.99 | Near normal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Ma, Y. Spatial and Temporal Analysis of Extreme Climate Events over Northeast China. Atmosphere 2022, 13, 1197. https://doi.org/10.3390/atmos13081197
Yu X, Ma Y. Spatial and Temporal Analysis of Extreme Climate Events over Northeast China. Atmosphere. 2022; 13(8):1197. https://doi.org/10.3390/atmos13081197
Chicago/Turabian StyleYu, Xingyang, and Yuanyuan Ma. 2022. "Spatial and Temporal Analysis of Extreme Climate Events over Northeast China" Atmosphere 13, no. 8: 1197. https://doi.org/10.3390/atmos13081197
APA StyleYu, X., & Ma, Y. (2022). Spatial and Temporal Analysis of Extreme Climate Events over Northeast China. Atmosphere, 13(8), 1197. https://doi.org/10.3390/atmos13081197