Quantitative Assessment of Climate Change Impact and Anthropogenic Influence on Crop Production and Food Security in Shandong, Eastern China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Food Security Indicators
2.2.2. Spatial Autocorrelation
- (1)
- Global space autocorrelation: Global spatial autocorrelation is a description of the spatial characteristics of attribute values in the entire region. There are many indicators and methods to express global spatial autocorrelation, mainly including connection statistics, Moran’s I, Geary’s C, and Getis’ G, among which Moran’s I is commonly used. Moran’s I is used to measure the interrelationship of spatial elements. It is similar to the correlation coefficient in general statistics. Its value is between 1 and −1. If it is greater than zero, it indicates that there is a positive spatial correlation. Otherwise, it is a negative correlation. Its calculation formula is as follows:
- (2)
- Local space autocorrelation: Although the global spatial autocorrelation analysis reflects the overall spatial agglomeration of grain production, it cannot determine its local spatial agglomeration. Therefore, the local spatial autocorrelation is used to make up for its insufficiency, identify the local spatial heterogeneity, and further measure the local spatial autocorrelation characteristics. The measurement method is expressed by Local Moran’s I index, and the formula is as follows:
2.2.3. Influencing Factors
- (1)
- Model Construction
- (2)
- Index selection
2.3. Data
3. Results
3.1. Trends in Food Production and Food Security
3.2. Spatial Pattern of Food Production
- (1)
- Global spatial autocorrelation: the global Moran’s I index of grain production was all positive (Table 3), Z (I) were all greater than the critical value of 1.96, and the p value passed the 1% significance test, indicating that there was an overall spatial autocorrelation phenomenon in grain production at the county level in Shandong. Counties with relatively high (low) grain yields also have relatively high (low) grain yields in their surrounding counties. From 1995 to 2020, the Moran’s I index of total grain production showed an upward trend, changing from ‘weak correlation’ to ‘strong correlation’. It can be seen that the spatial agglomeration of total grain production in Shandong Province became stronger.
- (2)
- Local spatial autocorrelation: Since the global spatial autocorrelation analysis method does not effectively evaluate the local agglomeration characteristics of grain yield, this paper introduces the local spatial autocorrelation analysis method. With the help of ArcGIS spatial statistics tools, we further explored the local spatial agglomeration of food production (Figure 2). The high-high (H-H) agglomeration effect experienced a transition from east to west, and the high-low (H-L) change was similar to that of H-H. The low-high (L-H) agglomeration emerged from scratch and was mainly distributed in the west, while the low-low (L-L) agglomeration evolved from the north to the northeast and the center. It can be seen that the local agglomeration characteristics of grain production in Shandong from 1995 to 2020 were significantly different.
3.3. Spatial Pattern of Per Capita Food Supply
3.4. Influencing Factors
4. Discussion
4.1. Government Intervention
4.1.1. Improve the Food Supply System
4.1.2. Protect Cultivated Land
4.1.3. Improve the Efficiency of Fertilizer Use
4.1.4. Increase Investment in Agricultural Science and Technology
4.2. Contribution to the Sustainable Development Goals
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, X.L.; Zhang, Y.; Yang, H.D. Definition of food security in China and its evaluation. J. Shandong Agric. Univ. 2006, 30, 14–18. [Google Scholar] [CrossRef]
- FAO. The State of Food Insecurity in the World 2001; Food and Agriculture Organization: Rome, Italy, 2002. [Google Scholar]
- Wu, W.B.; Tang, H.J.; Yang, P.; You, L.Z.; Zhou, Q.B.; Chen, Z.X.; Shibasaki, R. Model-based assessment of food security at a global scale. Acta Geogr. Sin. 2011, 21, 3–17. [Google Scholar] [CrossRef]
- Song, X.Q.; Ouyang, Z. Key influencing factors of food security guarantee in China during 1999–2007. Acta Geogr. Sin. 2012, 67, 793–803. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.M.; Vermeulen, S.J.; Aggarwal, P.K.; Corner-Dolloff, C.; Girvetz, E.; Loboguerrero, A.M.; Ramirez-Villegas, J.; Rosenstock, T.; Sebastian, L.; Thornton, P.K.; et al. Reducing risks to food security from climate change. Glob. Food Secur. 2016, 11, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, F.; Lin, X.; Liu, Z.; Zhang, H.; Zhao, J.; Li, K.; Ye, Q.; Li, Y.; Lv, S.; et al. Potential benefits of climate change for crop productivity in China. Agric. For. Meteorol. 2015, 208, 76–84. [Google Scholar] [CrossRef]
- Thornton, P.K.; Kristjanson, P.; Förch, W.; Barahona, C.; Cramer, L.; Pradhan, S. Is agricultural adaptation to global change in lower-income countries on track to meet the future food production challenge? Glob. Environ. Chang. 2018, 52, 37–48. [Google Scholar] [CrossRef]
- Masters, W.A.; Djurfeldt, A.A.; Haan, C.D.; Hazell, P.; Jayne, T.; Jirström, M.; Reardon, T. Urbanization and farm size in Asia and Africa: Implications for food security and agricultural research. Glob. Food Secur. 2013, 2, 156–165. [Google Scholar] [CrossRef]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; Cramon-Taubadel, S.; Tscharntke, T. Implications of agricultural transitions and urbanization for ecosystem services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Xu, M.; Ma, Q.; Dou, Y. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity. Sci. Total Environ. 2017, 576, 660–670. [Google Scholar] [CrossRef]
- Verburg, P.H.; Mertz, O.; Erb, K.H.; Haberl, H.; Wu, W. Land system change and food security: Towards multi-scale land system solutions. Curr. Opin. Environ. Sustain. 2013, 5, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Sun, Z.; Lotz, T.; Chang, N. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications. J. Environ. Manag. 2017, 204, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Rockson, G.; Bennett, R.; Groenendijk, L. Land administration for food security: A research synthesis. Land Use Policy 2013, 32, 337–342. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Jin, X.; Xiang, X.; Guan, X.; Wu, X.; Bai, Q.; Zhou, Y. Assessing the relationship between the spatial distribution of land consolidation projects and farmland resources in China, 2006–2012. Glob. Food Secur. 2017, 9, 889–905. [Google Scholar] [CrossRef]
- Khan, S.; Hanjra, M.A.; Mu, J. Water management and crop production for food security in China: A review. Agric. Water Manag. 2009, 96, 349–360. [Google Scholar] [CrossRef]
- Sahle, M.; Saito, O.; Fürst, C.; Yeshitela, K. Quantifying and mapping of water-related ecosystem services for enhancing the security of the food-water-energy nexus in tropical data–sparse catchment. Sci. Total Environ. 2019, 646, 573–586. [Google Scholar] [CrossRef]
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Wang, M.; Ma, L.; Strokal, M.; Chu, Y.; Kroeze, C. Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China. Agric. Syst. 2018, 163, 58–72. [Google Scholar] [CrossRef]
- Ye, L.; Ranst, E.V. Production scenarios and the effect of soil degradation on long term food security in China. Glob. Environ. Chang. 2009, 19, 464–481. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Velde, M.; Ye, L.; Berg, M.; Materechera, S.; Kiba, D.I.; Tamene, L.; Ragnarsdo’ttir, K.V.; Jongschaap, R.; Hoogmoed, M.; et al. Assessing the impact of soil degradation on food production. Curr. Opin. Environ. Sustain. 2012, 4, 478–488. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.F.; Kong, X.S. Spatial and temporal variation of grain production and its influencing factors at the County Level in China. Econ. Geogr. 2018, 38, 142–151. [Google Scholar]
- Li, Y.; Pan, S.; Miao, C. The spatial-temporal patterns of per capita share of grain at the county level in China: A comparation between registered population and resident population. Acta Geograp. Sin. 2014, 69, 1753–1766. [Google Scholar] [CrossRef]
- Liu, D.Q.; Liu, S.W.; Wen, X. Spatial-temporal evolution of grain production structure in Northeast China. Econ. Geogr. 2019, 39, 163–170. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, X.Z.; Li, Z.H. Impact of land use change on grain production efficiency in North China Plain during 2000–2015. Geogr. Res. 2017, 36, 2171–2183. [Google Scholar] [CrossRef]
- Tudose, N.C.; Cheval, S.; Ungurean, C.; Broekman, A.; Sanchez-Plaza, A.; Cremades, R.; Mitter, H.; Kropf, B.; Davidescu, S.O.; Dinca, L.; et al. Climate services for sustainable resource management: The water—energy—land nexus in the Tărlung river basin. Land Use Policy 2022, 119, 106221. [Google Scholar] [CrossRef]
- Tudose, N.C.; Cremades, R.; Broekman, A.; Marin, M.; Sanchez-Plaza, A.; Mitter, H.; Cremades, R. Mainstreaming the nexus approach in climate services will enable coherent local and regional climate policies. Adv. Clim. Chang. Res. 2021, 12, 752–755. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Liu, J.N.; Ma, J.; Yu, H.C.; Chen, F. Spatial pattern and driving factors of non-grain conversion on cultivated land in arid and semi-arid regions [J/OL]. J. Agric. Resour. Environ. 2022, 1–15. [Google Scholar] [CrossRef]
- Cheng, C.Z.; Yang, X.H.; Li, Y.J.; Wang, T. Calculation and analysis of cropland potential productivity in Shandong Province with different models. Resour. Sci. 2010, 32, 2165–2171. [Google Scholar]
- Anselin, L. Spatial econometrics. In Companion to Econometrics; Baltagi, B., Ed.; Basil Blackwell: Oxford, UK, 2000. [Google Scholar]
- Cliff, A.; Ord, J. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Cliff, A.; Ord, J. Spatial Processes: Models and Applications; Pion: London, UK, 1981. [Google Scholar]
- Misselhorn, A.; Aggarwal, P.; Ericksen, P.; Gregory, P.; Horn-Phathanothai, L.; Ingram, J.; Wiebe, K. A vision for attaining food security. Curr. Opin. Environ. Sustain. 2012, 4, 7–17. [Google Scholar] [CrossRef]
- Huang, J.; Yang, G. Understanding recent challenges and new food policy in China. Glob. Food Secur. 2017, 12, 119–126. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.F.; Han, X.F. Spatial Econometric Analysis of Agricultural Total Factor Productivity and Its Influencing Factors in China—Based on Provincial Spatial Panel Data from 1992 to 2007. China’s Rural. Econ. 2010, 8, 24–35. [Google Scholar] [CrossRef]
- Elhorst, J.P. Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Wang, Z.Y.; Zhang, S.Z.; Ye, X.Y.; Jiang, H.M. Spatial measurement of carbon emission intensity of China’s energy consumption and its influencing factors. Acta Geogr. Sin. 2013, 68, 1418–1431. [Google Scholar]
- Wen, J.; Zhang, C.; Zhang, L.J.; Qin, Y.C.; Wang, X. Temporal and spatial evolution and influencing factors of China’s grain production under climate change. J. Henan Univ. 2020, 50, 652–665. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, X.M.; Pan, Y.C.; Tang, L.N. Spatial Spillover Effect and Influencing Factors Analysis of County Grain Yield in Huang-Huai-Hai Region. Trans. CSAE 2016, 32, 299–307. [Google Scholar] [CrossRef]
- Ye, Y.J.; Qi, Q.W.; Jiang, L.L.; Zhang, A. Analysis of Influencing Factors on Farm Grain Yield in Heilongjiang Reclamation Area Based on Geographic Detector. Geogr. Res. 2018, 37, 171–182. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.F.; Kong, X.S.; Chen, Y.Y.; Pan, J.W. Temporal and spatial evolution of grain yield in China’s counties and analysis of its influencing factors. Econ. Geogr. 2018, 38, 142–151. [Google Scholar]
- Liu, Y.; Liu, Y.S.; Guo, L.Y. Evolution of the spatial pattern of per capita grain Possession at County Level in the Area along Bohai Rim of China. J. Geogr. Sci. 2011, 31, 102–109. [Google Scholar]
- Guo, J.P. Research Progress on the impact of climate change on agricultural production in China. J. Appl. Meteorol. 2015, 26, 1–11. [Google Scholar]
- An, Y.M.; Zhao, W.W. Global climate change and food security: Review of the 2012 Planet under Pressure International Conference. Acta Ecol. Sin. 2012, 32, 4940–4942. [Google Scholar] [CrossRef]
- Liu, J.Y.; Xu, X.L.; Zhuang, D.F.; Gao, Z.Q. Impact of LUCC on light-temperature potential production in 1990s. Sci. China Ser. D Earth Sci. 2005, 35, 483–492. [Google Scholar]
- Qin, Y.W.; Yan, H.M.; Liu, J.Y.; Dong, J.W.; Chen, J.Q.; Xiao, X.M. Impacts of ecological restoration projects on agricultural productivity in China. J. Geogr. Sci. 2013, 23, 404–416. [Google Scholar] [CrossRef]
- Falkendal, T.; Otto, C.; Schewe, J.; Jägermeyr, J.; Konar, M.; Kummu, M.; Watkins, B.; Puma, M.J. Grain export restrictions during COVID-19 risk food insecurity in many low-and middle-income countries. Nat. Food 2021, 2, 11–14. [Google Scholar] [CrossRef]
- Shi, S.Q.; Chen, Y.Q.; Yao, Y.M.; Li, Z.B.; He, Y.B. Impact assessment of cultivated land change upon grain productive capacity in Northeast China. Acta Geogr. Sin. 2008, 63, 574–586. [Google Scholar]
- Xu, X.L.; Liu, J.Y.; Cao, M.K.; Zhang, S.W. Impact of recent climate fluctuation and LUCC process on potential productivity for crops in Northeast China. Sci. Geogr. Sin. 2007, 27, 318–324. [Google Scholar]
- Zeng, K.J.; Chen, Y.; Gao, Z.G.; Peng, B.Z. Study on the relationship of cultivated land change and food security in Yangtze River Delta. Geogr. Geo-Inf. Sci. 2006, 22, 58–61. [Google Scholar]
- Liu, Y.S.; Wu, C.J. Situation of land-water resources and analysis of sustainable food security in China. J. Nat. Resour. 2002, 17, 270–275. [Google Scholar]
- Fu, Z.Q.; Cai, Y.L.; Yang, Y.X.; Dai, R.F. Research on the relationship of cultivated land change and food security in China. J. Nat. Resour. 2001, 16, 313–319. [Google Scholar]
- Gao, Z.Q.; Liu, J.Y.; Cao, M.K.; Li, K.R. Impacts of land use and climate changes on ecosystem productivity and carbon cycle in the cropping grazing transitional zone in China. Sci. China (Ser. D Earth Sci.) 2005, 48, 1479–1491. [Google Scholar] [CrossRef]
- Neumann, K.; Verburgv, P.H.; Stehfest, E.; Muller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Xi, Z.B.; Wang, Y.Z.; Yang, P.Z. The issue on organic manure in developing modern agriculture in China. Sci. Agric. Sin. 2004, 37, 1874–1878. [Google Scholar]
- Zhao, X.Y.; Liu, J.H.; Wang, R.; Wang, X.Q. Spatial-temporal coupling relationship between chemical fertilizer application and grain yield in China at city scale. J. Nat. Resour. 2019, 34, 1471–1482. [Google Scholar] [CrossRef]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development [EB/OL]. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 18 August 2018).
- Food and Agriculture Organization of the United Nations (FAO). FAO and the SDG: Indicators -Measuring Up to the 2030 Agenda for Sustainable Development [EB/OL]. Available online: http://www.fao.org/3/a-i6919e.pdf (accessed on 10 August 2018).
- Li, M.H.; Zhou, L.; Zhou, Y.X. Research on the Damping Effect of Water Resources on Grain Production: Quantitative Test Based on Shandong Data from 2001 to 2016. Resour. Environ. Arid Areas 2019, 33, 16–23. [Google Scholar] [CrossRef]
- Li, Z.; Jingyu, W.; Wanzhong, M. Temporal and Spatial Research on Frost and Low Temperature Disaster and Grain Production Pattern in Shandong from 1985 to 2012. Agric. Disaster Res. 2019, 9, 32–35. [Google Scholar] [CrossRef]
- Yue, Y.J.; Yang, W.Q.; Wang, L. Assessment of drought risk for winter wheat on the Huanghuaihai Plain under climate change using an EPIC model-based approach. Int. J. Digit. Earth 2022, 15, 690–711. [Google Scholar] [CrossRef]
- Kumari, V.V.; Roy, A.; Vijayan, R.; Banerjee, P.; Verma, V.C.; Nalia, A.; Pramanik, M.; Mukherjee, B.; Ghosh, A.; Reja, M.H. Drought and Heat Stress in Cool-Season Food Legumes in Sub-Tropical Regions: Consequences, Adaptation, and Mitigation Strategies. Plants 2021, 10, 1038. [Google Scholar] [CrossRef]
- Leon, J.; Ballvora, A.; Siddiqui, M.N.; Naz, A.A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. J. Exp. Bot. 2021, 72, 1007–1019. [Google Scholar] [CrossRef]
- Biswas, B.; Garai, S.; Hossain, A.; Banerjee, H.; Bandyopadhyay, P.; KumarOndrisik, P.; Skalicky, M.; Brestic, M.; Sarkar, S.; Mondal, M.; et al. Zeolites Enhance Soil Health, Crop Productivity and Environmental Safety. Agronomy 2021, 11, 448. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Xue, B.; Lv, Z.; Meng, Z.; Yang, X.; Xue, T.; Yu, Q.; He, K. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
Type | Index |
---|---|
Geographical environment | Growing season temperature and precipitation, average annual temperature and precipitation, sown area |
Socioeconomic | Total population |
Factor input | Fertilizer usage (in scalar volume), total power of agricultural machinery |
Year | Number of Shandong Counties (%) (Missing Data Are Not Included in the Calculation) | ||||
---|---|---|---|---|---|
Severe Shortage | Moderate Shortage | Supply-Demand Balance | Moderate Surplus | Severe Surplus | |
1995 | 10 (7.5%) | 11 (8.3%) | 7 (5.3%) | 63 (47.4%) | 42 (31.6%) |
2000 | 16 (12%) | 14 (10.5%) | 20 (15.1%) | 55 (41.4%) | 28 (21.1%) |
2005 | 21 (15.8%) | 10 (7.5%) | 20 (15.1%) | 43 (32.3%) | 39 (29.3%) |
2010 | 18 (13.6%) | 10 (7.6%) | 14 (10.6%) | 35 (26.5%) | 55 (41.7%) |
2015 | 19 (14.4%) | 18 (13.6%) | 14 (10.6%) | 30 (22.7%) | 51 (38.6%) |
2020 | 23 (17.6%) | 16 (12.2%) | 19 (14.5%) | 17 (13%) | 56 (42.7%) |
Year | Moran’s I | Z (I) | p |
---|---|---|---|
1995 | 0.162213 | 2.767059 | 0.005656 |
2000 | 0.255560 | 4.284913 | 0.000018 |
2005 | 0.251523 | 4.229677 | 0.000023 |
2010 | 0.277339 | 4.549589 | 0.000005 |
2015 | 0.343385 | 5.602631 | 0.000000 |
2020 | 0.373844 | 6.069967 | 0.000000 |
Influencing Factors | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
Coef | t | Coef | t | Coef | t | |
Annual precipitation | 409.17 | 1.608 | 107.82 | 0.351 | 464.79 | 1.917 |
Annual average temperature | −9213.79 * | −2.238 | −10119.07 * | −2.208 | ||
Growing season precipitation | −242.75 | −1.162 | −718.22 | −0.366 | −306.01 | −1.571 |
Growing season temperature | 5525.51 * | 2.088 | 5964.27 | 1.95 | ||
Total population | 0.003 | 0.508 | −0.302 | 0.000 | 0.001 | 0.090 |
Sown area | 4.65 ** | 6.412 | 6.94 ** | 5.89 | 4.91 ** | 6.588 |
Fertilizer usage | −0.129 | −0.095 | 3.305 | 1.017 | −0.407 | −0.032 |
Total power of agricultural machinery | 1.46 ** | 4.78 | 8.51 | 2.122 | 1.41 ** | 4.918 |
R2 | 0.982 | 0.915 | 0.981 | |||
R2(within) | 0.917 | 0.947 | 0.924 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Yin, S. Quantitative Assessment of Climate Change Impact and Anthropogenic Influence on Crop Production and Food Security in Shandong, Eastern China. Atmosphere 2022, 13, 1160. https://doi.org/10.3390/atmos13081160
Cheng J, Yin S. Quantitative Assessment of Climate Change Impact and Anthropogenic Influence on Crop Production and Food Security in Shandong, Eastern China. Atmosphere. 2022; 13(8):1160. https://doi.org/10.3390/atmos13081160
Chicago/Turabian StyleCheng, Junqi, and Shuyan Yin. 2022. "Quantitative Assessment of Climate Change Impact and Anthropogenic Influence on Crop Production and Food Security in Shandong, Eastern China" Atmosphere 13, no. 8: 1160. https://doi.org/10.3390/atmos13081160
APA StyleCheng, J., & Yin, S. (2022). Quantitative Assessment of Climate Change Impact and Anthropogenic Influence on Crop Production and Food Security in Shandong, Eastern China. Atmosphere, 13(8), 1160. https://doi.org/10.3390/atmos13081160