Predicting Indian Ocean Cyclone Parameters Using an Artificial Intelligence Technique
Abstract
:1. Introduction
2. Date and Methodology
2.1. Data
2.2. Segmentation of the Tracks
3. Results and Discussion
3.1. Comparison of the Position
3.2. Estimation of Wind Speed
3.3. Estimation of Pressure
3.4. Land-Crossing-Point Difference
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willoughby, H.E.; Rappaport, E.N.; Marks, F.D. Hurricane forecasting: The state of the art. Nat. Hazards Rev. 2007, 8, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Lazo, J.K.; Waldman, D.M.; Morrow, B.H.; Thacher, J.A. Household evacuation decision making and the benefits of improved hurricane forecasting: Developing a framework for assessment. Weather Forecast. 2010, 25, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Shaji, C.; Kar, S.K.; Vishal, T. Storm surge studies in the North Indian Ocean: A review. Indian J. Geo-Mar. Sci. 2014, 43, 125–147. [Google Scholar]
- Rao, A.D.; Poulose, J.; Puja, U.; Mohanty, S. Local-Scale Assessment of Tropical Cyclone Induced Storm Surge Inundation over the Coastal Zones of India in Probabilistic Climate Risk Scenar; Ravela, S., Sandu, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 79–88. [Google Scholar] [CrossRef]
- Mohanty, U.C.; Gupta, A. Deterministic methods for prediction of tropical cyclone tracks. Mausam 1997, 48, 257–272. [Google Scholar] [CrossRef]
- Gupta, A. Current status of tropical cyclone track prediction techniques and forecast errors. Mausam 2006, 57, 151–158. [Google Scholar] [CrossRef]
- Bell, G.J. Operational forecasting of tropical cyclones. Aust. Meteorol. Mag. 1979, 27, 249–258. [Google Scholar]
- Ali, M.M.; Kishtawal, C.M. Sarika Jain Predicting cyclone tracks in the north Indian Ocean: An artificial neural network approach. Geophys. Res. Lett. 2007, 34, L04603. [Google Scholar] [CrossRef]
- Swain, D.; Ali, M.M. Weller Robert. Estimation of mixed-layer depth from surface parameters. J. Mar. Res. 2006, 64, 745–758. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Swain, D.; Weller, R.A. Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach. Geophys. Res. Lett. 2004, 31, L20308. [Google Scholar] [CrossRef] [Green Version]
- Tolman, H.; Krasnopolsky, V.; Chalikov, D. Neural network approximations for nonlinear interactions in wind wave spectra: Direct mapping for wind seas in deep water. Ocean Model. 2005, 8, 253–278. [Google Scholar] [CrossRef]
- Jain, S.; Ali, M.M. Estimation of sound speed profiles using artificial neural network. IEEE Trans. Geosci. Remote Sens. Lett. 2006, 3, 467–470. [Google Scholar] [CrossRef]
- Jain, S.; Ali, M.M.; Sen, P.N. Estimation of sonic layer depth from surface parameters. Geophyical Res. Lett. 2007, 34, LI7602. [Google Scholar] [CrossRef]
- Ali, M.M.; Jagadeesh, P.S.V.; Lin, I.-I.; Hsu, J.-Y. A neural network approach to estimate tropical cyclone heat potential in the Indian Ocean. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1114–1117. [Google Scholar] [CrossRef]
- Ali, M.M.; Swain, D.; Kashyap, T.; McCreary, J.P.; Nagamani, P.V. Relationship between cyclone intensities and sea surface temperature in the Tropical Indian Ocean. IEEE Geosci. Remote Sens. Lett. 2012, 10, 841–844. [Google Scholar] [CrossRef]
- Liu, Q.H.; Simmer, C.; Ruprecht, E. Estimating longwave net radiation at sea surface from the Special Sensor Microwave/Imager (SSM/I). J. Appl. Meteorol. 1997, 36, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Jagadeesh, P.S.V.; Jain, S. Effects of eddies and dynamic topography on the Bay of Bengal cyclone intensity. Eos. Trans. Am. Geophys. Union 2007, 88, 93–95. [Google Scholar] [CrossRef]
- Sharma, N.; Ali, M.M. A neural network approach to improve the vertical resolution of atmospheric temperature profiles from geostationary satellites. IEEE Geosci. Remote Sens. Lett. 2012, 10, 34–37. [Google Scholar] [CrossRef]
- Krasnopolsky, V.; Schiller, H. Some neural network applications in environmental sciences part I: Forward and inverse problems in satellite remote sensing. Neural Netw. 2003, 16, 321–334. [Google Scholar] [CrossRef]
- Ali, M.M.; Bhowmick, S.A.; Sharma, R.; Chaudhury, A.; Pezzullo, J.C.; Bourassa, M.A.; Ramana, I.V.; Niharika, K. An artificial neural network model function (AMF) for saral-altika winds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5317–5323. [Google Scholar] [CrossRef]
- Sharma, N.; Ali, M.M.; Knaff, J.; Chand, P. A soft-computing cyclone intensity prediction scheme for the Western North Pacific Ocean. Atmos. Sci. Lett. 2013, 14, 187–192. [Google Scholar] [CrossRef]
- Ali, M.M.; Bourassa, M.A.; Bhowmick, S.A.; Sharma, R.; Niharika, K. Retrieval of Wind Stress at the Ocean Surface from AltiKa Measurements. IEEE Geosci. Remote Sens. Lett. 2016, 13, 821–825. [Google Scholar] [CrossRef]
- Neumann, C.J.; Mandal, G.S. Statistical prediction of tropical storm motion over the Bay of Bengal and Arabian Sea. Mausam 1978, 29, 487–500. [Google Scholar] [CrossRef]
- Neumann, C.J.; Randrianarison, E.A. Statistical prediction of tropical cyclone motion over the southwest Indian Ocean. Mon. Weather Rev. 1976, 104, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Purna Chand, C.; Rao, M.V.; Ramana, I.V.; Ali, M.M.; Patoux, J.; Bourassa, M.A. Estimation of sea level pressure fields during Cyclone Nilam from Oceansat-2 scatterometer winds. Atmos. Sci. Lett. 2014, 15, 65–71. [Google Scholar] [CrossRef]
- Patoux, J.; Foster, R.C.; Brown, R.A. Global pressure fields from scatterometer winds. J. Appl. Meteorol. 2003, 42, 813–826. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.H. Skill scores based on the mean square and their relationships to the correlation coefficient. In Monthly Weather Review; American Meteorological Society: Boston, MA, USA, 1988; Volume 116, pp. 2417–2424. [Google Scholar]
- Mohapatra, M.; Nayak, D.P.; Sharma, M. Evaluation of official tropical cyclone landfall forecast issued by India Meteorological Department. J. Earth Syst. Sci. 2015, 124, 861–874. [Google Scholar] [CrossRef] [Green Version]
Latitude/Longitude (Degrees) | |||||
---|---|---|---|---|---|
Past Hours Used for Prediction | Forecasted Hour | Total No. of Sectors | No. of Train Sectors | No. of Verification Sectors | No. of Validation Sectors |
6 | 6 | 6245 | 2747 | 2165 | 1333 |
6 | 12 | 5923 | 2587 | 2072 | 1264 |
6 | 18 | 5602 | 2428 | 1979 | 1195 |
6 | 24 | 5283 | 2271 | 1886 | 1126 |
12 | 6 | 5923 | 2587 | 2072 | 1264 |
12 | 12 | 5602 | 2428 | 1979 | 1195 |
12 | 18 | 5283 | 2271 | 1886 | 1126 |
12 | 24 | 4967 | 2117 | 1793 | 1057 |
Years considered: | 1971–1990 | 1991–2007 | 2008–2019 | ||
Wind Speed (Knots) | |||||
Past Hours Used for Prediction | Forecasted Hour | Total No. of Sectors | No. of Train Sectors | No. of Verification Sectors | No. of Validation Sectors |
6 | 6 | 4757 | 1268 | 2165 | 1324 |
6 | 12 | 4519 | 1191 | 2072 | 1256 |
6 | 18 | 4282 | 1115 | 1979 | 1188 |
6 | 24 | 4045 | 1039 | 1886 | 1120 |
12 | 6 | 4519 | 1191 | 2072 | 1256 |
12 | 12 | 4282 | 1115 | 1979 | 1188 |
12 | 18 | 4045 | 1039 | 1886 | 1120 |
12 | 24 | 3809 | 964 | 1793 | 1054 |
Years considered: | 1973–1990 | 1991–2007 | 2008–2019 | ||
Pressure (hPa) | |||||
Past Hours Used for Prediction | Forecasted Hour | Total No. of Sectors | No. of Train Sectors | No. of Verification Sectors | No. of Validation Sectors |
6 | 6 | 2066 | 742 | 632 | 692 |
6 | 12 | 1962 | 706 | 599 | 657 |
6 | 18 | 1858 | 670 | 566 | 622 |
6 | 24 | 1754 | 634 | 533 | 587 |
12 | 6 | 1962 | 706 | 599 | 657 |
12 | 12 | 1858 | 670 | 566 | 622 |
12 | 18 | 1754 | 634 | 533 | 587 |
12 | 24 | 1650 | 598 | 500 | 552 |
Years considered: | 2001–2007 | 2008–2013 | 2014–2019 |
Latitude (Longitude) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Forecast Time | Training | Verification | Validation | |||||||||
ARM | RMSE | CC | ARM | RMSE | CC | ARM | RMSE | CC | ||||
06P 06F | 0.1266 (0.1629) | 0.1777 (0.2539) | 0.9994 (0.9997) | 0.1384 (0.1533) | 0.1991 (0.2175) | 0.9993 (0.9998) | 0.1671 (0.1902) | 0.2393 (0.275) | 0.9983 (0.9998) | |||
06P 12F | 0.2918 (0.4009) | 0.3999 (0.5954) | 0.9971 (0.9983) | 0.3228 (0.3699) | 0.4450 (0.5056) | 0.9967 (0.9991) | 0.3395 (0.4144) | 0.4676 (0.579) | 0.9938 (0.9991) | |||
06P 18F | 0.4771 (0.666) | 0.6397 (0.9475) | 0.9926 (0.9959) | 0.528 (0.6086) | 0.7085 (0.823) | 0.9913 (0.9975) | 0.5275 (0.672) | 0.7027 (0.9164) | 0.9859 (0.9979) | |||
06P 24F | 0.6583 (0.9402) | 0.8664 (1.2806) | 0.9864 (0.9925) | 0.7226 (0.8784) | 0.9641 (1.1591) | 0.9838 (0.9953) | 0.7261 (0.8954) | 0.9595 (1.1786) | 0.9737 (0.9965) | |||
12P 06F | 0.1288 (0.1677) | 0.1790 (0.2503) | 0.9994 (0.9997) | 0.1431 (0.1699) | 0.2047 (0.2443) | 0.9992 (0.9997) | 0.1694 (0.2132) | 0.2413 (0.3113) | 0.9983 (0.9997) | |||
12P 12F | 0.3009 (0.4389) | 0.4078 (0.6262) | 0.997 (0.9982) | 0.3596 (0.4167) | 0.4901 (0.5747) | 0.9962 (0.9988) | 0.3448 (0.4465) | 0.4739 (0.601) | 0.9938 (0.9991) | |||
12P 18F | 0.475 (0.6524) | 0.6269 (0.9026) | 0.9929 (0.9963) | 0.5376 (0.6428) | 0.7203 (0.8551) | 0.9913 (0.9975) | 0.535 (0.6629) | 0.7107 (0.8856) | 0.9858 (0.998) | |||
12P 24F | 0.6718 (1.0006) | 0.8799 (1.3312) | 0.9861 (0.9921) | 0.7994 (0.9636) | 1.0478 (1.2746) | 0.9818 (0.9945) | 0.7411 (1.0243) | 0.9716 (1.3324) | 0.9742 (0.996) | |||
Wind Speed (Knots) | ||||||||||||
Forecast Time | Training | Verification | Validation | |||||||||
ARM | RMSE | S I | CC | ARM | RMSE | S I | CC | ARM | RMSE | S I | CC | |
06P 06F | 3.085 | 4.2322 | 0.0996 | 0.9772 | 3.2571 | 4.8692 | 0.1287 | 0.9735 | 3.5398 | 5.0605 | 0.11 | 0.9795 |
06P 12F | 5.0849 | 7.0811 | 0.164 | 0.9365 | 5.6212 | 8.2533 | 0.2143 | 0.9233 | 6.4378 | 9.1879 | 0.1959 | 0.9327 |
06P 18F | 7.0698 | 9.7056 | 0.2218 | 0.8801 | 7.6532 | 11.174 | 0.2854 | 0.8578 | 9.03 | 12.903 | 0.2702 | 0.8653 |
06P 24F | 8.8106 | 11.931 | 0.2694 | 0.8174 | 9.5734 | 13.864 | 0.3488 | 0.7762 | 11.591 | 16.175 | 0.333 | 0.7849 |
12P 06F | 3.0419 | 4.2051 | 0.0974 | 0.978 | 3.2997 | 4.8726 | 0.1265 | 0.9739 | 3.5699 | 5.1055 | 0.1088 | 0.9797 |
12P 12F | 5.0169 | 7.0494 | 0.1611 | 0.9387 | 5.6424 | 8.2383 | 0.2104 | 0.9252 | 6.3792 | 9.1725 | 0.1921 | 0.9349 |
12P 18F | 6.9808 | 9.7024 | 0.2191 | 0.8835 | 7.6686 | 11.218 | 0.2822 | 0.8598 | 9.1124 | 13.035 | 0.2684 | 0.8668 |
12P 24F | 8.7629 | 11.952 | 0.2669 | 0.8224 | 9.5918 | 13.858 | 0.3438 | 0.7826 | 11.78 | 16.425 | 0.3329 | 0.7862 |
Pressure (hPa) | ||||||||||||
Forecast Time | Training | Verification | Validation | |||||||||
ARM | RMSE | S I | CC | ARM | RMSE | S I | CC | ARM | RMSE | S I | CC | |
06P 06F | 2.2318 | 3.8428 | 0.0038 | 0.9717 | 2.6246 | 4.161 | 0.0041 | 0.9674 | 3.4215 | 4.946 | 0.005 | 0.9665 |
06P 12F | 3.7496 | 5.9774 | 0.006 | 0.9326 | 4.7196 | 7.1908 | 0.0072 | 0.9018 | 6.0367 | 8.4201 | 0.0085 | 0.9024 |
06P 18F | 5.4029 | 8.5577 | 0.0086 | 0.8612 | 6.3798 | 9.7563 | 0.0098 | 0.8168 | 8.1882 | 11.266 | 0.0114 | 0.8221 |
06P 24F | 6.6066 | 10.307 | 0.0103 | 0.7993 | 8.0948 | 12.076 | 0.0122 | 0.7242 | 9.9595 | 13.661 | 0.0138 | 0.7426 |
12P 06F | 2.2772 | 3.7356 | 0.0037 | 0.9741 | 2.6854 | 4.2219 | 0.0042 | 0.9671 | 3.5482 | 5.0836 | 0.0051 | 0.9654 |
12P 12F | 3.8243 | 6.1372 | 0.0061 | 0.9314 | 4.56 | 7.2014 | 0.0072 | 0.9034 | 6.0451 | 8.4673 | 0.0085 | 0.9034 |
12P 18F | 5.4258 | 8.5138 | 0.0085 | 0.8683 | 6.285 | 9.6772 | 0.0097 | 0.8299 | 8.136 | 11.327 | 0.0114 | 0.8297 |
12P 24F | 6.6914 | 10.437 | 0.0105 | 0.8047 | 8.0294 | 11.953 | 0.012 | 0.7341 | 9.8206 | 13.467 | 0.0136 | 0.7548 |
12 h Past 12-h Forecast | 12 h Past 24-h Forecast | ||||
---|---|---|---|---|---|
Sl No. | Year-Cyclone No. | Length (km) | Sl No. | Year-Cyclone No. | Length (km) |
1 | 2008–66 | 43.72 | 1 | 2008–95 | 18.06 |
2 | 2008–90 | 6.19 | 2 | 2009–26 | 48.47 |
3 | 2008–95 | 24.62 | 3 | 2010–24 | 159.47 |
4 | 2009–26 | 17.61 | 4 | 2010–80 | 50.51 |
5 | 2009–64 | 8.92 | 5 | 2011–94 | 49.77 |
6 | 2009–89 | 61.13 | 6 | 2012–81 | 87.88 |
7 | 2010–24 | 42.4 | 7 | 2012–84 | 62.61 |
8 | 2010–80 | 5.94 | 8 | 2013–75 | 43.31 |
9 | 2011–94 | 33.79 | 9 | 2013–93 | 192.56 |
10 | 2012–81 | 10.61 | 10 | 2013–94 | 38.68 |
11 | 2012–84 | 17.9 | 11 | 2014–75 | 66.58 |
12 | 2013–75 | 14.18 | 12 | 2016–91 | 70.06 |
13 | 2013–93 | 51.31 | 13 | 2016–92 | 66.05 |
14 | 2013–94 | 35.76 | 14 | 2018–93 | 79.98 |
15 | 2013–99 | 79.99 | 15 | 2018–102 | 43.73 |
16 | 2014–75 | 34.29 | 16 | 2018–105 | 129.32 |
17 | 2016–91 | 19.35 | 17 | 2019–87 | 0.26 |
18 | 2016–92 | 14.83 | |||
19 | 2018–82 | 89.1 | Mean | 71.02 | |
20 | 2018–93 | 48.78 | Max | 192.56 | |
21 | 2018–102 | 3.8 | Min | 0.26 | |
22 | 2018–105 | 80.42 | |||
23 | 2019–21 | 47.56 | |||
24 | 2019–87 | 124.8 | |||
Mean | 38.21 | ||||
Max | 124.8 | ||||
Min | 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chand, C.P.; Ali, M.M.; Himasri, B.; Bourassa, M.A.; Zheng, Y. Predicting Indian Ocean Cyclone Parameters Using an Artificial Intelligence Technique. Atmosphere 2022, 13, 1157. https://doi.org/10.3390/atmos13071157
Chand CP, Ali MM, Himasri B, Bourassa MA, Zheng Y. Predicting Indian Ocean Cyclone Parameters Using an Artificial Intelligence Technique. Atmosphere. 2022; 13(7):1157. https://doi.org/10.3390/atmos13071157
Chicago/Turabian StyleChand, C. Purna, M.M. Ali, Borra Himasri, Mark A. Bourassa, and Yangxing Zheng. 2022. "Predicting Indian Ocean Cyclone Parameters Using an Artificial Intelligence Technique" Atmosphere 13, no. 7: 1157. https://doi.org/10.3390/atmos13071157
APA StyleChand, C. P., Ali, M. M., Himasri, B., Bourassa, M. A., & Zheng, Y. (2022). Predicting Indian Ocean Cyclone Parameters Using an Artificial Intelligence Technique. Atmosphere, 13(7), 1157. https://doi.org/10.3390/atmos13071157