A GIS-Based Methodology to Combine Rain Gauge and Radar Rainfall Estimates of Precipitation Using the Conditional Merging Technique for High-Resolution Quantitative Precipitation Forecasts in Țibleș and Rodnei Mountains
Abstract
:1. Introduction
2. Study Area
3. Methodology and Database
- Attention threshold: 15 mm/m2 in a maxim of 3 h;
- Alert threshold: 25 mm/m2 in a maxim of 6 h;
- Danger threshold: 25 mm/m2 in a maxim of 1 h determining sudden increases in water level and overland water runoff.
- The precipitation field was observed at the rain gauge points (Rrg, obs).
- The precipitation field was observed by radar on a regular, volume-integrated grid (Rradar, obs).
- Cokriging used rain gauge observations to obtain the best linear unbiased estimate of precipitation, correlated with the radar grid points (Rrg, kriged, where R is precipitation and rg is rain gauge).
- Ordinary kriging is used for radar pixel values, exclusively those from the rain gauge point locations to estimate the interpolated radar rainfall at each grid point (Rradar, kriged).
- At each grid point, the difference cd of the observed and interpolated radar values was calculated using a suitable method. At the rain gauge locations, the cd is always equal to zero.
- The field of differences (cd) was added to the rain fields from rain gauge interpolation.
- A merged rainfall field was obtained that maintained the mean-field of the rain gauge interpolation while preserving the mean-field deviations and spatial structure of the radar data.
4. Results
- The 24 h precipitation data from the radar images of Bobohalma were extracted and provided in jpg format by the Regional Meteorological Center “Transylvania North” (CMRTN).
- The radar images were imported in ArcMap, version 10.7.1 (Esri, Redlands, CA, USA). with selected watercourses and road networks.
- Georeferencing the images considering well-highlighted reference points on the images, the assignment of the stereo’s 70 coordinates to these points was obtained. As a result, all the images have the same geographical coordinates and overlap perfectly, allowing further operations.
- Vectorization of a polygonal-type grid file (mask), according to the resolution (4 km2) of a georeferenced radar image including 332 polygons (Figure 3).Figure 3. Left—24 h rain intensity radar image. Right—radar image reproduced in ArcMap, an event from 13 June 2018.Figure 3. Left—24 h rain intensity radar image. Right—radar image reproduced in ArcMap, an event from 13 June 2018.
- Overlap the created grid over each radar image and assign the precipitation values to each polygon (Figure 3).
- Creating attribute tables for the analyzed rainfall events.
Source of Errors/Model Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harader, E.; Borrell-Estupina, V.; Ricci, S.; Coustau, M.; Thual, O.; Piacentini, A.; Bouvier, C. Correcting the radar rainfall forcing of a hydrological model with data assimilation: Application to flood forecasting in the Lez catchment in Southern France. Hydrol. Earth Syst. Sci. 2012, 16, 4247–4264. [Google Scholar] [CrossRef] [Green Version]
- Vladimirescu, I. Hidrologie; Editura didactica si pedagogica: Bucuresti, Romania, 1978. (In Romanian) [Google Scholar]
- Ștreang, O.; Morar, C.; Roman, P. Utilizarea Tehnicilor GIS in Monitorizarea Rapida a Cantitatilor de Precipitatii Estimate cu Radarul WSR 98D Cazute in Bazine Hidrografice Mici; INHGA—Sesiunea Anuala de Comunicari Stiintifice: Bucuresti, Romania, 2005. (In Romanian) [Google Scholar]
- Pettazzi, A.; Salson, S. Combining radar and rain gauge rainfall estimates using conditional merging: A case study. In Proceedings of the ERAD—The Seventh European Conference on Radar in Meteorology and Hydrology, Toulouse, France, 25–29 June 2012. [Google Scholar]
- Sinclair, S.; Pegram, G. Combining radar and rain gauge rainfall estimates using conditional merging. Atmos. Sci. Lett. 2005, 6, 19–22. [Google Scholar] [CrossRef]
- Kocsis, I.; Haidu, I.; Maier, N. Application of a hydrological Mike Hydro River—UHM model for river Valea Rea (Romania). Case study, flash flood event accorred on august 1st, 2019. In Proceedings of the Air and Water Components of the Environment Conference, Cluj-Napoca, Romania, 20–22 March 2020. [Google Scholar] [CrossRef]
- Deyzel, I.T.H.; Pegram, G.G.S.; Visser, P.J.M.; Dicks, D. Spatial Interpolation and Mapping of Rainfall (SIMAR), Volume 2: Radar and Satellite Products; South African Weather Service: Bethlehem, Palestine, 2003. [Google Scholar]
- Jewell, S.A.; Gaussiat, N. An assessment of kriging-based rain-gauge-radar merging techniques. Q. J. R. Meteorol. Soc. 2015, 141, 2300–2313. [Google Scholar] [CrossRef]
- Ehret, U. Rainfall and Flood Nowcasting in Small Catchments Using Weather Radar. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2002. [Google Scholar]
- Chiang, Y.-M.; Hsu, K.-L.; Chang, F.-J.; Hong, Y.; Sorooshian, S. Merging multiple precipitation sources for flash flood forecasting. J. Hydrol. 2007, 340, 183–196. [Google Scholar] [CrossRef] [Green Version]
- McKee, J.L.; Binns, A. A review of gauge-radar merging methods for quantitative precipitation estimation in hydrology. Ca Nadian Water Resour. J. 2015, 41, 186–203. [Google Scholar] [CrossRef]
- Gurung, P. Integration of gauge and radar rainfall to enable best simulation of hydrological parameters. Hydrol. Sci. J. 2016, 62, 114–123. [Google Scholar] [CrossRef]
- Salvatore, G.; Chiaravalloti, F.; Procopio, A. Radar-rain-gauge rainfall estimation for hydrological applications in small catchments. Adv. Geosci. 2017, 44, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Hong, Z.; Pan, Y.; Yu, J.; Maguire, L. China’s 1 km merged gauge, radar and satellite experimental precipitation dataset. Remote Sens. 2018, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Jurczyk, A.; Szturc, J.; Otop, I.; Ośródka, K.; Struzik, P. Quality-based combination of multi-source precipitation data. Remote Sens. 2020, 12, 1709. [Google Scholar] [CrossRef]
- Qiu, Q.; Liu, J.; Tian, J.; Jiao, Y.; Li, C.; Wang, W.; Yu, F. Evaluation of the radar QPE and rain gauge data merging methods in Northern China. Remote Sens. 2020, 12, 363. [Google Scholar] [CrossRef] [Green Version]
- Wijayarathne, D.; Coulibaly, P.; Boodoo, S.; Sills, D. Evaluation of radar-gauge merging techniques to be used in operational Flood forecasting in urban watersheds. Water 2020, 12, 1494. [Google Scholar] [CrossRef]
- Cheval, S.; Croitoru, A.E.; Dragne, D.; Dragotă, C.; Gaceu, O.; Patriche, C.V.; Popa, I.; Teodoreanu, E.; Voiculescu, M. Indici si Metode Cantitative Utilizate in Climatologie; Editura Universitatii: Oradea, Romania, 2003. (In Romanian) [Google Scholar]
- Li, J.; Heap, A.D. A Review of Spatial Interpolation Methods for Environmental Scientists; Geoscience: Canberra, Australia, 2008. [Google Scholar]
- Pegram, G.G.S. Spatial Interpolation and Mapping of Rainfall (SIMAR), Volume 3: Data Merging for Rainfall Map Production; Final Report to the Water Research Commission; University of Natal: Durban, South Africa, 2003. [Google Scholar]
- Stisen, S.; Tumbo, M. Interpolation of daily raingauge data for hydrological modelling in data sparse regions using pattern information from satellite data. Hydrol. Sci. 2015, 60, 1911–1926. [Google Scholar] [CrossRef]
- Krajewski, W.F. Cokriging of radar-rainfall and rain gage data. Geophys. Res. 1987, 92, 9571–9580. [Google Scholar] [CrossRef]
- Seck, L.; van Baelen, J. Geostatistical merging of a single-polarized x-band weather radar and a sparse rain gauge network over an urban catchment. Atmosphere 2018, 9, 496. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.S.; Hong, J.B.; Kim, H.S.; Yoon, S.Y. Combining radar and rain gauge rainfall estimates for flood forecasting using conditional merging method. Korean Soc. Civ. Eng. 2007, 27, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Admojo, D.D.; Tebakari, T.; Miyamoto, M. Combining radar and rain gauge rainfall estimates for flood forecasting: A case study in the Jinzu river basin, Japan. Jpn. Soc. Civ. Eng. Ser. G (Environ. Res.) 2017, 73, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Zoccatelli, D.; Borga, M.; Zanon, F.; Antonescu, B.; Stancalie, G. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. J. Hydrol. 2010, 394, 148–161. [Google Scholar] [CrossRef]
- Haidu, I.; Strapazan, C. Flash flood prediction in small to medium-sized watersheds. Case study: Bistra river (Apuseni Mountains, Romania). Carpathian J. Earth Environ. Sci. 2019, 14, 439–448. [Google Scholar] [CrossRef]
- Strapazan, C.; Haidu, I.; Kocsis, I. Assessing land use/land cover change and its impact on surface runoff in the southern part of the Țibleș and Rodnei Mountains. In Proceedings of the Air and Water Components of the Environment Conference, Cluj-Napoca, Romania, 23 March 2019. [Google Scholar] [CrossRef]
- Braxton, E. GIS-based radar rainfall verification. In SOARS—Significant Opportunities in Atmospheric Research and Science; University of Oklahoma: Norman, OK, USA, 2006. [Google Scholar]
- Cazacioc, L. Spatial and temporal variability of extreme daily precipitation amounts in Romania. Rom. J. Meteorol. 2007, 9, 34–46. [Google Scholar]
- Nițioaia, A.; Maier, N.; Kocsis, I. Analysis of estimated doppler radar rainfalls. Case studies for Nort-Western Romania using two Wsr-98d doppler radars. In Proceedings of the Air and Water Components of the Environment Conference, Cluj-Napoca, Romania, 20 March 2021. [Google Scholar] [CrossRef]
- Burcea, S.; Cheval, S.; Dumitrescu, A.; Antonescu, B.; Bell, A.; Breza, T. Comparison between radar estimated and rain gauge measured precipitation in the Moldovan Plateau. Environ. Eng. Manag. J. 2012, 11, 723–731. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resource Evaluation; Technometrics 42; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Patriche, C. Statistical Methods Applied in Climatology; Terra Nostra: Iași, Romania, 2009. [Google Scholar]
- Patriche, C. About the influence of space scale on the spatialisation of meteo-climatic variables. Geogr. Tech. 2007, 1, 68–76. [Google Scholar]
- Patriche, C.; Sfîcă, L.; Roșca, B. About the problem of digital precipitations mapping using (geo)statistical methods in GIS. Geogr. Tech. 2008, 1, 82–91. [Google Scholar]
- Poalelungi, G. Studii Asupra Unor Metode de Determinare a Câmpurilor de Precipitații. Ph.D. Thesis, University of “Al.I.Cuza”, Iași, Romania, 2011. [Google Scholar]
No. | Data Events | Precipitation Warnings at Mocod Start/End Time | Duration hh: mm | Amount l/mp | Rain Gauges 24 h Precipitation Amounts | Rain Type * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mocod | Salva | Telciu | Romuli | Rebrisoara | Parva | Agries | ||||||
1 | 6 June 2018 | 14:15–15:30 | 01:15 | 27.7 | 27.7 | 3.5 | 3.9 | 0 | 0.0 | 0 | 0 | C.c. |
2 | 3 June 2018 | 15.5 | 24.0 | 9.6 | 5.2 | 10.2 | 14.4 | 10.5 | F.s. | |||
3 | 13 June 2018 | 14.0 | 26.3 | 10.3 | 5.8 | 23.7 | 9.1 | 39.7 | F.s. | |||
4 | 23 June 2018 | 10.0 | 12.9 | 14.4 | 32.6 | 10.5 | 17.9 | 21.3 | F.s. | |||
5 | 17 August 2018 | 14.7 | 21.2 | 8.7 | 20.4 | 12.3 | 23.5 | 5.2 | F.s. | |||
6 | 16 May 2018 | 16.0 | 12.0 | 13.8 | 21.8 | 14.4 | 13.1 | 9.9 | F.s. | |||
7 | 17 May 2018 | 12.1 | 24.5 | 21.0 | 22.6 | 18.5 | 17.8 | 13.1 | F.s. | |||
8 | 14 May 2017 | 51.0 | 25.2 | 19.1 | 4.9 | 31.3 | 11.8 | 17.7 | F.s. | |||
9 | 25 May 2017 | 16.0 | 6.0 | 7.3 | 10.6 | 8.9 | 11.0 | 10.6 | F.s. | |||
10 | 26 May 2017 | 23.0 | 21.0 | 19.6 | 18.6 | 27.7 | 25.2 | 8.1 | F.s. | |||
11 | 3 September 2017 | 16:45–18:45 | 02:00 | 22.5 | 25.0 | 17.9 | 20.6 | 30.7 | 23.5 | 27.8 | 30.9 | C.c. |
12 | 21 June 2017 | 15:00–16:45 | 01:45 | 29.0 | 29.0 | 15.5 | 15.3 | 2.8 | 22.5 | 7.5 | 12.3 | C.c. |
13 | 15 June 2016 | 15:40–18:40 | 03:00 | 38.0 | 39.6 | 14.0 | 30.7 | 4.5 | 9.8 | 14.6 | 7.7 | C.c. |
14 | 26 July 2016 | 17:00–19:00 | 02:00 | 38.5 | 41.0 | 9.0 | 0.9 | 11.0 | 68.2 | 4.2 | 0.7 | C.c. |
15 | 5 September 2015 | 08:00–18:00 | 10:00 | 32.0 | 50.0 | 34.0 | 28.3 | 28.2 | 45.3 | 37.8 | 21.6 | C.c. |
Characteristics | Rain Gauges | |||||||
---|---|---|---|---|---|---|---|---|
Agrieș | Mocod | Salva | Telciu | Romuli | Săcel | Parva | Rebrișoara | |
Elevation (m) | 498 | 296 | 318 | 392 | 611 | 517 | 520 | 339 |
Distance from Bobohalma (km) | 119.5 | 100.7 | 107.5 | 120.1 | 134.2 | 143.6 | 118 | 105 |
Rainfall Event Date | Rainfall type | Method * | Nugget | Partial Sill ** | RMSE | Standardized RMSE |
---|---|---|---|---|---|---|
16 May 2018 | F.s. | Cokriging | 0 | 2.522 | 6.820 | 2.713 |
16 May 2018 | Ordinary kriging | 0 | 24.655 | 5.885 | 1.393 | |
25 May 2017 | F.s. | Cokriging | 0 | 6.023 | 3.905 | 1.835 |
25 May 2017 | Ordinary kriging | 0 | 14.044 | 3.633 | 1.213 | |
3 September 2017 | C.c. | Ordinary kriging | 0 | 1.611 | 4.387 | 0.919 |
3 September 2017 | Ordinary kriging | 1.695 | 35.384 | 4.119 | 0.859 | |
3 September 2017 | Cokriging | 0 | 205.993 | 3.360 | 1.045 | |
5 September 2015 | C.c. | Simple kriging | 0 | 2.672 | 9.021 | 0.984 |
5 September 2015 | Ordinary kriging | 0 | 471.775 | 9.146 | 0.988 | |
14 May 2017 | F.s. | Simple kriging | 0 | 3.152 | 9.763 | 0.659 |
14 May 2017 | Ordinary kriging | 0 | 586.905 | 10.965 | 0.893 | |
21 June 2017 | C.c. | Simple kriging | 0 | 2.662 | 6.823 | 0.971 |
21 June 2017 | Ordinary kriging | 0 | 318.457 | 6.885 | 0.980 | |
21 June 2017 | Cokriging | 0 | −611.112 | 6.366 | 0.802 | |
15 June 2016 | C.c. | Simple kriging | 0 | 2.511 | 14.094 | 1.114 |
15 June 2016 | Ordinary kriging | 0 | 187.830 | 13.359 | 0.987 | |
26 July 2016 | C.c. | Cokriging | 0 | −422.270 | 25.419 | 1.419 |
26 July 2016 | Simple kriging | 0.500 | 2.363 | 22.613 | 0.707 | |
3 June 2018 | F.s. | Cokriging | 0 | −316.768 | 10.405 | 2.627 |
3 June 2018 | Ordinary kriging | 18.700 | 74.480 | 5.853 | 0.883 | |
13 June 2018 | F.s. | Cokriging | 0 | −325.896 | 15.209 | 1.666 |
13 June 2018 | Ordinary kriging | 0 | 230.470 | 12.241 | 0.996 | |
6 June 2018 | C.c. | Cokriging | 0 | −174.370 | 11.508 | 1.864 |
6 June 2018 | Simple kriging | 1.142 | 0.000 | 8.802 | 0.775 | |
26 May 2017 | F.s. | Cokriging | 0 | −82.306 | 4.018 | 0.762 |
26 May 2017 | Ordinary kriging | 0.070 | 72.116 | 4.889 | 1.727 | |
17 May 2018 | F.s. | Cokriging | 0 | −35.704 | 7.770 | 2.102 |
17 May 2018 | Ordinary kriging | 0 | 46.481 | 6.960 | 1.213 | |
23 June 2018 | F.s. | Cokriging | 0 | 225.209 | 6.588 | 1.319 |
23 June 2018 | Ordinary kriging | 0 | 118.850 | 8.911 | 2.186 | |
17 August 2018 | F.s. | Cokriging | 0 | −48.498 | 11.497 | 2.602 |
17 August 2018 | Ordinary kriging | 0 | 74.057 | 9.506 | 1.306 |
Rain Gauge | 22 June 2017 | Hail Observations from Radar | ||||
---|---|---|---|---|---|---|
Measured | Estimated | Final | Time | Size (cm) | POSH/POH * (%) | |
Agries | 12.3 | 57.2 | 12.7 | - | - | - |
Mocod | 29.0 | 47.6 | 30.1 | 15.51 | 3.81 | 80/100 |
Parva | 7.5 | 15.9 | 7.5 | 13.41 13.47 | 3.18 3.81 | 70/100 80/100 |
Rebrisoara | 22.5 | 69.9 | 26.0 | 14.36 15.26 | 3.81 2.54 | 80/100 60/100 |
Romuli | 2.8 | 4.5 | 2.8 | - | - | - |
Sacel | 0.4 | 1.3 | 0.4 | - | - | - |
Salva | 15.5 | 57.2 | 16.3 | 15.13 16.21 16.28 | 4.45 2.54 3.81 | 90/100 70/100 90/100 |
Telciu | 15.3 | 34.9 | 17.4 | 12.56 13.02 13.09 | 2.54 3.18 3.81 | 70/100 70/100 90/100 |
Rainfall Event | MBE | MAE | RMSE |
---|---|---|---|
3 June 2018 | −0.022 | 0.028 | 0.051 |
13 June 2018 | −0.102 | 0.102 | 0.224 |
23 June 2018 | −0.161 | 0.171 | 0.369 |
17 August 2018 | −0.125 | 0.125 | 0.180 |
16 May 2018 | −0.252 | 0.252 | 0.456 |
17 May 2018 | −0.037 | 0.047 | 0.112 |
25 May 2017 | −0.032 | 0.032 | 0.072 |
26 May 2017 | −0.025 | 0.028 | 0.050 |
7 June 2018 | −0.568 | 0.568 | 1.057 |
4 September 2017 | −0.360 | 0.371 | 0.614 |
22 June 2017 | −0.986 | 0.986 | 1.514 |
16 June 2016 | −2.225 | 2.225 | 4.188 |
27 July 2016 | −0.029 | 0.088 | 0.124 |
6 September 2015 | −0.539 | 0.545 | 1.485 |
14 May 2017 | −0.076 | 0.083 | 0.113 |
Total rainfall events | −0.369 | 0.377 | 0.707 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocsis, I.; Irimuș, I.-A.; Patriche, C.; Bilașco, Ș.; Maier, N.; Roșca, S.; Petrea, D.; Bartók, B. A GIS-Based Methodology to Combine Rain Gauge and Radar Rainfall Estimates of Precipitation Using the Conditional Merging Technique for High-Resolution Quantitative Precipitation Forecasts in Țibleș and Rodnei Mountains. Atmosphere 2022, 13, 1106. https://doi.org/10.3390/atmos13071106
Kocsis I, Irimuș I-A, Patriche C, Bilașco Ș, Maier N, Roșca S, Petrea D, Bartók B. A GIS-Based Methodology to Combine Rain Gauge and Radar Rainfall Estimates of Precipitation Using the Conditional Merging Technique for High-Resolution Quantitative Precipitation Forecasts in Țibleș and Rodnei Mountains. Atmosphere. 2022; 13(7):1106. https://doi.org/10.3390/atmos13071106
Chicago/Turabian StyleKocsis, István, Ioan-Aurel Irimuș, Cristian Patriche, Ștefan Bilașco, Narcis Maier, Sanda Roșca, Dănuț Petrea, and Blanka Bartók. 2022. "A GIS-Based Methodology to Combine Rain Gauge and Radar Rainfall Estimates of Precipitation Using the Conditional Merging Technique for High-Resolution Quantitative Precipitation Forecasts in Țibleș and Rodnei Mountains" Atmosphere 13, no. 7: 1106. https://doi.org/10.3390/atmos13071106
APA StyleKocsis, I., Irimuș, I.-A., Patriche, C., Bilașco, Ș., Maier, N., Roșca, S., Petrea, D., & Bartók, B. (2022). A GIS-Based Methodology to Combine Rain Gauge and Radar Rainfall Estimates of Precipitation Using the Conditional Merging Technique for High-Resolution Quantitative Precipitation Forecasts in Țibleș and Rodnei Mountains. Atmosphere, 13(7), 1106. https://doi.org/10.3390/atmos13071106