Structure of Atmospheric Turbulence
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abramov, R.V. Turbulence in Large-Scale Two-Dimensional Balanced Hard Sphere Gas Flow. Atmosphere 2021, 12, 1520. [Google Scholar] [CrossRef]
- Nosov, V.V.; Kovadlo, P.G.; Lukin, V.P.; Torgaev, A.V. Atmospheric coherent turbulence. Atmos. Ocean. Opt. 2013, 26, 201–206. [Google Scholar] [CrossRef]
- Gkioulekas, E.; Tung, K.-K. Recent Developments in Understanding Two-dimensional Turbulence and the Nastrom–Gage Spectrum. J. Low Temp. Phys. 2006, 145, 25–57. [Google Scholar] [CrossRef] [Green Version]
- Tuck, A.F. Turbulence: Vertical Shear of the Horizontal Wind, Jet Streams, Symmetry Breaking, Scale Invariance and Gibbs Free Energy. Atmosphere 2021, 12, 1414. [Google Scholar] [CrossRef]
- Wang, F.; Du, W.; Yuan, Q.; Liu, D.; Feng, S. A Survey of Structure of Atmospheric Turbulence in Atmosphere and Related Turbulent Effects. Atmosphere 2021, 12, 1608. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Kopylov, E.A.; Ibrahimov, M.A.; Ehgamberdiev, S.A.; Tillayev, Y.A. Energy Spectra of Atmospheric Turbulence for Calculating C2n Parameter. I. Maidanak and Suffa Observatories in Uzbekistan. Atmosphere 2021, 12, 1614. [Google Scholar] [CrossRef]
- Masciadri, E.; Vernin, J.; Bougeault, P. 3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy. Astron. Astrophys. Suppl. Ser. 1999, 137, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Hagelin, S.; Masciadri, E.; Lascaux, F. Optical turbulence simulations at Mt Graham using the Meso-NH model. Mon. Not. R. Astron. Soc. 2011, 412, 2695–2706. [Google Scholar] [CrossRef] [Green Version]
- Abahamid, A.; Vernin, J.; Benkhaldoun, Z.; Jabiri, A.; Azouit, M.; Agabi, A. Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons. Astron. Astrophys. 2004, 422, 1123–1127. [Google Scholar] [CrossRef] [Green Version]
- Sánchez García, R.; Richer, M.G.; Gómez Martínez, R.; Avila, R. Estimating local seeing at Observatorio Astronómico Nacional in San Pedro Mártir using CFD simulations of the atmospheric boundary layer. Mon. Not. R. Astron. Soc. 2020, 496, 5552–5563. [Google Scholar] [CrossRef]
- Wang, F.; Du, W.; Yuan, Q.; Liu, D.; Feng, S. Wander of a Gaussian-Beam Wave Propagating through Kolmogorov and Non-Kolmogorov Turbulence along Laser-Satellite Communication Uplink. Atmosphere 2022, 13, 162. [Google Scholar] [CrossRef]
- Wilson, R. SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor. Mon. Not. R. Astron. Soc. 2002, 337, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Butterley, T.; Wilson, R.; Sarazin, M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data. Mon. Not. R. Astron. Soc. 2006, 369, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Osborn, J.; Wilson, R.; Butterley, T.; Shephard, H.; Sarazin, M. Profiling the surface layer of optical turbulence with SLODAR. Mon. Not. R. Astron. Soc. 2010, 406, 1405–1408. [Google Scholar] [CrossRef]
- Shepherd, H.W.; Osborn, J.; Wilson, R.W.; Butterley, T.; Avila, R.; Dhillon, V.S.; Morris, T.J. Stereo-SCIDAR: Optical turbulence profiling with high sensitivity using a modified SCIDAR instrument. Mon. Not. R. Astron. Soc. 2014, 437, 3568–3577. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Kong, L.; Bao, H.; Guo, Y.; Rao, X.; Zhong, L.; Zhu, L.; Rao, C. A modified S-DIMM+: Applying additional height grids for characterizing daytime seeing profiles. Mon. Not. R. Astron. Soc. 2018, 478, 1459–1467. [Google Scholar] [CrossRef]
- Shen, H.; Yu, L.; Jing, X.; Tan, F. Method for Measuring the Second-Order Moment of Atmospheric Turbulence. Mon. Not. R. Astron. Soc. 2021, 12, 564. [Google Scholar] [CrossRef]
- Lukin, V.P.; Antoshkin, L.V.; Bol’basova, L.A.; Botygina, N.N.; Emaleev, O.N.; Kanev, F.Y.; Konyaev, P.A.; Kopylov, E.A.; Lavrinov, V.V.; Lavrinova, L.N.; et al. The History of the Development and Genesis of Works on Adaptive Optics in the Institute of Atmospheric Optics. Atmos. Ocean. Opt. 2020, 33, 85–103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikhovtsev, A.Y.; Kopylov, E.A. Structure of Atmospheric Turbulence. Atmosphere 2022, 13, 1107. https://doi.org/10.3390/atmos13071107
Shikhovtsev AY, Kopylov EA. Structure of Atmospheric Turbulence. Atmosphere. 2022; 13(7):1107. https://doi.org/10.3390/atmos13071107
Chicago/Turabian StyleShikhovtsev, Artem Yurievich, and Evgeniy Anatolevich Kopylov. 2022. "Structure of Atmospheric Turbulence" Atmosphere 13, no. 7: 1107. https://doi.org/10.3390/atmos13071107
APA StyleShikhovtsev, A. Y., & Kopylov, E. A. (2022). Structure of Atmospheric Turbulence. Atmosphere, 13(7), 1107. https://doi.org/10.3390/atmos13071107