The Impact of Scale-Aware Parameterization on the Next-Generation Global Prediction System in Taiwan for Front Predictions
Abstract
:1. Introduction
2. Model Descriptions and Experimental Design
3. Scale-Aware Parameterization in NSAS Scheme
4. Results
4.1. Mei-Yu Precipitation
4.2. Large-Scale Verifications
4.3. Further Modification of NSAS Scheme
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIAS | Bias Score |
CFL | Courant–Friedrichs–Lewy |
DISC | Data and Information Services Center |
DTR | Convective Cloud Water Detrainment |
ECMWF | European Centre for Medium-Range Weather Forecasts |
FAR | False Alarm Ratio |
FV3 | Finite-Volume Cubed-Sphere Dynamical Core |
GES | Goddard Earth Sciences |
GFDL | Geophysical Fluid Dynamics Laboratory |
GFS | Global Forecast System |
GPM | Global Precipitation Measurement |
GSM | Global Spectral Model |
IMERG | Integrated Multi-Satellite Retrievals for Global Precipitation Measurement |
KH | Kwon and Hong 2017 |
KIM | Korean Integrated Model |
MCS | Mesoscale Convective System |
NOAA | National Oceanic and Atmospheric Administration |
NGGPS | Next Generation Global Prediction System |
NCEP | National Centers for Environmental Prediction |
NSAS | New Simplified Arakawa-Schubert |
POD | Probability of Detection |
SAS | Simplified Arakawa–Schubert |
TRG | Convective Trigger Function |
TS | Threat Score |
References
- Randall, D.A.; Abeles, J.A.; Corsetti, T.G. Seasonal simulations of the planetary boundary layer and boundary-layer stratocumulus clouds with a general circulation model. J. Atmos. Sci. 1985, 42, 641–675. [Google Scholar] [CrossRef] [Green Version]
- Steinheimer, M.; Hantel, M.; Bechtold, P. Convection in Lorenz’s global energy cycle with the ECMWF model. Tellus 2008, 60, 1001–1022. [Google Scholar] [CrossRef]
- Stensrud, D.J. Effects of a persistent, midlatitude mesoscale region of convection on the large-scale environment during the warm season. J. Atmos. Sci. 1996, 53, 3503–3527. [Google Scholar] [CrossRef] [Green Version]
- Stensrud, D.J.; Anderson, J.L. Is midlatitude convection an active or a passive player in producing global circulation patterns? J. Clim. 2001, 14, 2222–2237. [Google Scholar] [CrossRef]
- Tiedtke, M. Parameterization of cumulus convection in large-scale models. In Physically-Based Modelling and Simulation of Climate and Climatic Change; Schlesinger, M.E., Ed.; D. Reidel: Gothenburg, Sweden, 1988; pp. 375–431. [Google Scholar]
- LeMone, M.A. Momentum Transport by a Line of Cumulonimbus. J. Atmos. Sci. 1983, 40, 1815–1834. [Google Scholar] [CrossRef] [Green Version]
- Moncrieff, M.W.; Liu, C. Representing Convective Organization in Prediction Models by a Hybrid Strategy. J. Atmos. Sci. 2006, 63, 3404–3420. [Google Scholar] [CrossRef] [Green Version]
- Badlan, R.L.; Lane, T.P.; Moncrieff, M.W.; Jakob, C. Insights into convective momentum transport and its parametrization from idealized simulations of organized convection. Quart. J. Roy. Meteor. Soc. 2017, 143, 2687–2702. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-C.; Fan, J.; Xu, K.-M.; Zhang, G.J. Analysis of Cloud-Resolving Model Simulations for Scale Dependence of Convective Momentum Transport. J. Atmos. Sci. 2018, 75, 2445–2472. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Wang, W.; Kwon, Y.C.; Hong, S.-Y.; Tallapragada, V.; Yang, F. Updates in the NCEP GFS Cumulus Convection Schemes with Scale and Aerosol Awareness. Weather Forecast. 2017, 32, 2005–2017. [Google Scholar] [CrossRef]
- Han, J.; Pan, H.-L. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast. 2011, 26, 520–533. [Google Scholar] [CrossRef]
- Bechtold, P.; Semane, N.; Lopez, P.; Chaboureau, J.-P.; Beljaars, A.; Bormann, N. Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci. 2014, 71, 734–753. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.C.; Hong, S.-Y. A Mass-Flux Cumulus Parameterization Scheme across Gray-Zone Resolutions. Mon. Weather Rev. 2017, 145, 583–598. [Google Scholar] [CrossRef]
- Sela, J.G. Spectral modeling at the National Meteorological Center. Mon. Weather Rev. 1980, 108, 1279–1292. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Carr, F.H. A prognostic cloud scheme for operational NWP models. Mon. Weather Rev. 1997, 125, 1931–1953. [Google Scholar] [CrossRef]
- Chen, J.H.; Lin, S.J. The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett. 2011, 38, L11804. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Lin, S.J. Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Clim. 2013, 26, 380–398. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, S.-J.; Chen, J.-H.; Harris, L.M.; Chen, X.; Rees, S. Toward convective-scale prediction within the Next Generation Global Prediction System. Bull. Amer. Meteor. Soc. 2019, 100, 1225–1243. [Google Scholar] [CrossRef]
- Arakawa, A.; Schubert, W.H. Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. J. Atmos. Sci. 1974, 31, 674–701. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef] [Green Version]
- Jakob, C.; Siebesma, A.P. A new subcloud model for mass-flux convection scheme: Influence on triggering, updraft properties, and model climate. Mon. Weather Rev. 2003, 131, 2765–2778. [Google Scholar] [CrossRef]
- Bechtold, P.; Kohler, M.; Jung, T.; Doblas-Reyes, F.; Leutbecher, M.; Rodwell, M.; Vitart, F.; Balsamo, G. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. R. Meteor. Soc. 2008, 134, 1337–1351. [Google Scholar] [CrossRef]
- Han, J.-Y.; Hong, S.-Y.; Kwon, Y.C. The performance of a revised simplified Arakawa-Schubert (SAS) convection scheme in the medium-range forecasts of the Korean Integrated Model (KIM). Weather Forecast. 2020, 35, 1113–1128. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, A.; Wu, C.-M. A Unified representation of deep moist convection in numerical modeling of the Atmosphere. Part I. J. Atmos. Sci. 2013, 70, 1977–1992. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Chun, H.-Y.; Baik, J.-J. Weakly nonlinear response of a stably stratified atmosphere to diabatic forcing in a uniform flow. J. Atmos. Sci. 1994, 51, 3109–3121. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Arakawa, A. Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci. 1995, 52, 1875–1902. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Doyle, J.D. Extension of an orographic-drag parameterization scheme to incorporate orographic anisotropy and flow blocking. Quart. J. R. Meteor. Soc. 2005, 131, 1893–1921. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Witek, M.L.; Teixeira, J.; Sun, R.; Pan, H.L.; Fletcher, J.K.; Bretherton, C.S. Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Weather Forecast. 2016, 31, 341–352. [Google Scholar] [CrossRef]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Pan, H.-L.; Liu, Q.; Han, J.; Sun, R. Extending the Simplified Arakawa-Schubert Scheme for Meso-Scale Model Applications. NCEP Off. Note 2014, 10, 479. Available online: http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on479.pdf (accessed on 1 December 2021).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://rda.ucar.edu/datasets/ds633.0 (accessed on 1 December 2021).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Adler, R.F. TRMM (TMPA) Precipitation L3 1 Day 0.25 Degree × 0.25 Degree V7; Andrey Savtchenko, A., Ed.; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2016. [Google Scholar]
EXP. | Description |
---|---|
CTRL | The operational version of the NSAS scheme in CWB FV3GFS. |
EXP | The algorithm of scale-aware parameterization in the NSAS scheme is based on KH instead. |
EXPM | As in the EXP experiment but the scale dependency of the amount of convective cloud water detrained into grid-scale condensate is ignored. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-H.; Yang, M.-J.; Hsiao, L.-F.; Chen, J.-H. The Impact of Scale-Aware Parameterization on the Next-Generation Global Prediction System in Taiwan for Front Predictions. Atmosphere 2022, 13, 1063. https://doi.org/10.3390/atmos13071063
Lin C-H, Yang M-J, Hsiao L-F, Chen J-H. The Impact of Scale-Aware Parameterization on the Next-Generation Global Prediction System in Taiwan for Front Predictions. Atmosphere. 2022; 13(7):1063. https://doi.org/10.3390/atmos13071063
Chicago/Turabian StyleLin, Chang-Hung, Ming-Jen Yang, Ling-Feng Hsiao, and Jen-Her Chen. 2022. "The Impact of Scale-Aware Parameterization on the Next-Generation Global Prediction System in Taiwan for Front Predictions" Atmosphere 13, no. 7: 1063. https://doi.org/10.3390/atmos13071063
APA StyleLin, C. -H., Yang, M. -J., Hsiao, L. -F., & Chen, J. -H. (2022). The Impact of Scale-Aware Parameterization on the Next-Generation Global Prediction System in Taiwan for Front Predictions. Atmosphere, 13(7), 1063. https://doi.org/10.3390/atmos13071063