Spatiotemporal Variations of Chinese Terrestrial Ecosystems in Response to Land Use and Future Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. The Baseline Scenario Data
2.2.2. The Future Scenario Data
2.2.3. The Land Use Data
2.2.4. The SRTM-DEM Data
2.2.5. A Vegetation Map at a Scale of 1:1,000,000
2.3. Methods
2.3.1. The CSCS Model
2.3.2. The HLZ Model
2.3.3. Vegetation Classification Schemes
2.3.4. Combination of Land Use/Cover (CLU) to PNV
2.3.5. Kappa Statistic
2.3.6. PNV under Current Baseline Scenario
2.3.7. Typical Areas of PNV under Current Baseline Scenario
3. Results
3.1. Performance of the CSCS Model
3.2. Spatial Distribution of PNV in the Baseline Scenario
3.3. Spatial Distribution of PNV in Typical Areas in the Baseline Scenario
3.4. Changes of PNV Super-Classes under Future Climate Scenarios
3.5. Succession among PNV Super-Classes over Time
4. Discussion
4.1. Discussion of the Methodology
4.2. GHG Adaptation Measures
4.3. Uncertainties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Classification System | Class Name and Code | |||
---|---|---|---|---|
CSCS | IA | Frigid-extrarid frigid desert, alpine desert | ID | Frigid subhumid moist tundra, alpine meadow steppe |
IIA | Cold temperate-extrarid montane desert | IID | Cold temperate subhumid montane meadow steppe | |
IIIA | Cool temperate-extra arid temperate zonal desert | IIID | Cool temperate-subhumid meadow steppe | |
IVA | Warm temperate-extra arid warm temperate zonal desert | IVD | Warm temperate sub humid forest steppe | |
VA | Warm-extra arid subtropical desert | VD | Warm-subhumid deciduous broad leaved forest | |
VIA | Subtropical-extra arid subtropical desert | VID | Subtropical-subhumid sclerophyllous forest | |
VIIA | Tropical-extrarid tropical desert | VIID | Tropical-subhumid tropical xerophytic forest | |
IB | Frigid-arid frigid zonal semidesert, alpine semidesert | IE | Frigid-humid tundra, alpine meadow | |
IIB | Cold temperate-arid montane semidesert | IIE | Cold temperate-humid montane meadow | |
IIIB | Cool temperate-arid temperate zonal semidesert | IIIE | Cool temperate-humid forest steppe, deciduous broad leaved forest | |
IVB | Warm temperate-arid warm temperate zonal semidesert | IVE | Warm temperate-humid deciduous broad leaved forest | |
VB | Warm-arid warm subtropical semidesert | VE | Warm-humid evergreen- broad leaved forest | |
IB | Frigid-arid frigid zonal semidesert, alpine semidesert | VIE | Subtropical-humid evergreen broad leaved forest | |
IIB | Cold temperate-arid montane semidesert | VIIE | Tropical-humid seasonal rain forest | |
IC | Frigid-semiarid dry tundra, alpine steppe | IF | Frigid-perhumid rain tundra, alpine meadow | |
IIC | Cold temperate semiarid montane steppe | IIF | Cold temperate perhumid taiga forest | |
IIIC | Cool temperate-semi arid temperate typical steppe | IIIF | Cold temperate perhumid mixed coniferous broad leaved forest | |
IVC | Warm temperate-semiarid warm temperate typical steppe | IVF | Warm temperate perhumid deciduous broad-leaved forest | |
VC | Warm-semiarid subtropical grasses-fruticous steppe | VF | Warm-humid deciduous-evergreen broad-leaved forest | |
VIC | Subtropical-semiarid subtropical brush steppe | VIF | Subtropical perhumid evergreen broad-leaved forest | |
VIIC | Tropical-semiarid savanna | VIIF | Tropical-humid rain forest | |
HLZ | 1 | Polar desert | 20 | Warm temperate dry forest |
2 | Subpolar dry tundra | 21 | Warm temperate moist forest | |
3 | Subpolar moist tundra | 22 | Warm temperate wet forest | |
4 | Subpolar wet tundra | 23 | Warm temperate rain forest | |
5 | Subpolar rain tundra | 24 | Subtropical desert | |
6 | Boreal desert | 25 | Subtropical desert scrub | |
7 | Boreal dry scrub | 26 | Subtropical thorn woodland | |
8 | Boreal moist fores | 27 | Subtropical dry forest | |
9 | Boreal wet forest | 28 | Subtropical moist forest | |
10 | Boreal rain forest | 29 | Subtropical wet forest | |
11 | Cool temperate desert | 30 | Subtropical rain forest | |
12 | Cool temperate desert scrub | 31 | Tropical desert | |
13 | Cool temperate steppe | 32 | Tropical desert scrub | |
14 | Cool temperate moist forest | 33 | Tropical thorn woodland | |
15 | Cool temperate wet forest | 34 | Tropical very dry forest | |
16 | Cool temperate rain forest | 35 | Tropical dry forest | |
17 | Warm temperate desert | 36 | Tropical moist forest | |
17 | Warm temperate desert scrub | 37 | Tropical wet forest | |
19 | Warm temperate thorn scrub | 38 | Tropical rain forest | |
1:1,000,000 vegetation distribution map | 1 | Cold temperate and temperate mountain coniferous forest | 23 | Subalpine hard-leaved evergreen broad-leaved thickets |
2 | Temperate coniferous forest | 24 | Evergreen coniferous thickets in subalpine mountains | |
3 | Subtropical coniferous forest | 25 | Temperate dwarf semiarbour desert | |
4 | Tropical coniferous forests | 26 | temperate shrub deserts | |
5 | Subtropical and tropical montane coniferous forests | 27 | Temperate steppe shrub desert | |
6 | Temperate coniferous and deciduous broad-leaved mixed forest | 28 | Temperate semi-shrub, dwarf semi-shrub desert | |
7 | Mixed forest of coniferous, evergreen broad-leaved and deciduous broad-leaved in subtropical mountain areas | 29 | Temperate succulent halophyte dwarf shrub desert | |
8 | Temperate deciduous broad-leaved forest (8), temperate deciduous leaflet forests | 30 | Temperate desert of annual herbs | |
9 | Temperate deciduous leaflet forests | 31 | Alpine cushion-like dwarf semi-shrub desert | |
10 | Subtropical deciduous broad-leaved forest | 32 | Temperate grass and miscellaneous grass meadow grassland | |
11 | Subtropical evergreen and deciduous broad-leaved mixed forest | 33 | Typical grassland of temperate tufted grasses | |
12 | Subtropical evergreen broad-leaved forest | 34 | Temperate fascicled dwarf grass and dwarf semi-shrub desert grassland | |
13 | Subtropical monsoon evergreen broad-leaved forest | 35 | Alpine grasses and moss grasslands | |
14 | Subtropical hardleaf evergreen broad-leaved forest and copse | 36 | Temperate grass | |
15 | Monsoon rain forest | 37 | Subtropical and tropical grass | |
16 | Tropical rain forests | 38 | Temperate grasses and miscellaneous grasses meadow | |
17 | Subtropical and tropical bamboo forests and clusters | 39 | Temperate grasses, liverworts and miscellaneous grasses bog meadow | |
18 | Deciduous thickets in temperate zone | 40 | Temperate grasses and miscellaneous grasses salt meadow | |
19 | Subtropical, tropical evergreen broad-leaved, deciduous broad-leaved scrub (often containing rare trees) | 41 | Alpine hyssop and miscellaneous grass meadow | |
20 | Tropical coral limestone fleshy evergreen broad-leaved thickets and copses | 46 | Alpine tundra | |
21 | Subtropical and tropical xerophytic evergreen succulent prickly thickets | 47 | Alpine cushioned vegetation | |
22 | Deciduous broad-leaf thickets in subalpine mountains | 48 | Alpine sparse vegetation |
ID | Class_Code | Class_Name | PNV | Specific PNV | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (104 km2) | Percentage (%) | DEM Value (m) | Area (104 km2) | Percentage (%) | DEM Value (m) | |||||||||
Min | Max | Mean | Std | Min | Max | Mean | Std | |||||||
1 | IA | Frigid-extrarid frigid desert, alpine desert | 0.23 | 0.02 | 3618 | 4797 | 4336.38 | 288.83 | 0.03 | <0.01 | 4607 | 4797 | 4669.84 | 32.44 |
2 | IB | Frigid-arid frigid zonal semidesert, alpine semidesert | 4.27 | 0.45 | 3279 | 5259 | 4583.30 | 333.07 | 0.48 | 0.05 | 4670 | 5376 | 4979.95 | 53.84 |
3 | IC | Frigid-semiarid dry tundra, alpine steppe | 8.10 | 0.86 | 3124 | 5403 | 4701.97 | 470.04 | 0.34 | 0.04 | 4942 | 5476 | 5213.00 | 40.84 |
4 | ID | Frigid-subhumid moist tundra, alpine meadow steppe | 9.31 | 0.99 | 2095 | 5514 | 4764.47 | 475.26 | 0.75 | 0.08 | 4999 | 5630 | 5292.18 | 47.88 |
5 | IE | Frigid-humid tundra, alpine meadow | 19.48 | 2.06 | 1672 | 5705 | 4748.41 | 595.42 | 1.47 | 0.16 | 4934 | 5958 | 5417.45 | 63.62 |
6 | IF | Frigid perhumid rain tundra, alpine meadow | 149.85 | 15.88 | 1422 | 6356 | 4684.98 | 610.82 | 19.00 | 2.00 | 4812 | 6554 | 5522.18 | 180.07 |
7 | IIA | Cold temperate-extrarid montane desert | 4.07 | 0.43 | 2297 | 4536 | 3156.01 | 396.39 | 0.62 | 0.07 | 3082 | 4611 | 3891.48 | 291.26 |
8 | IIB | Cold temperate-arid montane semidesert | 5.53 | 0.59 | 1767 | 4694 | 3448.84 | 510.28 | 0.89 | 0.09 | 3748 | 4737 | 4436.43 | 127.98 |
9 | IIC | Cold temperate-semiarid montane steppe | 3.82 | 0.40 | 1272 | 4822 | 3235.99 | 819.09 | 0.66 | 0.07 | 4057 | 4832 | 4486.18 | 105.73 |
10 | IID | Cold temperate-humid montane meadow | 3.55 | 0.38 | 728 | 4823 | 2887.80 | 1031.05 | 0.58 | 0.06 | 3820 | 4882 | 4576.41 | 165.52 |
11 | IIE | Cool temperate-humid forest steppe, deciduous broad-leaved forest | 12.03 | 1.27 | 313 | 4847 | 2571.67 | 1285.21 | 2.65 | 0.28 | 3558 | 4973 | 4434.08 | 252.78 |
12 | IIF | Cold temperate perhumid taiga forest | 53.97 | 5.72 | 223 | 4930 | 2444.93 | 1540.63 | 10.94 | 1.15 | 3272 | 5123 | 4317.24 | 237.31 |
13 | IIIA | Cool temperate-extrarid temperate zonal desert | 21.23 | 2.25 | 803 | 3448 | 1799.55 | 589.06 | 4.71 | 0.50 | 2029 | 3808 | 2748.94 | 178.07 |
14 | IIIB | Cool temperate-arid temperate zonal semidesert | 21.81 | 2.31 | 414 | 3178 | 1410.25 | 529.23 | 3.34 | 0.35 | 1786 | 3344 | 2343.10 | 332.86 |
15 | IIIC | Cool temperate-semiarid temperate typical steppe | 18.54 | 1.96 | 414 | 3135 | 1278.56 | 423.59 | 2.73 | 0.29 | 1394 | 3160 | 2036.38 | 319.00 |
16 | IIID | Cool temperate-subhumid meadow steppe | 17.92 | 1.90 | 125 | 2762 | 1111.02 | 454.47 | 2.46 | 0.26 | 1396 | 2762 | 1822.29 | 222.14 |
17 | IIIE | Cool temperate-sub humid meadow steppe | 35.14 | 3.72 | 24 | 4063 | 970.00 | 665.15 | 3.89 | 0.41 | 1243 | 4258 | 2187.05 | 623.15 |
18 | IIIF | Cold temperate perhumid taiga forest | 35.17 | 3.73 | 9 | 4032 | 1235.98 | 1102.80 | 8.13 | 0.86 | 1824 | 4107 | 3007.66 | 327.55 |
19 | IVA | Warm temperate-extrarid warm temperate zonal desert | 37.05 | 3.93 | 170 | 2335 | 1055.85 | 331.97 | 4.46 | 0.47 | 1226 | 2457 | 1665.05 | 218.65 |
20 | IVB | Warm temperate-arid warm temperate zonal semidesert | 6.50 | 0.69 | 193 | 2041 | 777.36 | 388.47 | 1.57 | 0.17 | 1129 | 2071 | 1365.98 | 144.91 |
21 | IVC | Warm temperate-semiarid warm temperate typical steppe | 0.40 | 0.04 | 10 | 1679 | 1118.62 | 401.22 | 0.02 | <0.01 | 1512 | 1752 | 1580.68 | 45.51 |
22 | IVD | Warm temperate-subhumid forest steppe | 2.70 | 0.29 | −3 | 1742 | 430.43 | 376.71 | 0.54 | 0.06 | 611 | 1742 | 1006.19 | 159.04 |
23 | IVE | Warm temperate-humid deciduous broad-leaved forest | 19.00 | 2.01 | −111 | 3100 | 1007.21 | 801.14 | 4.02 | 0.42 | 1410 | 3444 | 2322.52 | 235.71 |
24 | IVF | Warm temperate perhumid deciduous broad-leaved forest | 21.11 | 2.24 | −1 | 3188 | 1551.15 | 655.11 | 4.34 | 0.46 | 1513 | 3558 | 2522.13 | 224.16 |
25 | VA | Warm-extrarid subtropical desert | 0.60 | 0.06 | −153 | 411 | 99.12 | 137.32. | 0.11 | 0.01 | 221 | 411 | 295.86 | 38.68 |
26 | VB | Warm-arid warm subtropical semidesert | - | - | - | - | - | - | - | - | - | - | - | - |
27 | VC | Warm-semiarid subtropical grasses-fruticous steppe | - | - | - | - | - | - | - | - | - | - | - | - |
28 | VD | Warm-sub humid deciduous broad-leaved forest | 0.08 | 0.01 | 52 | 1813 | 156.24 | 140.97 | <0.01 | <0.01 | 305 | 2039 | 633.42 | 608.85 |
29 | VE | Warm-humid evergreen-deciduous broad-leaved forest | 12.63 | 1.34 | −3 | 2454 | 975.76 | 812.94 | 3.81 | 0.40 | 1332 | 2655 | 1994.38 | 131.18 |
30 | VF | Warm-perhumid deciduous-evergreen broad-leaved forest | 29.58 | 3.13 | −2 | 2465 | 711.80 | 490.20 | 4.55 | 0.48 | 677 | 2559 | 1656.42 | 269.86 |
31 | VIA | Sub tropical-extrarid subtropical desert | - | - | - | - | - | - | - | - | - | - | - | - |
32 | VIB | Subtropical arid subtropical desert brush | - | - | - | - | - | - | - | - | - | - | - | - |
33 | VIC | Subtropical-semiarid subtropical brush steppe | 0.04 | <0.01 | 919 | 1371 | 1184.18 | 104.50 | <0.01 | <0.01 | 1252 | 1559 | 1322.04 | 42.17 |
34 | VID | Subtropical-subhumid sclerophyllous forest | 0.61 | 0.06 | 658 | 1912 | 1445.06 | 227.77 | 0.11 | 0.01 | 1307 | 2041 | 1744.19 | 64.32 |
35 | VIE | Sub tropical-humid evergreen broad-leaved forest | 12.01 | 1.27 | 0 | 2000 | 840.21 | 529.02 | 2.45 | 0.26 | 1000 | 2144 | 1586.09 | 145.13 |
36 | VIF | Subtropical perhumid evergreen broad-leaved forest | 37.00 | 3.92 | 0 | 2045 | 475.45 | 389.26 | 5.61 | 0.59 | 459 | 2209 | 1245.05 | 254.06 |
37 | VIIA | Tropical extrarid tropical desert | - | - | - | - | - | - | - | - | - | - | - | - |
38 | VIIB | Tropical arid tropical desert brush | - | - | - | - | - | - | - | - | - | - | - | - |
39 | VIIC | Tropical-semiarid savanna | <0.01 | <0.01 | 926 | 1106 | 1035.88 | 46.82 | <0.01 | <0.01 | 1085 | 1106 | 1095.33 | 8.58 |
40 | VIID | Tropical-subhumid tropical xerophytic forest | 0.01 | <0.01 | 1 | 34 | 14.03 | 8.17 | <0.01 | <0.01 | 23 | 34 | 28.36 | 3.75 |
41 | VIIE | Tropical-humid seasonal rain forest | 2.63 | 0.28 | −2 | 994 | 212.62 | 181.28 | 0.42 | 0.04 | 158 | 1005 | 552.91 | 117.86 |
42 | VIIF | Tropical perhumid rain forest | 3.23 | 0.34 | −5 | 918 | 157.55 | 188.08 | 0.42 | 0.04 | 199 | 1008 | 577.44 | 154.71 |
References
- Quillet, A.; Peng, C.; Garneau, M. Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: Recent developments, limitations, and future challenges. Environ. Rev. 2010, 18, 333–353. [Google Scholar] [CrossRef] [Green Version]
- Gang, C.C.; Zhang, Y.Z.; Wang, Z.Q.; Chen, Y.Z.; Yang, Y.; Li, J.L.; Cheng, J.M.; Qi, J.G.; Odeh, I. Modeling the dynamics of distribution, extent, and NPP of global terrestrial ecosystems in response to future climate change. Glob. Planet. Chang. 2017, 148, 153–165. [Google Scholar] [CrossRef]
- Betts, R.A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 2000, 408, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.L.; AB Eltahir, E. Impact of CO2 concentration changes on the biosphere-atmosphere system of West Africa. Glob. Chang. Biol. 2002, 8, 1169–1182. [Google Scholar] [CrossRef]
- Greve, M.; Lykke, A.M.; Blach-Overgaard, A.; Svenning, J.-C. Environmental and anthropogenic determinants of vegetation distribution across Africa. Glob. Ecol. Biogeogr. 2011, 20, 661–674. [Google Scholar] [CrossRef]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, S.; Zhang, J.H.; Liu, Y.; Bai, Y. Estimating evapotranspiration based on the satellite-retrieved near-infrared reflectance of vegetation (NIRv) over croplands. GIScience Remote Sens. 2021, 58, 889–913. [Google Scholar] [CrossRef]
- Levis, S. Modeling vegetation and land use in models of the Earth System. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 840–856. [Google Scholar] [CrossRef]
- Yu, M.; Wang, G.; Parr, D.; Ahmed, K.F. Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs. Clim. Chang. 2014, 127, 257–271. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M.; Li, C.A. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Cordellier, M.; Pfenninger, A.; Streit, B.; Pfenninger, M. Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar. Biol. 2012, 159, 2519–2531. [Google Scholar] [CrossRef]
- Bond, W.J.; Midgley, G.F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B 2012, 367, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Han, Q.; Yang, T.; Wang, H.; Jia, Z. Noise- and delay-induced regime shifts in an ecological system of vegetation. J. Stat. Mech. Theory Exp. 2013, 2013, P10017. [Google Scholar] [CrossRef]
- Tripathi, P.; Behera, M.; Roy, P.S. Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis. PLoS ONE 2017, 12, e0173774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadotte, M.W.; Cardinale, B.J.; Oakley, T.H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl. Acad. Sci. USA 2008, 105, 17012–17017. [Google Scholar] [CrossRef] [Green Version]
- Deb, J.C. Assessing Species Vulnerability to Climate Change in Tropical Asia: Implications for Biodiversity Conservation and Forest Management. Ph.D. Thesis, School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Australia, 2017. [Google Scholar]
- Murphy, B.P.; Bowman, D.M.J.S. What controls the distribution of tropical forest and savanna? Ecol. Lett. 2012, 15, 748–758. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Hua, W.; Chen, H.; Zhou, L.; Xie, Z.; Qin, M.; Li, X.; Ma, H.; Huang, Q.; Sun, S. Observational Quantification of Climatic and Human Influences on Vegetation Greening in China. Remote Sens. 2017, 9, 425. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhong, R.; Lai, C.; Zeng, Z.; Lian, Y.; Bai, X. Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agric. For. Meteorol. 2018, 249, 149–162. [Google Scholar] [CrossRef]
- Deb, J.; Phinn, S.R.; Butt, N.; Mcalpine, C.A. Summary of Climate Change Impacts on Tree Species Distribution, Phenology, Forest Structure and Composition for Each of the 85 Studies Reviewed. 2017. Available online: https://espace.library.uq.edu.au/view/UQ:686262 (accessed on 9 February 2022).
- Gang, C.C.; Zhou, W.; Li, J.L.; Chen, Y.Z.; Mu, S.J. Assessing the Spatiotemporal Variation in Distribution, Extent and NPP of Terrestrial Ecosystems in Response to Climate Change from 1911 to 2000. PLoS ONE 2013, 8, e106175. [Google Scholar] [CrossRef] [Green Version]
- Horion, S.; Cornet, Y.; Erpicum, M.; Tychon, B. Studying interactions between climate variability and vegetation dynamic using a phenology based approach. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 20–32. [Google Scholar] [CrossRef]
- Deb, J.C.; Phinn, S.; Butt, N.; Mcalpine, C. Climate change impacts on tropical forests: Identifying risks for tropical Asia. J. Trop. For. Sci. 2018, 30, 182–194. [Google Scholar]
- Kumar, D.; Scheiter, S. Biome diversity in South Asia—How can we improve vegetation models to understand global change impact at regional level? Sci. Total Environ. 2019, 671, 1001–1016. [Google Scholar] [CrossRef]
- Rai, P.K.; Singh, M.M. Lantana camara invasion in urban forests of an Indo–Burma hotspot region and its ecosustainable management implication through biomonitoring of particulate matter. J. Asia-Pac. Biodivers. 2015, 8, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Ding, C. Land policy reform in China: Assessment and prospects. Land Use Policy 2003, 20, 109–120. [Google Scholar] [CrossRef]
- Chiarucci, A.; Araújo, M.B.; Decocq, G.; Beierkuhnlein, C.; Fernández-Palacios, J.M.A. The concept of potential natural vegetation: An epitaph? J. Veg. Sci. 2010, 21, 1172–1178. [Google Scholar] [CrossRef]
- Zerbe, S. Potential natural vegetation: Validity and applicability in landscape planning and nature conservation. Appl. Veg. Sci. 2010, 1, 165–172. [Google Scholar] [CrossRef]
- Brzeziecki, B.; Kienast, F.; Wildi, O. A Simulated Map of the Potential Natural Forest Vegetation of Switzerland. J. Veg. Sci. 1993, 4, 499–508. [Google Scholar] [CrossRef]
- Hickler, T.; Vohland, K.; Feehan, J.; Miller, P.; Smith, B.; Costa, L.; Giesecke, T.; Fronzek, S.; Carter, T.; Cramer, W.; et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob. Ecol. Biogeogr. 2012, 21, 50–63. [Google Scholar] [CrossRef]
- Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E. Analysing the temporal dynamics of model performance for hydrological models. Hydrol. Earth Syst. Sci. 2009, 13, 999–1018. [Google Scholar] [CrossRef] [Green Version]
- Holdridge, L.R. Determination of World Plant Formations From Simple Climatic Data. Science 1947, 105, 367. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; Mcguire, A.D.; Murray, D.F. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J. Geophys. Res. Atmos. 2003, 108, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Friend, A.D.; et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Chang. Biol. 2001, 7, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Salzmann, U.; Haywood, A.M.; Lunt, D.J.; Valdes, P.J.; Hill, D.J. A new global biome reconstruction and data-model comparison for the Middle Pliocene. Glob. Ecol. Biogeogr. 2008, 17, 432–447. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Hao, J.M. Study on the Holdridge Life Zone and Potential Vegetation Spatial Paterns in China; Northwest Normal University: Lanzhou, China, 2009. [Google Scholar]
- Kickert, R.N.; Tonella, G.; Simonov, A.; Krupa, S.V. Predictive modeling of effects under global change. Environ. Pollut. 1999, 100, 87–132. [Google Scholar] [CrossRef]
- Tang, G.; Shafer, S.L.; Bartlein, P.J.; Holman, J.O. Effects of experimental protocol on global vegetation model accuracy: A comparison of simulated and observed vegetation patterns for Asia. Ecol. Model. 2009, 220, 1481–1491. [Google Scholar] [CrossRef]
- Meier, R.; Dittrich, H.; Schulze-Bonhage, A.; Aertsen, A. Detecting epileptic seizures in long-term human EEG: A new approach to automatic online and real-time detection and classification of polymorphic seizure patterns. J. Clin. Neurophy 2008, 25, 119. [Google Scholar] [CrossRef] [Green Version]
- Du, H.Y.; Zhao, J.; Shi, Y.F.; Che, Y.J. The succession of potential vegetation in China and its sensitivity under climate change. Chin. J. Ecol. 2018, 37, 1459–1466. [Google Scholar]
- Tapiador, F.J.; Moreno, R.; Navarro, A.; Sánchez, J.L.; García-Ortega, E. Climate classifications from regional and global climate models: Performances for present climate estimates and expected changes in the future at high spatial resolution. Atmos. Res. 2019, 228, 107–121. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Che, Y.J.; Zhao, J.; Zhang, M.J.; Wang, S.J.; Qi, Y. Potential vegetation and its sensitivity under different climate change scenarios from 2070 to 2099 in China. Acta Ecol. Sin. 2016, 36, 2885–2895. [Google Scholar]
- Cao, D.; Zhang, J.H.; Yan, H.; Xun, L.; Yang, S.; Bai, Y.; Zhang, S.; Yao, F.M.; Zhou, W. Regional Assessment of Climate Potential Productivity of Terrestrial Ecosystems and Its Responses to Climate Change Over China From 1980–2018. IEEE Access 2020, 8, 11138–11151. [Google Scholar] [CrossRef]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y. Extreme climate events and agricultural climate indices in China: CMIP5 model evaluation and projections. Int. J. Climatol. 2016, 36, 43–61. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Zhang, S.; Bai, Y.; Cao, D.; Cheng, T.; Sun, Z.; Liu, Q.; Sharma, T.P.P. Impacts of Future Climate Changes on Spatio-Temporal Distribution of Terrestrial Ecosystems over China. Sustainability 2021, 13, 3049. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Emori, S.; Taylor, K.; Hewitson, B.; Zermoglio, F.; Juckes, M.; Lautenschlager, M.; Stockhause, M. CMIP5 data provided at the IPCC Data Distribution Centre. Clim. Chang. 2016, 1–8. Available online: https://www.ipcc.ch/site/assets/uploads/2020/11/TGICA_Fact_Sheet_CMIP5_data_provided_at_the_IPCC_DDC_Ver_1_2016.pdf (accessed on 9 February 2022).
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Deng, Y. Summer rainfall variability over the Southeastern United States and its intensification in the 21st century as assessed by CMIP5 models. Geophys. Res. Atmos. 2013, 118, 340–354. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Behrangi, A.; Haddad, Z.S.; Katsanos, D.; Castro, M.D. Disruptions in precipitation cycles: Attribution to anthropogenic forcing. J. Geophys. Res. Atmos. 2016, 121, 2161–2177. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Frauenfeld, O. Surface Air Temperature Changes over the Twentieth and Twenty-First Centuries in China Simulated by 20 CMIP5 Models. J. Clim. 2014, 27, 3920–3937. [Google Scholar] [CrossRef]
- Cheng, A.F.; Feng, Q.; Zhang, J.K.; Li, Z.S.; Wang, G. A Review of Climate Change Scenario for Impacts Process Study. Sci. Geogr. Sin. 2015, 35, 84–90. [Google Scholar]
- Chen, X.C.; Xu, Y.; Xu, C.H.; Yao, Y. Assessment of Precipitation Simulations in China by CMIP5 Multi-models. Clim. Chang. Res. 2014, 10, 217–225. [Google Scholar]
- Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, Z.L.; Lai, C.G.; Wu, X.Q.; Zeng, Z.Y.; Chen, X.H.; Lian, Y.Q. Response of net primary production to land use and land cover change in mainland China since the late 1980s. Sci. Total Environ. 2018, 639, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.C.; Xie, Y.W.; Jia, X.; Wang, X.Y.; He, H.J. Land use/land cover change and it’s impacts on diurnal temperature range over the agricultural pastoral ecotone of Northern ChinaNorthern China. Land Degrad. Dev. 2018, 29, 3009–3020. [Google Scholar] [CrossRef]
- Ding, Y.B.; Xu, J.T.; Wang, X.W.; Peng, X.B.; Cai, H.J. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Sci. Total Environ. 2020, 716, 137166. [Google Scholar] [CrossRef]
- Lin, G.C.S.; Ho, S.P.S. China’s land resources and land-use change: Insights from the 1996 land survey. Land Use Policy 2003, 20, 87–107. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, Z.X.; Zhuang, D.F.; Wang, Y.M.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Jiang, N.; Wu, S.X. A study on the spatial-temporal dynamic changes of land-useand driving forces analyses of China in the 1990s. Geogr. Res. 2003, 22, 1–12. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Burgan, H.I.; Aksoy, H. Daily flow duration curve model for ungauged intermittent subbasins of gauged rivers. J. Hydrol. 2022, 604, 127249. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Ren, J.Z.; Hu, Z.Z.; Zhao, J.; Zhang, D.G.; Hou, F.; Lin, H.; Mu, X. A grassland classification system and its application in China. Rangel. J. 2008, 30, 199–209. [Google Scholar] [CrossRef]
- Lin, H.L.; Wang, X.L.; Zhang, Y.J.; Liang, T.G.; Feng, Q.S.; Ren, J.Z. Spatio-temporal dynamics on the distribution, extent, and net primary productivity of potential grassland in response to climate changes in China. Rangel. J. 2013, 35, 409–425. [Google Scholar] [CrossRef]
- Yates, D.N.; Kittel, T.G.F.; Cannon, R.F. Comparing the Correlative Holdridge Model to Mechanistic Biogeographical Models for Assessing Vegetation Distribution Response to Climatic Change. Clim. Chang. 2000, 44, 59–87. [Google Scholar] [CrossRef]
- He, Y.; Lee, E.; Warner, T. A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sens. Environ. 2017, 199, 201–217. [Google Scholar] [CrossRef]
- Liu, H.; Shaohong, W.U.; Zheng, D.; Yang, Q. The Study on the Potential Natural Vegetation and Future Prospect. Prog. Geogr. 2004, 23, 62–70. [Google Scholar]
- Feng, Q.S.; Xiu, L.N.; Liang, T.G. Distribution of the existing natural vegetation in China based on CSCS. Acta Pratac. Sin. 2013, 22, 16–24. [Google Scholar]
- Feng, Q.S. Characteristics of Spatio-Temporal Distribution of Global and Regional Potential Natural Vegetable Based on CSCS Model; Lanzhou Univeristy: Lanzhou, China, 2012. [Google Scholar]
- Liang, T.G.; Feng, Q.S.; Cao, J.J.; Xie, H.J.; Lin, H.L.; Zhao, J.; Ren, J.Z. Changes in global potential vegetation distributions from 1911 to 2000 as simulated by the Comprehensive Sequential Classification System approach. Chin. Sci. Bull. 2012, 57, 1298–1310. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Xie, Z.; Jiang, L.; Shimizu, H.; Drake, S. Changes in Holdridge Life Zone diversity in the Xinjiang Uygur Autonomous Region (XUAR) of China over the past 40 years. J. Arid. Environ. 2006, 66, 113–126. [Google Scholar] [CrossRef]
Datasets | Time (year) | Temporal Resolution | Spatial Resolution | URL |
---|---|---|---|---|
The baseline scenario data | 1970–2000 | Monthly | 30 arc-s (1 km2) | https://www.worldclim.org/ accessed on 1 June 2020 |
The future scenario data (RCP2.6, RCP4.5, and RCP8.5) | 2030s (2020–2049) 2050s (2040–2069) 2070s (2060–2089) 2080s (2070–2099) | Monthly | 30 arc-s (1 km2) | http://ccafs-climate.org/ accessed on 10 August 2020 |
The land use data (LU) | 1980, 1990, 1995, 2000 | Monthly | 1 km2 | http://www.resdc.cn/ accessed on 20 July 2020 |
SRTM-DEM data | - | - | 30 arc-s (1 km2) | https://www.worldclim.org/ accessed on 25 June 2020 |
A vegetation map in China at a scale of 1:1,000,000 | 1 km2 | http://www.resdc.cn/ accessed on 11 May 2020 |
Code | Broad Vegetation Types | Class Codes (a) of CSCS (42 Classes) | Class Codes (b) of HLZ (38 Classes) | Vegetation Code (c) in the Vegetation Map |
---|---|---|---|---|
1 | Tundra | IA, IB, IC, ID, IE, IF | 1, 2, 3, 4, 5 | 46, 47, 48 |
2 | Desert | IIA, IIIA, IVA, IIB, IIIB, IVB, VB, VA, VIA, VIIA | 6, 7, 11, 12, 17, 18, 19, 24, 25, 31, 32 | 25, 26, 27, 28, 29, 30, 31 |
3 | Boreal and temperate forest | IVD, IIIE, IVE, IIF, IIIF, IVF | 8, 9, 10, 14, 15, 16 | 1, 2, 6, 7, 8, 9, 18, 22, 23, 24 |
4 | Subtropical and tropical forest | VD, VID, VE, VIE, VF, VIF, VIID, VIIE, VIIF | 20, 21, 22, 23, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38 | 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22 |
5 | Grassland | IIC, IIIC, IVC, VC, IID, IIID, IIE, VIB, VIIB, VIC, VIIC | 13 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 |
The First Level | The Second Level (CLU Number) | The Third Level (CLU Number) |
---|---|---|
Vegetation coverage area | Forest (2) | Forest land (21), shrub forest (22), sparse forest land (23), other forest land (24) |
Grassland (3) | High-coverage grassland (31), medium-coverage grassland (32), low-coverage grassland (33) | |
Unused land (6) | Gobi (62), marshland (64), bare land (65), bare rock texture (66), others (67) | |
Other areas with low coverage vegetation | Coverage Tidal flats (45), Beaches (46) | |
No vegetation coverage area | Water area (4) | Canals (41), lakes (42), reservoirs and ponds (43), permanent glaciers and snow (44) |
Urban and rural, industrial and mining, residential land (5) | Urban land (51), rural residential area (52), other construction land (53), ocean (99) | |
Unused land (6) | Sandy land (61), saline land (63) | |
Cultivated vegetation area | Farmland (1) | Paddy field (11), dry land (12) |
Kappa Statistic | Agreement |
---|---|
0.0 | Totally different patterns |
0.0–0.2 | No-to-poor agreement |
0.2–0.4 | Poor-to-fair agreement |
0.4–0.55 | Fair-to-good agreement |
0.55–0.70 | Good-to-very good agreement |
0.70–1.0 | Very good-to-perfect agreement |
1.0 | Complete agreement. |
ID Super_Classes Name | Area (104 km2) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | RCP2.6 | RCP4.5 | RCP8.5 | |||||||||||
T1 | T2 | T3 | T4 | T1 | T2 | T3 | T4 | T1 | T2 | T3 | T4 | |||
1 | Tundra and alpine steppe | 191.67 | 171.53 | 170.61 | 168.12 | 165.05 | 168.19 | 153.27 | 148.49 | 145.51 | 161.37 | 135.26 | 106.16 | 88.84 |
2 | Cold desert | 127.03 | 122.50 | 122.36 | 121.61 | 118.89 | 119.78 | 111.51 | 88.05 | 80.02 | 119.84 | 76.45 | 62.08 | 52.91 |
3 | Semidesert | 57.49 | 89.95 | 92.10 | 92.88 | 94.95 | 94.21 | 93.54 | 93.98 | 94.41 | 94.26 | 101.96 | 103.54 | 101.58 |
4 | Steppe | 33.55 | 62.60 | 77.38 | 69.53 | 18.70 | 77.77 | 67.86 | 67.51 | 68.81 | 80.72 | 91.24 | 79.56 | 76.02 |
5 | Temperate humid grassland | 55.16 | 60.48 | 52.19 | 54.95 | 46.76 | 54.86 | 57.30 | 58.97 | 56.96 | 55.33 | 51.72 | 48.92 | 51.02 |
6 | Temperate forest | 303.23 | 240.83 | 223.27 | 234.37 | 287.73 | 228.17 | 245.99 | 247.05 | 248.17 | 229.95 | 228.50 | 247.15 | 258.68 |
7 | Subtropical forest | 178.71 | 183.32 | 186.70 | 182.20 | 193.05 | 183.31 | 186.26 | 186.57 | 187.31 | 181.32 | 184.22 | 182.11 | 180.75 |
8 | Tropical forest | 12.50 | 25.61 | 28.72 | 30.11 | 31.30 | 28.45 | 31.80 | 35.20 | 36.88 | 28.69 | 36.75 | 48.30 | 58.80 |
9 | Warm desert | 0.97 | 1.54 | 4.10 | 4.13 | 3.99 | 2.51 | 10.34 | 32.43 | 39.79 | 5.24 | 47.49 | 62.85 | 69.69 |
10 | Savanna | 0.07 | 2.71 | 3.65 | 3.21 | 0.68 | 3.82 | 3.26 | 2.91 | 3.30 | 4.40 | 7.58 | 20.51 | 22.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhang, J.; Henchiri, M.; Cao, D.; Zhang, S.; Bai, Y.; Yang, S. Spatiotemporal Variations of Chinese Terrestrial Ecosystems in Response to Land Use and Future Climate Change. Atmosphere 2022, 13, 1024. https://doi.org/10.3390/atmos13071024
Li S, Zhang J, Henchiri M, Cao D, Zhang S, Bai Y, Yang S. Spatiotemporal Variations of Chinese Terrestrial Ecosystems in Response to Land Use and Future Climate Change. Atmosphere. 2022; 13(7):1024. https://doi.org/10.3390/atmos13071024
Chicago/Turabian StyleLi, Shuaishuai, Jiahua Zhang, Malak Henchiri, Dan Cao, Sha Zhang, Yun Bai, and Shanshan Yang. 2022. "Spatiotemporal Variations of Chinese Terrestrial Ecosystems in Response to Land Use and Future Climate Change" Atmosphere 13, no. 7: 1024. https://doi.org/10.3390/atmos13071024
APA StyleLi, S., Zhang, J., Henchiri, M., Cao, D., Zhang, S., Bai, Y., & Yang, S. (2022). Spatiotemporal Variations of Chinese Terrestrial Ecosystems in Response to Land Use and Future Climate Change. Atmosphere, 13(7), 1024. https://doi.org/10.3390/atmos13071024