Chemical Compositions of Rainfall Water in Nyingchi City, Tibet
Abstract
:1. Introduction
2. Experiments
2.1. Sampling Location
2.2. Precipitation Collection
2.3. Chemical Analysis
2.4. Calculations and Statistical Analysis
2.5. Backward Trajectory Analysis
3. Results and Discussion
3.1. Chemical Composition of Precipitation
3.2. Seasonal Variations in the Ion Concentrations
3.3. Source Assessment
3.4. Ions Deposition Fluxes and Correlations among Different Components
3.5. Comparison with Other Research in Other Regions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.D.; Xu, Z.F.; Liu, W.J.; Wu, Y.; Zhao, T.; Jiang, H.; Zhang, X.; Zhang, J.Y.; Zhou, L.; Wang, Y.C. Chemical composition of precipitation in Shenzhen, a coastal mega-city in South China: Influence ofurbanization and anthropogenic activities on acidity and ionic composition. Sci. Total Environ. 2019, 662, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Herrera, J.; Rodriguez, S.; Baez, A.P. Chemical composition of bulk precipitation in the metropolitan area of Costa Rica, Central America. Atmos. Res. 2009, 94, 151–160. [Google Scholar] [CrossRef]
- Paternoster, M.; Sinisi, R.; Mancusi, C.; Pilat, K.; Sabia, A.; Mongelli, G. Natural versus anthropogenic influences on the chemical composition of bulk precipitation in the southern Apennines, Italy: A case study of the town of Potenza. J. Geochem. Explor. 2014, 145, 242–249. [Google Scholar] [CrossRef]
- Keresztesi, G.; Nita, I.A.; Boga, R.; Birsan, M.V.; Bodor, Z.; Szep, R. Spatial and long-term analysis of rainwater chemistry over the conterminous United States. Environ. Res. 2020, 188, 109872. [Google Scholar] [CrossRef]
- Huang, D.Y.; Xu, Y.G.; Peng, P.A.; Zhang, H.H.; Lan, J.B. Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: Comparison with precipitation in other major Chinese cities. Environ. Pollut. 2009, 157, 35–41. [Google Scholar] [CrossRef]
- Xu, W.; Wen, Z.; Shang, B.; Dore, A.J.; Tang, A.; Xia, X.; Zheng, A.; Han, M.; Zhang, L.; Zhao, Y.; et al. Precipitation chemistry and atmospheric nitrogen deposition at a rural site in Beijing, China. Atmos. Environ. 2020, 223, 117253. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Z.F.; Liu, W.J.; Zhao, T.; Zhang, X.; Jiang, H.; Yu, C.; Zhou, L.; Zhou, X.D. Chemical compositions ofprecipitation at three non-urban sites of Hebei Province, North China: Influence of terrestrial sources on ionic composition. Atmos. Res. 2016, 181, 115–123. [Google Scholar] [CrossRef]
- Song, F.; Gao, Y. Chemical characteristics of precipitation at metropolitan Newark in the US East Coast. Atmos. Environ. 2009, 43, 4903–4913. [Google Scholar] [CrossRef]
- Hélène, C.; Travi, Y.; Loyee-Pilot, M.D.; Huneau, F.; Bertrand, G. Rainwater chemistry at a Mediterranean inland station (Avignon, France): Local contribution versus long-range supply. Atmos. Res. 2009, 91, 118–126. [Google Scholar] [CrossRef]
- Calvo, A.I.; Olmo, F.J.; Lyamani, H.; Alados-Arboledas, L.; Castro, A.; Fernández-Raga, M.; Fraile, R. Chemical composition of wet precipitation at the background EMEP station in Víznar (Granada, Spain) (2002–2006). Atmos. Res. 2010, 96, 408–420. [Google Scholar] [CrossRef]
- Tu, J.; Wang, H.S.; Zhang, Z.F.; Jin, X.; Li, W. Trends in chemical composition of precipitation in Nanjing, China, during 1992–2003. Atmos. Res. 2005, 73, 283–298. [Google Scholar] [CrossRef]
- Zhao, Z.P.; Tian, L.D.; Fischer, E.; Li, Z.Q.; Jiao, K.Q. Study of chemical composition of precipitation at an alpine site and a rural site in the Urumqi River Valley, Eastern Tien Shan, China. Atmos. Environ. 2008, 42, 8934–8942. [Google Scholar] [CrossRef]
- Rocha, F.R.; Fracassi, D.; Lago, C.L.; Fornaro, A.; Gutz, I. Wet deposition and related atmospheric chemistry in the So Paulo metropolis, Brazil: Part 1. Major inorganic ions in rainwater as evaluated by capillary electrophoresis with contactless conductivity detection. Atmos. Environ. 2003, 37, 105–115. [Google Scholar] [CrossRef]
- Oduber, F.; Calvo, A.I.; Castro, A.; Blanco-Alegre, C.; Alves, C.; Barata, J.; Nunes, T.; Lucarelli, F.; Nava, S.; Calzolai, G.; et al. Chemical composition of rainwater under two events of aerosol transport: A Saharan dust outbreak and wildfires. Sci. Total Environ. 2020, 734, 139202. [Google Scholar] [CrossRef]
- Hou, S.Y.; Qiu, C.C.; Ding, C.; Wang, G.Z.; Yu, X.N. Analysis on chemical composition of precipitation and its source apportionment in Xi’an City. Environ. Chem. 2020, 39, 2384–2394, (In Chinese with English Abstract). [Google Scholar]
- Wang, S.Y.; He, X.B.; Wu, J.K.; Ding, Y.J.; Hu, Z.F.; Wang, L.H.; Yang, G.S. Chemical Characteristics and Ionic Sources of Precipitation in the Source Region of the Yangtze River. Environ. Sci. 2019, 40, 4431–4439, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Das, N.; Das, R.; Chaudhury, G.R.; Das, S. Chemical composition of precipitation at background level. Atmos. Res. 2010, 95, 108–113. [Google Scholar] [CrossRef]
- Liu, Y.W.; Xu-Ri; Wang, Y.S.; Pan, Y.P.; Piao, S.L. Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau. Atmos. Chem. Phys. 2015, 15, 11683–11700. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Liu, J.Q.; Di, Y.A.; Yang, J.; Wen, T.X.; Li, Y.W.; Shi, Y.Q. Major ionic composition of precipitation in the Shigatse region, Southern Tibetan Plateau. Renew. Sustain. Energy 2012, 347–353, 1005–1011. [Google Scholar] [CrossRef]
- Wang, W.; Xu, W.; Collett, J.L., Jr.; Liu, D.; Zheng, A.; Dore, A.J.; Liu, X. Chemical compositions of fog and precipitation at Sejila Mountain in the southeast Tibetan Plateau, China. Environ. Pollut. 2019, 253, 560–568. [Google Scholar] [CrossRef]
- Keene, W.C.; Pszenny, A.A.P.; Galloway, J.N.; Hawley, M.E. Sea-Salt Corrections and Interpretation of Constituent Ratios in Marine Precipitation. J. Geophys. Res. Atmos. 1986, 91, 6647–6658. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of Chemical Elements in the Continental Crust—A New Table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Draxler, R.; Stunder, B.; Rolph, G.; Stein, A.; Taylor, A. HYSPLIT4 User’s Guide; Version 4, Report; NOAA: Silver Spring, MD, USA, 2012. [Google Scholar]
- Mukherjee, S.; Singla, V.; Pandithurai, G.; Safai, P.D.; Meena, G.S.; Dani, K.K.; Kumar, V.A. Seasonal variability in chemical composition and source apportionment of sub-micron aerosol over a high altitude site in Western Ghats, India. Atmos. Environ. 2018, 180, 79–92. [Google Scholar] [CrossRef]
- Akpo, A.; Galy-Lacaux, C.; Laouali, D.; Delon, C.; Liousse, C.; Adon, M.; Gardrat, E.; Mariscal, A.; Darakpa, C. Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa: Djougou (Benin). Atmos. Environ. 2015, 115, 110–123. [Google Scholar] [CrossRef]
- Roy, A.; Chatterjee, A.; Tiwari, S.; Sarkar, C.; Das, S.K.; Ghosh, S.K.; Raha, S. Precipitation chemistry over urban, rural and high altitude Himalayan stations in eastern India. Atmos. Res. 2016, 181, 44–53. [Google Scholar] [CrossRef]
- Wang, W.; Xu, W.; Wen, Z.; Wang, D.; Wang, S.; Zhang, Z.; Zhao, Y.; Liu, X. Characteristics of Atmospheric Reactive Nitrogen Deposition in Nyingchi City. Sci. Rep. 2019, 9, 4645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Liu, W.J.; Xu, Y.F.; Xu, Z.F.; Zhou, X.D.; Zhou, L. Multiple isotopic tracing for sulfate and base cation sources of precipitation in Hangzhou city, Southeast China: Insights for rainwater acidification mechanism. Environ. Pollut. 2021, 288, 117770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Wang, Q.F.; Zhu, J.X.; Xu, L.; Chen, Z.; Xiao, J.F.; He, N.P. Spatiotemporal variability, source apportionment, and acid-neutralizing capacity of atmospheric wet base-cation deposition in China. Environ. Pollut. 2020, 262, 114335. [Google Scholar] [CrossRef]
- Li, Z.J.; Li, Z.X.; Wang, T.T.; Gao, Y.; Cheng, A.F.; Guo, X.Y.; Guo, R.; Jia, B.; Song, Y.X.; Han, C.T.; et al. Composition of wet deposition in the central Qilian Mountains, China. Environ. Earth Sci. 2015, 73, 7315–7328. [Google Scholar] [CrossRef]
- Wu, J.; Duan, D.; Lu, J.; Luo, Y.; Wen, X.; Guo, X.; Boman, B.J. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations. Sci. Total Environ. 2016, 550, 628–636. [Google Scholar] [CrossRef]
- Laouali, D.; Delon, C.; Adon, M.; Ndiaye, O.; Saneh, I.; Gardrat, E.; Dias-Alves, M.; Tagesson, T.; Fensohlt, R.; Galy-Lacaux, C. Source contributions in precipitation chemistry and analysis of atmospheric nitrogen deposition in a Sahelian dry savanna site in West Africa. Atmos. Res. 2021, 251, 105423. [Google Scholar] [CrossRef]
- Oduber, F.; Calvo, A.I.; Blanco-Alegre, C.; Castro, A.; Alves, C.; Cerqueira, M.; Lucarelli, F.; Nava, S.; Calzolai, G.; Martin-Villacorta, J.; et al. Towards a model for aerosol removal by rain scavenging: The role of physical-chemical characteristics of raindrops. Water Res. 2020, 190, 116758. [Google Scholar] [CrossRef]
- Kasereka, M.M.; Cuoco, E.; Zabene, F.Z.; Balagizi, C.M. Baseline for rainwater chemistry and quality as influenced by Nyiragongo volcano permanent plume, East Africa. Chemosphere 2021, 283, 130859. [Google Scholar] [CrossRef]
- Keresztesi, A.; Nita, I.A.; Birsan, M.V.; Bodor, Z.; Pernyeszi, T.; Micheu, M.M.; Szép, R. Assessing the variations in the chemical composition of rainwater and air masses using the zonal and meridional index. Atmos. Res. 2020, 237, 104846. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, X.; Fan, Z.; Ayitken, M.; Li, S.; Liu, X. Chemical Composition Characteristics and Source Contributions of Precipitation in Typical Cities on the North Slope of Tianshan Mountain in Xinjiang during 2010–2019. Atmosphere 2022, 13, 646. [Google Scholar] [CrossRef]
- Wang, B.N.; Luo, X.C.; Liu, D.Y.; Su, Y.; Wu, Z.Y. The effect of construction dust and agricultural fertilization on the precipitation chemical composition during summer in the Yangtze River Delta area, China. Atmos. Pollut. Res. 2021, 12, 101121. [Google Scholar] [CrossRef]
- Zhang, L. The Chemical Characteristics and Environmental Significance of Atmospheric Precipitation in Shanghai Area. Master’s Thesis, East China Normal University, Shanghai, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Yang, X. Relationship between the Characteristics of Precipitation and Air Quality in Nanjing. Master’s Thesis, Nanjing Agricultural university, Nanjing, China, 2014. (In Chinese with English Abstract). [Google Scholar]
- Wang, Y. The Chemical Characteristics and Nitrate Sources Analysis of Precipitation in Typical Cities in Southeast China. Master’s Thesis, Zhejiang university of technology, Zhejiang, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Ai, D.S. Chemical Characteristics of Wet Precipitation in Shanghai and Its Source Analysis. Master’s Thesis, East China Normal University, Shanghai, China, 2011. (In Chinese with English Abstract). [Google Scholar]
- Jiang, B.Y.; Wu, Y.; Li, S.A.; Lin, T.J.; He, L. Chemical compositions and sources of precipitation in Shenzhen from 2010 to 2017. Environ. Chem. 2019, 38, 1872–1881, (In Chinese with English Abstract). [Google Scholar]
- Zeng, J.; Han, G.l.; Wu, Q.X.; Tang, Y. Effects of agricultural alkaline substances on reducing the rainwater acidification: Insight from chemical compositions and calcium isotopes in a karst forests area. Agric. Ecosyst. Environ. 2019, 290, 106782. [Google Scholar] [CrossRef]
- Li, Z.J. The Characteristic Change of Atmospheric Precipitation and Indicative Significance of Dust Weather in Shiyang River Basin. Master’s Thesis, Gansu Agricultural University, Gansu, China, 2017. (In Chinese with English Abstract). [Google Scholar]
Ca2+ | Mg2+ | K+ | Na+ | NH4+ | Cl− | NO3− | SO42− | |
---|---|---|---|---|---|---|---|---|
SSF | 1.9 | 46.1 | 26.5 | 100 | 1.8 | 99.5 | 2.9 | 14.4 |
CF | 98.1 | 53.9 | 73.5 | 0.2 | 0.5 | 0.2 | 0.6 | |
AF | 97.9 | 96.9 | 85.0 |
Ca2+ | K+ | Mg2+ | Na+ | NH4+ | Cl− | SO42− | NO3− | |
---|---|---|---|---|---|---|---|---|
Ca2+ | 1 | 0.588 ** | 0.172 | 0.551 ** | 0.118 | 0.570 ** | 0.513 ** | 0.464 ** |
K+ | 1 | 0.633 ** | 0.614 ** | 0.257 | 0.561 ** | 0.434 ** | 0.172 | |
Mg2+ | 1 | 0.414 ** | 0.032 | 0.338 * | 0.276 | −0.036 | ||
Na+ | 1 | 0.288 | 0.663 ** | 0.720 ** | −0.069 | |||
NH4+ | 1 | 0.194 | 0.221 | −0.037 | ||||
Cl− | 1 | 0.515 ** | 0.017 | |||||
SO42− | 1 | 0.003 | ||||||
NO3− | 1 |
Sites | Environment | Years | NH4+ | Na+ | K+ | Ca2+ | Mg2+ | SO42− | NO3− | Cl− | References | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Other Areas | Dahra, Africa | Town | 2013–2017 | 31.3 | 44.2 | 12.1 | 38.5 | 11.9 | 19.8 | 14.5 | 38.1 | [32] |
Iberian Peninsula | Urban | 2016–2017 | 21.5 | 6.6 | 3.4 | 5.9 | 3.2 | 13.6 | 13.2 | 9.4 | [33] | |
Goma city | Town | 2013 | - | 170.0 | 150.0 | 80.0 | 60.0 | 180.0 | 0 | 170.0 | [34] | |
Urban | - | 100.0 | 100.0 | 160.0 | 100.0 | 200.0 | 50.0 | 150.0 | ||||
Urban | - | 130.0 | 60.0 | 120.0 | 160.0 | 220.0 | 50.0 | 130.0 | ||||
Urban | - | 20 | 20.0 | 60.0 | 20.0 | 40.0 | 10.0 | 30 | ||||
Romania | Remote | 2009–2017 | 46.1 | 27.6 | 11.2 | 231.2 | 25.3 | 142.7 | 29.7 | 38.3 | [35] | |
Remote | 69.7 | 30.3 | 20.5 | 132.1 | 35.0 | 65.8 | 29.8 | 41.0 | ||||
Remote | 92.9 | 41.2 | 33.8 | 178.3 | 44.0 | 77.0 | 32.5 | 49.6 | ||||
Remote | 65.6 | 31.8 | 52.4 | 140.9 | 36.2 | 68.7 | 30.8 | 50.5 | ||||
Other Areas in China | Urumqi | Urban | 2010–2019 | 118.9 | 193.0 | 45.1 | 422.3 | 54.4 | 307.6 | 39.1 | 121.5 | [36] |
Karamay | Urban | 2010–2019 | 88.8 | 151.9 | 62.1 | 389.1 | 38.3 | 197.3 | 58.3 | 77.2 | ||
Yining | Urban | 2010–2019 | 79.1 | 131.4 | 12.6 | 288.6 | 39.6 | 218.2 | 29.2 | 30.3 | ||
Wuxi | Urban | 2016 | 48.2 | 21.3 | 8.3 | 70.9 | 14.9 | 10.5 | 4.1 | 4.6 | [37] | |
Hangzhou | Urban | 2010–2011 | 39.8 | 18.9 | 7.1 | 158 | 13.4 | 125 | 35.9 | 32.2 | [28] | |
Xi an | Urban | 2017 | 147.4 | 28.7 | 4.6 | 136.6 | 22.4 | 145.1 | 25.3 | 8.9 | [15] | |
Shanghai | Urban | 2016–2018 | 130.1 | 503 | 21.1 | 342 | 145 | 354 | 138 | 240 | [38] | |
Nanjing | Urban | 2013–2014 | 127.5 | 15.3 | 8.0 | 247.9 | 20.4 | 135.7 | 58.1 | 61.7 | [39] | |
Huzhou | Urban | 2016–2018 | 57.9 | 37.1 | 17.3 | 194.6 | 21.1 | 78.8 | 41.8 | 40.0 | [40] | |
Hangzhou | Urban | 2016–2018 | 56.8 | 29.2 | 16.8 | 191.1 | 16.5 | 58.5 | 42.3 | 28.0 | ||
Shanghai | Urban | 2014–2015 | 54.3 | 29.7 | 10.8 | 113.0 | 21.9 | 92.7 | 46.1 | 66.7 | [41] | |
Shenzhen | Urban | 2017 | 17.4 | 23.1 | 5.4 | 28.2 | 6.5 | 22.4 | 18.6 | 27.1 | [42] | |
Shenzhen | Urban | 2008–2009 | 14.7 | 36.4 | 2.0 | 18.1 | 11.8 | 59.3 | 23.7 | 45.9 | [1] | |
Chicheng | County | 2008 | 92.4 | 10.9 | 17.7 | 183.0 | 47.6 | 162.0 | 86.5 | 63.9 | [7] | |
Huailai | County | 2008 | 57.7 | 22.2 | 12.3 | 391.0 | 70.9 | 289.0 | 169.0 | 71.4 | ||
Xuanhua | County | 2008 | 117.0 | 18.9 | 15.8 | 210.0 | 49.3 | 213.0 | 117.0 | 66.2 | ||
Beijing | Remote | 2017–2018 | 76.3 | 59.2 | 56.0 | 141.3 | 33.0 | 66.3 | 59.6 | 100.1 | [6] | |
Xi an | Remote | 2017 | 1.1 | 33.7 | 13.0 | 190.3 | 39.5 | 71.6 | 2.6 | 16.7 | [15] | |
Guizhou | Remote | 2019–2010 | 110.4 | 7.0 | 4.4 | 11.7 | 3.0 | 51.8 | 24.7 | 5.2 | [43] | |
Qinghai Tibet Plateau | Shiyanghe | Remote | 2013–2014 | 2.0 | 5.7 | 3.8 | 17.8 | 3.4 | 28.7 | 12.2 | 8.2 | [44] |
Dongkemadi | Remote | 2013 | 9.3 | 4.1 | 0.6 | 5.4 | 0.3 | 4.3 | 4.7 | 1.0 | [16] | |
Sejila | Remote | 2018 | 7.1 | 58.5 | 13.1 | 123 | 28.7 | 19.4 | 13.9 | 40.1 | [20] | |
Southeast Tibet | Remote | 2011–2012 | 4.9 | 3.8 | 1.0 | 20.8 | 0.9 | 2.1 | 2.2 | 2.5 | [18] | |
Nyingchi | City | 2021 | 15.0 | 30.5 | 2.5 | 70.1 | 14.7 | 29.9 | 6.42 | 25.6 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Guan, L.; Zhao, J.; Sha, Z.; Fang, J. Chemical Compositions of Rainfall Water in Nyingchi City, Tibet. Atmosphere 2022, 13, 1021. https://doi.org/10.3390/atmos13071021
Wang W, Guan L, Zhao J, Sha Z, Fang J. Chemical Compositions of Rainfall Water in Nyingchi City, Tibet. Atmosphere. 2022; 13(7):1021. https://doi.org/10.3390/atmos13071021
Chicago/Turabian StyleWang, Wei, Lixue Guan, Jiamin Zhao, Zhipeng Sha, and Jiangping Fang. 2022. "Chemical Compositions of Rainfall Water in Nyingchi City, Tibet" Atmosphere 13, no. 7: 1021. https://doi.org/10.3390/atmos13071021
APA StyleWang, W., Guan, L., Zhao, J., Sha, Z., & Fang, J. (2022). Chemical Compositions of Rainfall Water in Nyingchi City, Tibet. Atmosphere, 13(7), 1021. https://doi.org/10.3390/atmos13071021