Restricted Anthropogenic Activities and Improved Urban Air Quality in China: Evidence from Real-Time and Remotely Sensed Datasets Using Air Quality Zonal Modeling
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Region
2.2. Data Source
2.3. OMI Data Retrieval
2.4. Data Analysis Method
Air Quality Zonal Modeling
3. Results
3.1. Spatio-Temporal Distribution of NO2 before and after the Pandemic
3.2. Total NO2 Load over the Area Using air Quality Zonal Modeling
3.3. Trends of Air Pollutants in China before and after the Pandemic
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIRS | Atmospheric Infrared Sounder |
AQI | Air Quality Index |
CO | Carbon Monoxide |
COVID | Coronavirus Disease |
ESA | European Space Agency |
GES-DISC | Goddard Earth Sciences Data and Information Services Center |
GSFC | Goddard Space Flight Center |
MEPC | Environmental Protection of China |
MERRA-2 | Modern Era Retrospective Research and Application |
MODIS-terra | Moderate Resolution Imaging Spectroradiometer |
NASA | National Aeronautics and Space Administration |
NH3 | Ammonia |
NO2 | Nitrogen Dioxide |
NOx | Nitrogen Oxide |
O3 | Ozone |
OMI | Ozone Monitoring Instrument |
PCA | Principal Component Analysis |
PM10 | Particulate Matter ≤10 μm |
PM2.5 | Particulate Matter ≤2.5 μm |
SO2 | Sulphur Dioxide |
VOCs | Volatile Organic Compounds |
WHO | World Health Organization |
References
- Brauer, M.; Freedman, G.; Frostad, J.; Van Donkelaar, A.; Martin, R.V.; Dentener, F.; Dingenen, R.V.; Estep, K.; Amini, H.; Apte, J.S.; et al. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 2016, 50, 79–88. [Google Scholar] [CrossRef]
- Kuerban, M.; Waili, Y.; Fan, F.; Liu, Y.; Qin, W.; Dore, A.J.; Peng, J.; Xu, W.; Zhang, F. Spatio-temporal patterns of air pollution in China from 2015 to 2018 and implications for health risks. Environ. Pollut. 2020, 258, 113659. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, F.; Zhao, J.; Zhu, G.; He, X.; Ma, X.; Li, S.; Sabel, C.E.; Wang, H. Impacts of O3 on premature mortality and crop yield loss across China. Atmos. Environ. 2018, 194, 41–47. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Z.; Yang, T. Health effects of air pollution in China. Int. J. Environ. Res. Public Health 2018, 15, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, B.; Li, S.; Lin, Y.; Wang, B.; Cao, S.; Zhao, X.; Peng, F.; Qin, N.; Guo, Q.; Feng, H.; et al. Efforts in reducing air pollution exposure risk in China: State versus individuals. Environ. Int. 2020, 137, 105504. [Google Scholar] [CrossRef]
- WHO. Air Pollution in the Western Pacific. 2016. Available online: https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database#cms (accessed on 15 April 2020).
- WHO. Air Pollution in the Western Pacific. 2019. Available online: https://www.who.int/westernpacific/health-topics/air-pollution (accessed on 15 April 2020).
- Richter, A.; Burrows, J.P.; Nüß, H.; Granier, C.; Niemeier, U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 2005, 437, 129–132. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Ying, Q.; Yu, J.Z.; Wu, D.; Cheng, Y.; He, K.; Jiang, J. Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model. Atmos. Environ. 2012, 62, 228–242. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, S.X.; Liu, H.; Xu, J.Y.; Fu, K.; Klimont, Z.; Hao, J.M.; He, K.B.; Cofala, J.; Amann, M. NOx emissions in China: Historical trends and future perspectives. Atmos. Chem. Phys. 2013, 13, 9869–9897. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Bai, X. Sustainable urbanization in western China. Environ. Sci. Pol. Sustain. Dev. 2014, 56, 12–24. [Google Scholar] [CrossRef]
- Jiang, L.; Bai, L. Spatio-temporal characteristics of urban air pollutions and their causal relationships: Evidence from Beijing and its neighboring cities. Sci. Rep. 2018, 8, 1279. [Google Scholar] [CrossRef] [Green Version]
- Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Schubert, J.; Bania, J.; Khosrawipour, T. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J. Travel Med. 2020, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Weo-2016 Special Report Energy and Air Pollution; International Energy Agency: Paris, France, 2016; pp. 1–266. Available online: https://webstore.iea.org/weo-2016-special-report-energy-and-air-pollution (accessed on 12 April 2020).
- World Energy Council. World Energy Resources 2013 Survey: Summary; World Energy Council: London, UK, 2013; pp. 1–29. Available online: https://www.worldenergy.org/assets/images/imported/2013/10/WEC_Resources_summary-final_180314_TT.pdf (accessed on 27 April 2020).
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. 2016. Available online: http://who.int/phe/publications/air-pollution-global-assessment/en/ (accessed on 7 April 2020).
- Ashraf, A.; Butt, A.; Khalid, I.; Alam, R.U.; Ahmad, S.R. Smog analysis and its effect on reported ocular surface diseases: A case study of 2016 smog event of Lahore. Atmos. Environ. 2019, 198, 257–264. [Google Scholar] [CrossRef]
- Zhu, L.; Gan, Q.; Liu, Y.; Yan, Z. The impact of foreign direct investment on SO2 emissions in the Beijing-Tianjin-Hebei region: A spatial econometric analysis. J. Clean. Prod. 2017, 166, 189–196. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Crutzen, P.J. The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu. Rev. Earth Planet. Sci. 1979, 7, 443–472. [Google Scholar] [CrossRef]
- Parra, M.A.; González, L.; Elustondo, D.; Garrigó, J.; Bermejo, R.; Santamaría, J.M. Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain. Sci. Total Environ. 2006, 370, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Jhun, I.; Coull, B.A.; Zanobetti, A.; Koutrakis, P. The impact of nitrogen oxides concentration decreases on ozone trends in the USA. Air Qual. Atmos. Health 2015, 8, 283–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Booker, F.; Muntifering, R.; McGrath, M.; Burkey, K.; Decoteau, D.; Fiscus, E.; Manning, W.; Krupa, S.; Chappelka, A.; Grantz, D. The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol. 2009, 51, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Fann, N.; Lamson, A.D.; Anenberg, S.C.; Wesson, K.; Risley, D.; Hubbell, B.J. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal. 2012, 32, 81–95. [Google Scholar] [CrossRef]
- Lu, C.; Tian, H. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. J. Geophys. Res. Atmos. 2007, 112, D22S05. [Google Scholar] [CrossRef]
- Qi, Y. Spatio-temporal distributions of tropospheric NO2 over oases in Taklimakan Desert, China. Chin. Geogr. Sci. 2015, 25, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.; Yang, X.; Zhao, Z.; Wang, Z.; Yu, C.; Li, X. The spatial-temporal characteristics of air pollution in China from 2001–2014. Int. J. Environ. Res. Public Health 2015, 12, 15875–15887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Lee, C.S.; Zhang, R.; Chen, L. Spatial and temporal evaluation of long-term trend (2005–2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province, China. Atmos. Environ. 2017, 154, 151–166. [Google Scholar] [CrossRef]
- Xu, W.; Wu, Q.; Liu, X.; Tang, A.; Dore, A.J.; Heal, M.R. Characteristics of ammonia, acid gases, and PM2.5 for three typical land-use types in the NCP. Environ. Sci. Pollut. R. 2016, 23, 1158–1172. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Lin, J.; Song, C.; Liu, M.; Yan, Y.; Xu, Y.; Huang, B. Rapid growth in nitrogen dioxide pollution over Western China, 2005–2013. Atmos. Chem. Phys. 2016, 16, 6207. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Wu, L.; Xie, Y.; He, J.; Chen, X.; Wang, T.; Lin, Y.; Jin, T.; Wang, A.; Liu, Y.; et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef]
- Li, R.; Cui, L.; Li, J.; Zhao, A.; Fu, H.; Wu, Y.; Zhang, L.; Kong, L.; Chen, J. Spatial and temporal variation of particulate matter and gaseous pollutants in China during 2014–2016. Atmos. Environ. 2017, 161, 235–246. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Li, S.; Cao, W.; Ren, H.; Knibbs, L.D.; Abramson, M.J.; Guo, Y. Spatiotemporal patterns of PM10 concentrations over China during 2005–2016: A satellite-based estimation using the random forests approach. Environ. Pollut. 2018, 242, 605–613. [Google Scholar] [CrossRef]
- Cai, K.; Li, S.; Zheng, F.; Yu, C.; Zhang, X.; Liu, Y.; Li, Y. Spatio-temporal variations in NO2 and PM2.5 over the central plains economic region of China during 2005-2015 based on satellite observations. Aerosol Air Qual. Res. 2018, 18, 1221–1235. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2020, 220, 117066. [Google Scholar] [CrossRef]
- Xu, W.; Sun, J.; Liu, Y.; Xiao, Y.; Tian, Y.; Zhao, B.; Zhang, X. Spatiotemporal variation and socioeconomic drivers of air pollution in China during 2005–2016. J. Environ. Manag. 2019, 245, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Gu, X.; Ma, G.; Shi, S.; Wang, W.; Zuo, X.; Zhang, X. Spatial and temporal variations of air quality and six air pollutants in China during 2015–2017. Sci. Rep. 2019, 9, 15201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Samat, A.; Abuduwaili, J.; Ge, Y. Spatio-Temporal Variations of Satellite-Based PM2.5 Concentrations and Its Determinants in Xinjiang, Northwest of China. Int. J. Environ. Res. Pub. Health 2020, 17, 2157. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Mei, X.; Chen, L.; Wang, L.; Wang, Z.; Jing, Y. Long-Term (2005–2017) View of Atmospheric Pollutants in Central China Using Multiple Satellite Observations. Remote Sens. 2020, 12, 1041. [Google Scholar] [CrossRef] [Green Version]
- Rohde, R.A.; Muller, R.A. Air pollution in China: Mapping of concentrations and sources. PLoS ONE 2015, 10, e0135749. [Google Scholar] [CrossRef] [PubMed]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Lyu, W.; Li, Y.; Guan, D.; Zhao, H.; Zhang, Q.; Liu, Z. Driving forces of Chinese primary air pollution emissions: An index decomposition analysis. J. Clean. Prod. 2016, 133, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Miao, Y.; Li, Y.; Zhou, Y.; Ma, X.; He, Z.; Zhao, B.; Wang, S. What Factors Drive Air Pollutants in China? An Analysis from the Perspective of Regional Difference Using a Combined Method of Production Decomposition Analysis and Logarithmic Mean Divisia Index. Sustainability 2019, 11, 4650. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Chen, S.; Lü, H.; Liu, Y.; Wu, J. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011. Remote Sens. Environ. 2016, 174, 109–121. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.; Liu, T.; Li, X.; Xiao, J.; Zeng, W.; Ma, W. Air pollution and mortality in China. In Ambient Air Pollution and Health Impact in China; Dong, G.H., Ed.; Springer: Singapore, 2017; pp. 103–121. [Google Scholar]
- Mokoena, K.K.; Ethan, C.J.; Yu, Y.; Shale, K.; Liu, F. Ambient air pollution and respiratory mortality in Xi’an, China: A time-series analysis. Respir. Res. 2019, 20, 139. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Li, D.; Liew, Z.; Wei, F.; Wang, J.; Jin, M.; Chen, K.; Ritz, B. The association of short-term effects of air pollution and sleep disorders among elderly residents in China. Sci. Total Environ. 2020, 708, 134846. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, O.; Wang, H.; Wang, S.; Zhang, P. The effect of air pollution on body weight and obesity: Evidence from China. J. Dev. Econ. 2020, 145, 102461. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, T.A.; Chong-Xian, Z. Ambient air quality standards in China. Environ. Manag. 1984, 8, 473–479. [Google Scholar] [CrossRef]
- Wang, S.; Hao, J. Air quality management in China: Issues, challenges, and options. J. Environ. Sci. 2012, 24, 2–13. [Google Scholar] [CrossRef]
- Jin, Y.; Andersson, H.; Zhang, S. Air pollution control policies in China: A retrospective and prospects. Int. J. Environ. Res. Public Health 2016, 13, 1219. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Liao, W. Legislation, plans, and policies for prevention and control of air pollution in China: Achievements, challenges, and improvements. J. Clean. Prod. 2016, 112, 1549–1558. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Q.; Wang, S.; Ren, M.; Ma, R.; He, Y. Air Pollution Prevention and Control Policy in China. In Ambient Air Pollution and Health Impact in China; Dong, G.H., Ed.; Springer: Singapore, 2017; pp. 243–261. [Google Scholar]
- Zhang, J.; Jiang, H.; Zhang, W.; Ma, G.; Wang, Y.; Lu, Y.; Hu, X.; Zhou, J.; Peng, F.; Bi, J.; et al. Cost-benefit analysis of China’s Action Plan for Air Pollution Prevention and Control. Front. Eng. Manag. 2019, 6, 524–537. [Google Scholar] [CrossRef]
- NASA Earth Observatory. Airborne Nitrogen Dioxide Plummets over China. 2020. Available online: https://earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets-overchina (accessed on 17 April 2020).
- Lin, C.; Huang, R.; Xu, W.; Duan, J.; Zheng, Y.; Chen, Q.; Hu, W.; Li, Y.; Ni, H.; Wu, Y.; et al. Comprehensive Source Apportionment of Submicron Aerosol in Shijiazhuang, China: Secondary Aerosol Formation and Holiday Effects. ACS Earth Space Chem. 2020, 4, 947–957. [Google Scholar] [CrossRef]
- Tan, P.H.; Chou, C.; Liang, J.Y.; Chou, C.C.K.; Shiu, C.J. Air pollution “holiday effect” resulting from the Chinese New Year. Atmos. Environ. 2009, 43, 2114–2124. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Yao, D.; Zhao, S.; Yang, S.; Ji, D.; Sun, J.; Wang, Y.; Liu, Z.; Hu, B.; et al. Significant decreases in the volatile organic compound concentration, atmospheric oxidation capacity and photochemical reactivity during the National Day holiday over a suburban site in the North China Plain. Environ. Pollut. 2020, 263, 114657. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, W.; Han, L. Human activities and urban air pollution in Chinese mega city: An insight of ozone weekend effect in Beijing. Phys. Chem. Earth 2019, 110, 109–116. [Google Scholar] [CrossRef]
- Weblink 1.a. Available online: https://giovanni.gsfc.nasa.gov/giovanni/#service=TmAvMp&starttime=2019-11-24T00:00:00Z&endtime=2020-0122T23:59:59Z&shape=state_dept_countries/shp_43&&data=OMNO2d_003_ColumnAmoutNO2TropCloudScreened&variableFacets=dataFieldMeasurement%3ANO2%3B (accessed on 25 March 2020).
- Weblink 1.b. Available online: https://giovanni.gsfc.nasa.gov/giovanni/#service=TmAvMp&starttime=2020-01-23T00:00:00Z&endtime=2020-03-22T23:59:59Z&shape=state_dept_countries/shp_43&&data=OMNO2d_003_ColumnAmountNO2TropCloudScreened (accessed on 25 March 2020).
- Weblink 2. Available online: https://giovanni.gsfc.nasa.gov/giovanni/#service=ArAvTs&starttime=2019-11-24T00:00:00Z&endtime=2020-03-22T23:59:59Z&shape=state_dept_countries/shp_43&&data=OMNO2d_003_ColumnAmountNO2TropCloudScreened (accessed on 25 March 2020).
- Duncan, B.N.; Prados, A.I.; Lamsal, L.N.; Liu, Y.; Streets, D.G.; Gupta, P.; Hilsenrath, E.; Kahn, R.A.; Nielsen, J.E.; Beyersdorf, A.J.; et al. Satellite data of atmospheric pollution for US air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 2014, 94, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Nielsen, C.P.; Zhao, Y.; Lei, Y.; Mcelroy, M.B. Recent changes in particulate air pollution over China observed from space and the ground: Effectiveness of emission control. Environ. Sci. Technol. 2010, 44, 7771–7776. [Google Scholar] [CrossRef] [PubMed]
- Streets, D.G.; Canty, T.; Carmichael, G.R.; de Foy, B.; Dickerson, R.R.; Duncan, B.N.; Edwards, D.P.; Haynes, J.A.; Henze, D.K.; Houyoux, M.R.; et al. Emissions estimation from satellite retrievals: A review of current capability. Atmos. Environ. 2013, 77, 1011–1042. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.H.; Li, X.J.; Zhang, X.Y.; Wang, W.H.; Cheng, L.F.; Zhang, M.G.; Xv, J. Comparison and validation of band residual difference algorithm and principal component analysis algorithm for retrievals of atmospheric SO2 columns from satellite observations. Acta Phys. Sin. 2016, 65, 084204. [Google Scholar] [CrossRef]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef] [Green Version]
- Mallik, C.; Lal, S. Seasonal characteristics of SO2, NO2, and CO emissions in and around the Indo-Gangetic Plain. Environ. Monit. Assess. 2014, 186, 1295–1310. [Google Scholar] [CrossRef] [PubMed]
- Duncan, B.N.; Yoshida, Y.; de Foy, B.; Lamsal, L.N.; Streets, D.; Lu, Z.; Pickering, K.E.; Krotkov, N.A. The observed response of the Ozone Monitoring Instrument (OMI) NO2 column to NOx emission controls on power plants in the United States: 2005-2011. Atmos. Environ. 2013, 81, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, S.; Jahangir, S.; Chen, R.; Kumar, P.; Thakur, S. COVID-19’s lockdown effect on air quality in Indian cities using air quality zonal modeling. Urban Clim. 2021, 36, 100802. [Google Scholar] [CrossRef]
- Alvo, M.; Philip, L.H. Statistical Methods for Ranking Data; Springer: New York, NY, USA, 2014; ISBN 978-1-4939-1471-5. [Google Scholar] [CrossRef]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S. Tools for composite indicators building. Eur. Com. Ispra 2005, 15, 19–20. [Google Scholar]
- Lai, Y.; Brimblecombe, P. Regulatory effects on particulate pollution in the early hours of Chinese New Year, 2015. Environ. Monit. Assess. 2017, 189, 467. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Zhou, J.; Corsetti, G. How well have China’s recent Five-Year Plans been implemented for energy conservation and air pollution control? Environ. Sci. Technol. 2014, 48, 10036–10044. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Garbaccio, R.; Ho, M.S. China’s 11th Five-Year Plan and the environment: Reducing SO2 emissions. Rev. Environ. Econ. Policy 2009, 3, 231–250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Q.; Huang, D. Controlling fine particulate pollution and mitigating environmental health damage. Environ. Prot. 2011, 16, 25–26. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Morawska, L.; Jayaratne, E.R.; Mengersen, K.; Jamriska, M.; Thomas, S. Difference in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmos. Environ. 2002, 36, 4375–4383. [Google Scholar] [CrossRef] [Green Version]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q.; et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 2003, 108, 8809. [Google Scholar] [CrossRef]
- Yang, K.L.; Ting, C.C.; Wang, K.L.; Wingenter, O.W.; Chan, C.C. Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan. Atmos. Environ. 2005, 39, 3221–3230. [Google Scholar] [CrossRef]
- Kato, N.; Akimoto, H. Anthropogenic emissions of SO2, and NOx in Asia: Emission inventories. Atmos. Environ. 2007, 41, 171–191. [Google Scholar] [CrossRef]
- Kato, S.; Kajii, Y.; Itokazu, R.; Hirokawa, J.; Koda, S.; Kinjo, Y. Transport of atmospheric carbon monoxide, ozone, and hydrocarbons from Chinese coast to Okinawa island in the Western Pacific during winter. Atmos. Environ. 2004, 38, 2975–2981. [Google Scholar] [CrossRef]
- Lin, C.Y.; Liu, S.C.; Chou, C.C.K.; Huang, S.J.; Liu, C.M.; Kuo, C.H.; Young, C.Y. Long-range transport of aerosols and the impact on the air quality of Taiwan. Atmos. Environ. 2005, 39, 6066–6067. [Google Scholar] [CrossRef]
- Latha, K.M.; Highwood, E.J. Studies on particulate matter (PM10) and its precursors over urban environment of Reading, UK. J. Quant. Spectrosc. Radiat. Transfer. 2006, 101, 367–379. [Google Scholar] [CrossRef]
- Moreno, T.; Querol, X.; Alastuey, A.; Santos, S.G.; Gibbons, W. Controlling of influences on daily fluctuations of inhalable particles and gas concentrations: Local versus regional and exotic atmospheric pollutants at Puertollano, Spain. Atmos. Environ. 2006, 40, 3207–3218. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Xu, C.; An, Z. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmos. Environ. 2007, 41, 417–431. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Wang, X.; Nie, W.; Wang, J.; Gao, R.; Xu, P.; Shou, Y.; Zhang, Q.; Wang, W. Impacts of firecracker burning on aerosol chemical characteristics and human health risk levels during the Chinese New Year celebration in Jinan, China. Sci. Total Environ. 2014, 476, 57–64. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Yin, D.; Liu, N.; He, J. Ambient particulate pollution during Chinese Spring Festival in urban Lanzhou, Northwestern China. Atmos. Pollut. Res. 2014, 5, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.-X.; Liu, B. Speciation analysis of Cd in PM10 and PM2.5 during heating period in Urumqi. Spectrosc. Spect. Anal. 2012, 32, 235–238. [Google Scholar]
- Wang, K.; Tian, H.Z.; Hua, S.B.; Zhu, C.Y.; Gao, J.J.; Xue, Y.F.; Hao, J.M. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Sci. Total Environ. 2016, 559, 7–14. [Google Scholar] [CrossRef]
- Wang, Q.; Zhuang, G.; Huang, K.; Liu, T.; Lin, Y.; Deng, C.; Fu, Q.; Fu, J.S.; Chen, J.; Zhang, W. Evolution of particulate sulfate and nitrate along the Asian dust pathway: Secondary transformation and primary pollutants via long-range transport. Atmos. Res. 2016, 169, 86–95. [Google Scholar] [CrossRef]
- Hua, S.B.; Tian, H.Z.; Wang, K.; Zhu, C.Y.; Gao, J.J.; Ma, Y.L.; Xue, Y.F.; Wang, Y.; Duan, S.H.; Zhou, J.R. Atmospheric emission inventory of hazardous air pollutants from China’s cement plants: Temporal trends, spatial variation characteristics and scenario projections. Atmos. Environ. 2016, 128, 1–9. [Google Scholar] [CrossRef]
- Chai, F.; Gao, J.; Chen, Z.; Wang, S.; Zhang, Y.; Zhang, J.; Zhang, H.; Yun, Y.; Ren, C. Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China. J. Environ. Sci. 2014, 26, 75–82. [Google Scholar] [CrossRef]
- Lu, Z.; Streets, D.G.; Zhang, Q.; Wang, S.; Carmichael, G.R.; Cheng, Y.F.; Wei, C.; Chin, M.; Diehl, T.; Tan, Q. Sulfur dioxide emissions in China and sulphur trends in East Asia since 2000. Atmos. Chem. Phys. 2010, 10, 6311–6331. [Google Scholar] [CrossRef] [Green Version]
- Pui, D.Y.; Chen, S.C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Liu, H.; Wang, M.; Welles, S.; Marquez, S.; Frank, A.; Haas, C.N. Spatial-Temporal analysis of air Pollution, climate change, and Total Mortality in 120 cities of China. Front. Public Health 2016, 4, 2012–2013. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.F.; Zhang, C.L.; Mu, Y.J.; Liu, C.T.; Xue, C.Y.; Ye, C. The possible contribution of the periodic emissions from farmers’ activities in the NCP to atmospheric water-soluble ions in Beijing. Atmos. Chem. Phys. 2016, 16, 10097–10109. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2. Atmos. Chem. Phys. 2016, 16, 675–689. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, S.; Duan, L.; Lei, Y.; Cao, P.; Hao, J. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmos. Environ. 2008, 42, 8442–8452. [Google Scholar] [CrossRef]
- Rahman, A.; Luo, C.; Khan, M.H.R.; Ke, J.; Thilakanayaka, V.; Kumar, S. Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the concentration of airborne pollen in Guangzhou, China. Atmos. Environ. 2019, 212, 290–304. [Google Scholar] [CrossRef]
- Tian, D.; Fan, J.; Jin, H.; Mao, H.; Geng, D.; Hou, S.; Zhang, P.; Zhang, Y. Characteristic and spatiotemporal variation of air pollution in Northern China based on correlation analysis and clustering analysis of five air pollutants. J. Geophys. Res. Atmos. 2020, 125, e2019JD031931. [Google Scholar] [CrossRef]
- Xiao, K.; Wang, Y.; Wu, G.; Fu, B.; Zhu, Y. Spatiotemporal characteristics of air pollutants (PM10, PM2.5, SO2, NO2, O3, and CO) in the inland basin city of Chengdu, southwest China. Atmosphere 2018, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.Z.; Xu, X.B.; Zhao, C.; Yan, P.A. Review of Atmospheric Chemistry Research in China: Photochemical Smog, Haze Pollution, and Gas-Aerosol Interactions. Adv. Atmos. Sci. 2012, 29, 1006–1026. [Google Scholar] [CrossRef]
- Meng, Z.; Dabdub, D.; Seinfeld, J.H. Chemical coupling between atmospheric ozone and particulate matter. Science 1997, 277, 116–119. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.G.; Day, D.A.; Cleary, P.A.; Wooldridge, P.J.; Millet, D.B.; Goldstein, A.H.; Cohen, R.C. The weekend effect within and downwind of Sacramento—Part 1: Observations of ozone, nitrogen oxides, and VOC reactivity. Atmos. Chem. Phys. 2007, 7, 5327–5339. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Tonnesen, G.S.; Wang, Z. Weekend/weekday differences of ozone, NOx, CO, VOCs, PM10 and the light scatter during ozone season in southern California. Atmos. Environ. 2004, 38, 3069–3087. [Google Scholar] [CrossRef]
- Chou, C.C.K.; Liu, S.C.; Lin, C.Y.; Shiu, C.J.; Chang, K.H. The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies. Atmos. Environ. 2006, 40, 3898–3908. [Google Scholar] [CrossRef]
- California Air Resources Board. The Ozone Weekend Effect in California; CARB Planning and Technical Support Division: Sacramento, CA, USA, 2003.
- Beaney, G.; Gough, W.A. The influence of tropospheric ozone on the air temperature of the city of Toronto, Ontario, Canada. Atmos. Environ. 2002, 36, 2319–2325. [Google Scholar] [CrossRef]
- Beirle, S.; Platt, U.; Wenig, M.; Wagner, T. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources. Atmos. Chem. Phys. 2003, 3, 2225–2232. [Google Scholar] [CrossRef] [Green Version]
- Riga-Karandinos, A.-N.; Saitanis, C. Comparative assessment of ambient air quality in two typical Mediterranean coastal cities in Greece. Chemosphere 2005, 59, 1125–1136. [Google Scholar] [CrossRef]
- Geddes, J.A.; Murphy, J.G.; Wang, D.K. Long term changes in nitrogen oxides and volatile organic compounds in Toronto and the challenges facing local ozone control. Atmos. Environ. 2009, 43, 3407–3415. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Guo, H.; Cheung, K.; Ding, X.; Zhao, X.; He, Q.; Gao, B.; Zhang, Z.; Liu, T. Trends of ambient fine particles and major chemical components in the Pearl River Delta region: Observation at a regional background site in fall and winter. Sci. Total Environ. 2014, 497, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zou, T.; Guo, B.; Li, S.; Zhang, H.; Zhang, S.; Huang, H.; Chen, S.X. Assessing Beijing’s PM2.5 pollution: Severity, weather impact, APEC and winter heating. Proc. R. Soc. A 2015, 471, 20150257. [Google Scholar] [CrossRef] [Green Version]
- Lyu, X.; Chen, N.; Guo, H.; Zeng, L.; Zhang, W.; Shen, F.; Quan, J.; Wang, N. Chemical characteristics and causes of airborne particulate pollution in warm seasons in Wuhan, central China. Atmos. Chem. Phys. 2016, 16, 10671–10687. [Google Scholar] [CrossRef] [Green Version]
City | Jinan | Guangzhou | Shanghai | Nanjing | Xiamen | Beijing | Zhengzhou | Wuhan | Harbin | Chongqing | Chengdu | Xian | Lanzhou | Anshan | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | Before | 1.46 | 0.98 | 0.83 | 0.97 | 0.61 | 0.86 | 1.28 | 1.09 | 1.22 | 1.02 | 0.98 | 1.33 | 1.87 | 1.60 |
After | 0.92 | 0.73 | 0.65 | 0.69 | 0.44 | 0.86 | 0.89 | 0.91 | 0.85 | 0.79 | 0.67 | 0.95 | 1.12 | 1.37 | |
Change | −37 | −25 | −21 | −29 | −27 | 0 | −31 | −17 | −30 | −22 | −31 | −28 | −40 | −14 | |
NO2 | Before | 56.57 | 60.86 | 57.60 | 53.73 | 25.75 | 45.17 | 54.83 | 52.73 | 56.73 | 46.05 | 48.70 | 61.48 | 65.80 | 43.11 |
After | 27.02 | 27.68 | 27.68 | 25.91 | 13.01 | 26.31 | 25.83 | 19.54 | 28.89 | 24.51 | 21.94 | 32.29 | 40.40 | 30.42 | |
Change | −52 | −55 | −52 | −52 | −49 | −42 | −53 | −63 | −49 | −47 | −55 | −47 | −39 | −29 | |
O3 | Before | 25.74 | 43.01 | 39.73 | 30.62 | 64.35 | 25.44 | 25.95 | 23.69 | 32.37 | 14.45 | 23.85 | 17.08 | 34.74 | 33.95 |
After | 64.18 | 48.69 | 71.77 | 68.07 | 75.40 | 49.59 | 66.24 | 58.47 | 70.48 | 35.36 | 52.35 | 51.20 | 62.74 | 53.45 | |
Change | 149 | 13 | 81 | 122 | 17 | 95 | 155 | 147 | 118 | 145 | 120 | 200 | 81 | 57 | |
PM10 | Before | 141.31 | 74.48 | 49.40 | 80.86 | 43.07 | 57.45 | 121.43 | 86.54 | 141.98 | 83.93 | 102.22 | 148.41 | 107.27 | 100.39 |
After | 89.01 | 33.03 | 34.84 | 50.75 | 30.66 | 59.60 | 89.67 | 47.61 | 77.55 | 58.11 | 65.05 | 107.01 | 88.11 | 94.80 | |
Change | −37 | −56 | −29 | −37 | −29 | 4 | −26 | −45 | −45 | −31 | −36 | −28 | −18 | −6 | |
PM2.5 | Before | 98.66 | 38.18 | 53.15 | 56.17 | 30.95 | 44.69 | 106.48 | 63.58 | 129.74 | 59.86 | 75.56 | 116.60 | 61.27 | 69.40 |
After | 62.39 | 21.92 | 35.13 | 36.18 | 21.22 | 63.89 | 72.21 | 39.08 | 68.51 | 44.44 | 47.27 | 81.10 | 40.58 | 68.14 | |
Change | −37 | −43 | −34 | −36 | −31 | 43 | −32 | −39 | −47 | −26 | −37 | −30 | −34 | −2 | |
SO2 | Before | 21.52 | 8.64 | 7.80 | 7.80 | 5.31 | 4.87 | 10.24 | 9.46 | 36.40 | 8.96 | 8.22 | 14.16 | 29.77 | 21.01 |
After | 13.27 | 5.49 | 5.66 | 5.38 | 4.40 | 4.53 | 8.37 | 7.50 | 27.25 | 6.70 | 6.92 | 10.51 | 18.23 | 18.89 | |
Change | −38 | −36 | −27 | −31 | −17 | −7 | −18 | −21 | −25 | −25 | −16 | −26 | −39 | −10 | |
AQI | Before | 131.38 | 164.22 | 73.80 | 79.16 | 48.00 | 65.71 | 141.37 | 88.17 | 61.70 | 82.16 | 102.16 | 153.66 | 88.42 | 96.03 |
After | 88.44 | 92.98 | 51.59 | 54.42 | 36.95 | 88.12 | 101.06 | 56.58 | 35.91 | 63.37 | 68.98 | 114.82 | 73.79 | 92.22 | |
Change | −33 | −43 | −30 | −31 | −23 | 34 | −29 | −36 | −42 | −23 | −32 | −25 | −17 | −4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahaman, S.; Jahangir, S.; Chen, R.; Kumar, P. Restricted Anthropogenic Activities and Improved Urban Air Quality in China: Evidence from Real-Time and Remotely Sensed Datasets Using Air Quality Zonal Modeling. Atmosphere 2022, 13, 961. https://doi.org/10.3390/atmos13060961
Rahaman S, Jahangir S, Chen R, Kumar P. Restricted Anthropogenic Activities and Improved Urban Air Quality in China: Evidence from Real-Time and Remotely Sensed Datasets Using Air Quality Zonal Modeling. Atmosphere. 2022; 13(6):961. https://doi.org/10.3390/atmos13060961
Chicago/Turabian StyleRahaman, Saidur, Selim Jahangir, Ruishan Chen, and Pankaj Kumar. 2022. "Restricted Anthropogenic Activities and Improved Urban Air Quality in China: Evidence from Real-Time and Remotely Sensed Datasets Using Air Quality Zonal Modeling" Atmosphere 13, no. 6: 961. https://doi.org/10.3390/atmos13060961
APA StyleRahaman, S., Jahangir, S., Chen, R., & Kumar, P. (2022). Restricted Anthropogenic Activities and Improved Urban Air Quality in China: Evidence from Real-Time and Remotely Sensed Datasets Using Air Quality Zonal Modeling. Atmosphere, 13(6), 961. https://doi.org/10.3390/atmos13060961