Transmission Risk Prediction and Evaluation of Mountain-Type Zoonotic Visceral Leishmaniasis in China Based on Climatic and Environmental Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection of Case Data
2.3. Collection of Climatic and Environmental Variables
2.4. Ecological Niche Modeling
2.5. Assessment of the Performance of Ecological Niche Models
2.6. Prediction of MT-ZVL Transmission Risk in China
2.7. Statistical Analysis
3. Results
3.1. Epidemiological Characteristics of MT-ZVL in China from 2015 to 2021
3.2. Comparison of the MT-ZVL Transmission Risk Predicted by Using Ecological Niche Models
3.3. Performance of Ecological Niche Models
3.4. Contributions of Environmental Variables to Ecological Niche Models
3.5. Prediction of MT-ZVL Transmission Risk in China
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdoli, A. Leishmaniasis. Lancet 2019, 393, 872. [Google Scholar] [CrossRef] [Green Version]
- Alvar, J.; Yactayo, S.; Bern, C. Leishmaniasis and poverty. Trends Parasitol. 2006, 22, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Desjeux, P. Leishmaniasis: Current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis. 2004, 27, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, W.; Herricks, J.R.; Hotez, P.J. A review of visceral leishmaniasis during the conflict in South Sudan and the consequences for East African countries. Parasites Vectors 2016, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Lun, Z.-R.; Wu, M.-S.; Chen, Y.-F.; Wang, J.-Y.; Zhou, X.-N.; Liao, L.-F.; Chen, J.-P.; Chow, L.M.C.; Chang, K.P. Visceral Leishmaniasis in China: An endemic disease under control. Clin. Microbiol. Rev. 2015, 28, 987–1004. [Google Scholar] [CrossRef] [Green Version]
- Guan, L.; Wu, Z. Historical experience in the elimination of visceral leishmaniasis in the plain region of Eastern and Central China. Infect. Dis. Poverty 2014, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Qian, M.B.; Chen, J.; Bergquist, R.; Li, Z.J.; Li, S.Z.; Xiao, N.; Utzinger, J.; Zhou, X.N. Neglected tropical diseases in the People’s Republic of China: Progress towards elimination. Infect. Dis. Poverty 2019, 8, 6–21. [Google Scholar] [CrossRef]
- Guan, L.R.; Wang, J.; Hu, Y.D.; Xiong, G.H.; Zheng, S.C. Epidemiology of kala-azar in China and its significance in the prevention and treatment. J. Control Res. Epidem. Dis. 1976, 3, 225–231. (In Chinese) [Google Scholar]
- Guan, L.R. Current status of kala-azar and vector control in China. Bull. World Health Organ. 1991, 69, 595–601. [Google Scholar]
- Li, Y.F.; Zhong, W.X.; Zhao, G.H.; Wang, H.F. Prevalence and control status of kala-azar in China. J. Pathog. Biol. 2011, 6, 629–631. (In Chinese) [Google Scholar]
- Jiang, D.; Ma, T.; Hao, M.; Qian, Y.; Chen, S.; Meng, Z.; Wang, L.; Zheng, C.; Qi, X.; Wang, Q.; et al. Spatiotemporal patterns and spatial risk factors for visceral leishmaniasis from 2007 to 2017 in Western and Central China: A modelling analysis. Sci. Total Environ. 2021, 764, 144275. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, Z.; Zhou, S.; Zheng, C.; Ma, H. Epidemiological Feature of Visceral Leishmaniasis in China, 2004–2012. Iran J. Public Health 2015, 44, 51–59. [Google Scholar] [PubMed]
- Han, S.; Wu, W.; Xue, C.; Ding, W.; Hao, Y.; Hou, Y.; Feng, Y.; Zhong, B.; Cao, L.; Zhang, Y.; et al. Endemic status of visceral leishmaniasis in China from 2004 to 2016. Chin. J. Parasitol. Parasit. Dis. 2019, 37, 189–195. (In Chinese) [Google Scholar]
- Zhao, Y.; Jiang, D.; Ding, F.; Hao, M.; Wang, Q.; Chen, S.; Xie, X.; Zheng, C.; Ma, T. Recurrence and Driving Factors of Visceral Leishmaniasis in Central China. Int. J. Environ. Res. Public Health 2021, 18, 9535. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Lyu, S.; Zhang, Y.; Li, Y.; Li, S.; Zhou, X.N. Visceral Leishmaniasis-China, 2015–2019. China CDC Wkly. 2020, 2, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xia, S.; Xue, J.; Zhou, Z.; Li, Y.; Zhu, Z.; Zhang, Y.; Wang, Q.; Li, S. Transmission risks of mountain-type zoonotic visceral leishmaniasis-six endemic provincial-level administrative divisions, China, 2015–2020. China CDC Wkly. 2022, 4, 148–152. [Google Scholar] [CrossRef]
- Chavy, A.; Nava, A.F.D.; Luz, S.L.B.; Ramírez, J.D.; Herrera, G.; dos Santos, T.V.; Ginouves, M.; Demar, M.; Prévot, G.; Guégan, J.-F.; et al. Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome. PLOS Negl. Trop. Dis. 2019, 13, e0007629. [Google Scholar] [CrossRef] [Green Version]
- Acharya, B.K.; Cao, C.; Xu, M.; Khanal, L.; Naeem, S.; Pandit, S. Present and Future of Dengue Fever in Nepal: Mapping Climatic Suitability by Ecological Niche Model. Int. J. Environ. Res. Public Health 2018, 15, 187. [Google Scholar] [CrossRef] [Green Version]
- Leta, S.; Fetene, E.; Mulatu, T.; Amenu, K.; Jaleta, M.B.; Beyene, T.J.; Negussie, H.; Revie, C.W. Modeling the global distribution of Culicoides imicola: An ensemble approach. Sci. Rep. 2019, 9, 14187. [Google Scholar] [CrossRef]
- Zhu, G.; Fan, J.; Peterson, A.T. Schistosoma japonicum transmission risk maps at present and under climate change in mainland China. PLoS Negl. Trop. Dis. 2017, 11, e0006021. [Google Scholar] [CrossRef] [Green Version]
- Marques, R.; Krüger, R.F.; Cunha, S.K.; Silveira, A.S.; Alves, D.M.; Rodrigues, G.D.; Peterson, A.T.; Jiménez-García, D. Climate change impacts on Anopheles (K.) cruzii in urban areas of Atlantic Forest of Brazil: Challenges for malaria diseases. Acta Trop. 2021, 224, 106123. [Google Scholar] [CrossRef]
- Abdullah, A.Y.M.; Dewan, A.; Shogib, M.R.I.; Rahman, M.M.; Hossain, M.F. Environmental factors associated with the distribution of visceral leishmaniasis in endemic areas of Bangladesh: Modeling the ecological niche. Trop. Med. Health 2017, 45, 13. [Google Scholar] [CrossRef] [PubMed]
- Chalghaf, B.; Chemkhi, J.; Mayala, B.; Harrabi, M.; Benie, G.B.; Michael, E.; Ben Salah, A. Ecological niche modeling predicting the potential distribution of Leishmania vectors in the Mediterranean basin: Impact of climate change. Parasit Vectors 2018, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.-F.; Zhu, L.-Q.; Li, Y.-L.; Zhang, L.-J.; Xue, J.-B.; Xia, S.; Lv, S.; Xu, J.; Li, S.-Z. Identification of the high-risk area for schistosomiasis transmission in China based on information value and machine learning: A newly data-driven modeling attempt. Infect. Dis. Poverty 2021, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Hao, Y.; Xia, S.; Guo, Y.; Xue, J.; Zhang, Y.; Wang, L.; Dong, Y.; Xu, J.; Li, S. Detection of schistosomiasis transmission risks in Yunnan Province based on ecological niche modeling. Chin. J. Parasitol. Parasit. Dis. 2020, 38, 80–87. (In Chinese) [Google Scholar]
- Gong, Y.; Hu, X.; Zhou, Z.; Zhu, H.; Hao, Y.; Wang, Q.; Zhang, Y.; Li, S. Ecological niche modeling-based prediction on transmission risk of visceral leishmaniasis in the extension region of Loess Plateau, China. Chin. J. Parasitol. Parasit. Dis. 2021, 39, 218–225. (In Chinese) [Google Scholar]
- Guan, L.; Zhou, Z.; Jin, C.; Fu, Q.; Chai, J. Phlebotomine sand flies (Diptera: Psychodidae) transmitting visceral leishmaniasis and their geographical distribution in China: A review. Infect. Dis. Poverty 2016, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xue, J.; Xia, S.; Han, S.; Hu, X.; Zhou, Z.; Zhang, Y.; Li, S. Distribution of Suitable Environments for Phlebotomus chinensis as the Vector for Mountain-Type Zoonotic Visceral Leishmaniasis-Six Provinces, China. China CDC Wkly. 2020, 2, 815–819. [Google Scholar] [CrossRef]
- Wu, Y.; Li, G.; Liao, Q.; Chen, Y.; Gao, B. Epidemiology and control of kala-azar in Sichuan Province. End Dis. Bull 1995, 10, 25–29. (In Chinese) [Google Scholar]
- Sofizadeh, A.; Rassi, Y.; Vatandoost, H.; Hanafi-Bojd, A.A.; Mollalo, A.; Rafizadeh, S.; Akhavan, A.A. Predicting the Distribution of Phlebotomus papatasi (Diptera: Psychodidae), the Primary Vector of Zoonotic Cutaneous Leishmaniasis, in Golestan Province of Iran Using Ecological Niche Modeling: Comparison of MaxEnt and GARP Models. J. Med. Entomol. 2017, 54, 312–320. [Google Scholar] [CrossRef]
- Andrade-Filho, J.D.; Scholte, R.G.C.; Amaral, A.L.G.; Shimabukuro, P.H.F.; Carvalho, O.S.; Caldeira, R.L. Occurrence and Probability Maps of Lutzomyia longipalpis and Lutzomyia cruzi (Diptera: Psychodidae: Phlebotominae) in Brazil. J. Med. Entomol. 2017, 54, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Diniz-Filho, J.A.F.; Bini, L.M.; Rangel, T.F.; Loyola, R.D.; Hof, C.; Nogue´s-Bravo, D.; Araújo, M.B. Partitioning and mapping uncertainties in ensembles of forecasts of species under climate change. Ecography 2009, 32, 897–906. [Google Scholar] [CrossRef]
- Buisson, L.; Thuiller, W.; Casajus, N.; Lek, S.; Grenouillette, G. Uncertainty in ensemble forecasting of species distribution. Glob. Chang. Biol. 2009, 16, 1145–1157. [Google Scholar] [CrossRef]
- Carvalho, B.M.; Rangel, E.F.; Vale, M.M. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bull Entomol. Res. 2017, 107, 419–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, H.; Sobero´n, J.; Peterson, A.T. No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 2015, 6, 1126–1136. [Google Scholar] [CrossRef]
- Heikkinen, R.K.; Marmion, M.; Luoto, M. Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 2012, 35, 276–288. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Y.; Zhang, Y.; Li, S. Prevalence of visceral leishmaniasis in China during 2015–2018. Chin. J. Parasitol. Parasit. Dis. 2020, 38, 339–345. (In Chinese) [Google Scholar]
- Zhou, Z.; Li, Y.; Zhang, Y.; Li, S. Prevalence of visceral leishmaniasis in China in 2019. Chin. J. Parasitol. Parasit. Dis. 2020, 38, 602–607. (In Chinese) [Google Scholar]
- Luo, Z.; Zhou, Z.; Gong, Y.; Feng, J.; Li, Y.; Zhang, Y.; Li, S. Current status and challenges of visceral leishmaniasis in China. Chin. J. Parasitol. Parasit. Dis. 2022, 40, 146–152. (In Chinese) [Google Scholar]
- Zhou, Z.-B.; Wang, J.-Y.; Gao, C.-H.; Han, S.; Li, Y.-Y.; Zhang, Y.; Zhou, X.-N. Contributions of the National Institute of Parasitic Diseases to the control of visceral leishmaniasis in China. Adv. Parasitol. 2020, 110, 185–216. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G. Current situation of kala-azar epidemic in China. End Dis. Bull. 1972, 7, 113–125. (In Chinese) [Google Scholar]
- Wang, Z.; Xiong, G.H.; Guan, L. Achievement on the epidemiology and control of kala-azar in China. Chin. J. Epidemiol. 2000, 21, 51–54. (In Chinese) [Google Scholar]
- Guan, L. Present situation of visceral leishmaniasis and prospect for its control in China. Chin. J Parasitol. Parasit. Dis. 2009, 27, 394–397. (In Chinese) [Google Scholar]
- Guan, L.; Shen, W. Recent advances in visceral leishmaniasis in China. Southeast Asian J. Trop. Med. Public Health 1991, 22, 291–298. [Google Scholar] [PubMed]
- Guan, Z.; Chen, C.; Huang, C.; Zhang, H.; Zhou, Y.; Zhou, Y.; Wu, J.; Zhou, Z.; Yang, S.; Li, L. Epidemiological features and spatial-temporal distribution of visceral leishmaniasis in mainland China: A population-based surveillance study from 2004 to 2019. Parasit Vectors 2021, 14, 517. [Google Scholar] [CrossRef]
- Zheng, Y.; Bai, Y.; Tie, P.; Yan, C.; Wang, T.; Wang, J.; Wang, S.; Cai, J. Epidemiological characteristics of visceral leishmaniasis in Shanxi province, 2010—2019. Chin. J. Parasitol. Parasit Dis. 2021, 39, 352–358. (In Chinese) [Google Scholar]
- Tang, Z.; Gao, P.; Zhou, K.; Liu, J.; Guo, X. A survey on sandfly in Linzhou city of Henan province. Chin. J. Hyg Insect. Equip. 2017, 23, 397–398. (In Chinese) [Google Scholar]
- Hong, A.; Zampieri, R.A.; Shaw, J.J.; Floeter-Winter, L.M.; Laranjeira-Silva, M.F. One Health Approach to Leishmaniases: Understanding the Disease Dynamics through Diagnostic Tools. Pathogens 2020, 9, 809. [Google Scholar] [CrossRef]
- Firouraghi, N.; Mohammadi, A.; Hamer, D.H.; Bergquist, R.; Mostafavi, S.M.; Shamsoddini, A.; Raouf-Rahmati, A.; Fakhar, M.; Moghaddas, E.; Kiani, B. Spatio-temporal visualisation of cutaneous leishmaniasis in an endemic, urban area in Iran. Acta Trop. 2022, 225, 106181. [Google Scholar] [CrossRef] [PubMed]
- Ocampo, C.B.; Guzmán-Rodríguez, L.; Moreno, M.; Castro, M.D.M.; Valderrama-Ardila, C.; Alexander, N. Integration of phlebotomine ecological niche modelling, and mapping of cutaneous leishmaniasis surveillance data, to identify areas at risk of under-estimation. Acta Trop. 2021, 224, 106122. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J. Mapping disease transmission risk: Enriching models using biogeography and ecology. Emerg. Infect. Dis. 2015, 21, 1489. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, D.; Chen, X.; Zhou, Q.; Peng, Y.; Li, J. CCHZ-DISO: A Timely New Assessment System for data quality or model performance from Da Dao Zhi Jian. Nature 2022. [Google Scholar]
- Zhou, Q.; Chen, D.; Hu, Z.; Chen, X. Decompositions of Taylor diagram and DISO performance criteria. Int. J. Climatol. 2021, 41, 5726–5732. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Zhou, Q.; Chen, D.; Li, J. DISO: A rethink of Taylor diagram. Int. J. Climatol. 2019, 39, 2825–2832. [Google Scholar] [CrossRef]
- Hao, Y.; Hu, X.; Gong, Y.; Xue, J.; Zhou, Z.; Li, Y.; Wang, Q.; Zhang, Y.; Li, S. Spatio-temporal clustering of Mountain-type Zoonotic Visceral Leishmaniasis in China between 2015 and 2019. PLoS Negl. Trop. Dis. 2021, 15, e0009152. [Google Scholar] [CrossRef]
- Chen, H.; Gao, J.; Li, K.; Yang, Z.; Peng, H.; Ma, Y. Ecological niches of sandfly (Diptera: Psychodidae) in the extension region of Loess Plateau, China: An endemic focus of visceral leishmaniasis. Chin. J. Vector Biol. Control 2019, 30, 597–602. (In Chinese) [Google Scholar]
- Zheng, C.; Xue, C.; Wu, W.; Zhou, X. Epidemiological characteristics of Kala-azar disease in China, during 2005–2015. Chin. J. Epidemiol. 2017, 38, 431–434. (In Chinese) [Google Scholar]
- Cross, E.R.; Hyams, K.C. The potential effect of global warming on the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia. Environ. Health Perspect. 1996, 104, 724–727. [Google Scholar] [CrossRef]
Variable Classification | Variable Name (Units) | Definition | Year |
---|---|---|---|
Bioclimatic Data | BIO1 (℃) | Annual mean temperature | 1955–2000 |
BIO2 (℃) | Mean diurnal range | ||
BIO3 (%) | Isothermality | ||
BIO4 (%) | Standard deviation of temperature seasonality | ||
BIO5 (℃) | Max temperature of warmest month | ||
BIO6 (℃) | Min temperature of coldest month | ||
BIO7 (℃) | Temperature annual range | ||
BIO8 (℃) | Mean temperature of wettest quarter | ||
BIO9 (℃) | Mean temperature of driest quarter | ||
BIO10 (℃) | Mean temperature of warmest quarter | ||
BIO11 (mm) | Mean temperature of coldest quarter | ||
BIO12 (mm) | Annual precipitation | ||
BIO13 (mm) | Precipitation of wettest month | ||
BIO14 (mm) | Precipitation of driest month | ||
BIO15 | Coefficient of variation for precipitation seasonality | ||
BIO16 (mm) | Precipitation of wettest quarter | ||
BIO17 (mm) | Precipitation of driest quarter | ||
BIO18 (mm) | Precipitation of warmest quarter | ||
BIO19 (mm) | Precipitation of coldest quarter | ||
Geographical Data | ElV | Elevation | 2000 |
LF | Landform | 2010 | |
LU | Land use | 2015 | |
NDVI | Normalized difference vegetation index | 2019 | |
VEG | Vegetation | 2015 | |
Socioeconomic Data | GDP | Gross domestic product | 2015 |
DP | Density of population | 2015 |
Model | AUC Value | TSS Value |
---|---|---|
ANN | 0.912 ± 0.033 | 0.777 ± 0.074 |
CTA | 0.902 ± 0.029 | 0.775 ± 0.054 |
FDA | 0.963 ± 0.014 | 0.829 ± 0.044 |
GAM | 0.940 ± 0.019 | 0.826 ± 0.065 |
GBM | 0.965 ± 0.016 | 0.854 ± 0.045 |
GLM | 0.943 ± 0.039 | 0.828 ± 0.068 |
MARS | 0.961 ± 0.018 | 0.854 ± 0.073 |
MaxEnt | 0.968 ± 0.019 | 0.856 ± 0.046 |
RF | 0.971 ± 0.011 | 0.857 ± 0.043 |
SRE | 0.790 ± 0.022 | 0.581 ± 0.044 |
Variable Name | ANN | CTA | FDA | GAM | GBM | GLM | MARS | MaxEnt | RF | SRE |
---|---|---|---|---|---|---|---|---|---|---|
bio_01 | 0.9 | 2.7 | 5.7 | 4.9 | 1.4 | 6.6 | 2.8 | 3.3 | 5.1 | 5.8 |
bio_02 | 0.2 | 0.0 | 4.4 | 0.8 | 0.1 | 4.1 | 0.0 | 11.6 | 1.6 | 4.2 |
bio_03 | 0.8 | 0.8 | 4.0 | 0.0 | 7.7 | 4.6 | 6.0 | 6.1 | 13.5 | 4.6 |
bio_04 | 2.8 | 0.0 | 7.0 | 0.3 | 0.6 | 5.1 | 4.3 | 0.2 | 2.7 | 2.8 |
bio_05 | 2.8 | 0.0 | 3.3 | 0.3 | 0.1 | 6.6 | 0.4 | 0.5 | 0.4 | 3.7 |
bio_06 | 2.0 | 0.0 | 11.5 | 0.7 | 4.9 | 6.3 | 18.3 | 24.1 | 6.8 | 6.7 |
bio_07 | 1.4 | 0.0 | 3.9 | 0.6 | 0.2 | 7.3 | 3.8 | 0.0 | 1.4 | 3.4 |
bio_08 | 1.5 | 0.0 | 6.5 | 6.8 | 2.0 | 4.6 | 3.7 | 5.1 | 7.4 | 4.4 |
bio_09 | 0.6 | 0.0 | 0.3 | 3.6 | 0.0 | 4.9 | 0.0 | 5.4 | 3.7 | 6.3 |
bio_10 | 1.2 | 0.0 | 7.2 | 3.7 | 0.3 | 5.5 | 8.6 | 1.5 | 1.2 | 4.4 |
bio_11 | 0.9 | 60.8 | 7.2 | 5.5 | 63.6 | 6.9 | 4.7 | 5.1 | 11.3 | 6.9 |
bio_12 | 17.8 | 6.7 | 10.5 | 7.5 | 3.5 | 3.1 | 14.9 | 7.2 | 2.9 | 5.6 |
bio_13 | 7.0 | 0.0 | 4.4 | 5.3 | 0.3 | 2.4 | 0.0 | 4.5 | 1.6 | 4.6 |
bio_14 | 0.2 | 0.7 | 0.2 | 7.4 | 0.0 | 1.0 | 1.8 | 6.5 | 0.0 | 1.2 |
bio_15 | 1.6 | 1.3 | 0.3 | 3.6 | 0.4 | 1.8 | 5.0 | 0.3 | 2.7 | 1.2 |
bio_16 | 11.1 | 20.9 | 10.3 | 5.1 | 3.6 | 5.0 | 11.5 | 6.3 | 3.7 | 5.1 |
bio_17 | 2.7 | 1.4 | 1.3 | 5.5 | 0.0 | 6.2 | 0.0 | 0.0 | 0.8 | 2.7 |
bio_18 | 8.7 | 0.0 | 9.5 | 7.5 | 2.1 | 4.5 | 3.7 | 1.6 | 2.5 | 4.8 |
bio_19 | 2.4 | 0.0 | 1.0 | 4.8 | 0.0 | 5.9 | 0.2 | 0.1 | 0.8 | 2.5 |
elv | 15.1 | 2.9 | 0.4 | 1.4 | 1.5 | 4.6 | 4.5 | 4.8 | 3.1 | 4.7 |
gdp | 11.0 | 0.0 | 0.0 | 0.9 | 0.2 | 0.5 | 0.5 | 0.1 | 1.9 | 4.0 |
lf | 0.6 | 0.0 | 0.4 | 2.3 | 1.5 | 1.0 | 2.1 | 1.6 | 2.5 | 1.1 |
lu | 0.5 | 0.0 | 0.0 | 5.3 | 0.0 | 0.2 | 0.0 | 0.3 | 0.2 | 1.6 |
ndvi | 0.0 | 1.9 | 0.6 | 6.2 | 4.7 | 0.5 | 1.2 | 2.6 | 17.0 | 3.3 |
pop | 5.0 | 0.0 | 0.0 | 4.1 | 0.6 | 0.2 | 0.1 | 0.0 | 2.5 | 4.0 |
veg | 1.2 | 0.0 | 0.3 | 5.7 | 0.6 | 0.7 | 2.1 | 1.2 | 2.7 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Luo, Z.; Zhao, J.; Gong, Y.; Li, Y.; Zhu, Z.; Tian, T.; Wang, Q.; Zhang, Y.; Zhou, Z.; et al. Transmission Risk Prediction and Evaluation of Mountain-Type Zoonotic Visceral Leishmaniasis in China Based on Climatic and Environmental Variables. Atmosphere 2022, 13, 964. https://doi.org/10.3390/atmos13060964
Hao Y, Luo Z, Zhao J, Gong Y, Li Y, Zhu Z, Tian T, Wang Q, Zhang Y, Zhou Z, et al. Transmission Risk Prediction and Evaluation of Mountain-Type Zoonotic Visceral Leishmaniasis in China Based on Climatic and Environmental Variables. Atmosphere. 2022; 13(6):964. https://doi.org/10.3390/atmos13060964
Chicago/Turabian StyleHao, Yuwan, Zhuowei Luo, Jian Zhao, Yanfeng Gong, Yuanyuan Li, Zelin Zhu, Tian Tian, Qiang Wang, Yi Zhang, Zhengbin Zhou, and et al. 2022. "Transmission Risk Prediction and Evaluation of Mountain-Type Zoonotic Visceral Leishmaniasis in China Based on Climatic and Environmental Variables" Atmosphere 13, no. 6: 964. https://doi.org/10.3390/atmos13060964
APA StyleHao, Y., Luo, Z., Zhao, J., Gong, Y., Li, Y., Zhu, Z., Tian, T., Wang, Q., Zhang, Y., Zhou, Z., Hu, Z., & Li, S. (2022). Transmission Risk Prediction and Evaluation of Mountain-Type Zoonotic Visceral Leishmaniasis in China Based on Climatic and Environmental Variables. Atmosphere, 13(6), 964. https://doi.org/10.3390/atmos13060964