Identification of Smoke from Straw Burning in Remote Sensing Images with the Improved YOLOv5s Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Data Preprocessing
2.4. Dataset Construction
2.4.1. Data Labeling
2.4.2. Data Augmentation
2.5. YOLOv5s Model
2.5.1. Backbone Network
2.5.2. Neck Network
2.6. Improved YOLOv5s Model
2.6.1. Optimizing the Backbone Network
2.6.2. Improvement of the Nonlinear Activation Function
2.7. Test Environment and Parameter Settings
2.8. Evaluation Indicators
3. Results
3.1. Comparison of Different Algorithms
3.2. Evaluation of the Improved Algorithm
4. Discussion
4.1. Cloud and Haze
4.2. Other Artifacts
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tipayarom, D.; Oanh, N.K. Effects from open rice straw burning emission on air quality in the Bangkok Metropolitan Region. Sci. Asia 2007, 33, 339–345. [Google Scholar] [CrossRef]
- The Beijing News. Available online: https://baijiahao.baidu.com/s?id=1664195319400703843&wfr=spider&for=pc (accessed on 6 March 2022). (In Chinese).
- Singh, G.; Gupta, M.K.; Chaurasiya, S.; Sharma, V.S.; Pimenov, D.Y. Rice straw burning: A review on its global prevalence and the sustainable alternatives for its effective mitigation. Environ. Sci. Pollut. Res. 2021, 28, 32125–32155. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Li, M.; Teng, Z.; Jiang, M. Analysis on effect of straw burning on air quality in Harbin. Environ. Pollut. Control 2018, 40, 1161–1166. (In Chinese) [Google Scholar]
- Ma, X.; Tang, Y.; Sun, Z.; Li, Z. Analysis on the Impacts of straw burning on air quality in Beijing-Tianjing-Hebei Region. Meteorol. Environ. Res. 2017, 8, 49. [Google Scholar]
- Kaskaoutis, D.G.; Kharol, S.K.; Sifakis, N.; Nastos, P.T.; Sharma, A.R.; Badarinath, K.V.S.; Kambezidis, H.D. Satellite monitoring of the biomass-burning aerosols during the wildfires of August 2007 in Greece: Climate implications. Atmos. Environ. 2011, 45, 716–726. [Google Scholar] [CrossRef]
- Wang, X. Grassroots environmental monitoring station to strengthen quality management research. Environ. Dev. 2017, 29, 162–163. (In Chinese) [Google Scholar]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.J.; Giglio, L.; Roy, D.P.; Freeborn, P.H.; Boschetti, L.; Justice, C.; Ichoku, C.; Schroeder, W.; Davies, D.; et al. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sens. Environ. 2021, 267, 112694. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite remote sensing contributions to wildland fire science and management. Curr. For. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Simons, E.S.; Hinders, M.K. Automatic counting of birds in a bird deterrence field trial. Ecol. Evol. 2019, 9, 11878–11890. [Google Scholar] [CrossRef]
- Ma, L.; Wei, X.; Zheng, M.; Xu, P.; Tong, X. Research on straw burning detection algorithm based on FBF neural network. Comput. Netw. 2020, 24, 66–69. (In Chinese) [Google Scholar]
- Liu, X.; He, B.; Quan, X.; Yebra, M.; Qiu, S.; Yin, C.; Liao, Z.; Zhang, H. Near real-time extracting wildfire spread rate from Himawari-8 satellite data. Remote Sens. 2018, 10, 1654. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Qu, J.; Hao, X.; Xiong, J.; Che, N. Smoke Plume Detecting Using MODIS Measurements in Eastern United States. In Proceedings of the EastFIRE Conference Proceedings, Fairfax, VA, USA, 11–13 May 2005; pp. 11–13. [Google Scholar]
- Yamagishi, H.; Yamaguchi, J. Fire Flame Detection Algorithm Using a Color Camera. In Proceedings of the 1999 International Symposium on Micromechatronics and Human Science, Nagoya, Japan, 23–26 November 1999; pp. 255–260. [Google Scholar]
- Yamagishi, H.; Yamaguchi, J. A Contour Fluctuation Data Processing Method for Fire Flame Detection Using a Color Camera. In Proceedings of the 26th Annual Conference of the IEEE Industrial Electronics Society, Nagoya, Japan, 22–28 October 2000; Volume 2, pp. 824–829. [Google Scholar]
- Park, J.; Ko, B.; Nam, J.; Kwak, S. Wildfire Smoke Detection Using Spatiotemporal Bag-of-Features of Smoke. In Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision, Clearwater Beach, FL, USA, 15–17 January 2013; pp. 200–205. [Google Scholar]
- Li, H.; Yuan, F. Image based smoke detection using pyramid texture and edge features. J. Image Graph. 2015, 20, 772–780. (In Chinese) [Google Scholar]
- Li, Z.; Khananian, A.; Fraser, R.H.; Cihlar, J. Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1859–1870. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only Look once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Zhang, M. Insulator Detection and Defect Recognition in Transmission Line Patrol Image Based on Deep Learning. Master’s Dissertation, Xi’an University of Technology, Xi’an, China, 2021. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Mao, G.; Weng, W.; Zhu, J.; Zhang, Y.; Wu, F.; Mao, Y. Model for marine organism detection in shallow sea using the improved YOLO-V4 network. Trans. Chin. Soc. Agric. Eng. 2021, 37, 152–158. (In Chinese) [Google Scholar]
- Huang, L.; Wang, Y.; Xu, Q.; Liu, Q. Recognition of abnormally discolored trees caused by pine wilt disease using YOLO algorithm and UAV images. Trans. Chin. Soc. Agric. Eng. 2021, 37, 197–203. (In Chinese) [Google Scholar]
- Li, P.; Zhang, J.; Li, W. Smoke detection method based on optical flow improvement and YOLOv3. J. Zhejiang Univ. Technol. 2021, 49, 9–15. (In Chinese) [Google Scholar]
- Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Comput. Electron. Agric. 2020, 178, 105742. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Misra, D. Mish: A self regularized non-monotonic activation function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Statistical Bureau of Jilin. Jilin Statistical Yearbook 2020; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Gascon, F. Sentinel-2 Sen2Cor: L2A Processor for Users. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- Johnson, A.D.; Handsaker, R.E.; Pulit, S.L.; Nizzari, M.M.; O’Donnell, C.J.; De Bakker, P.I. SNAP: A web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008, 24, 2938–2939. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Deng, R.; Qin, Y.; Liu, Y.; Liang, Y.; Liu, W. Visual Interpretation and Spatial Distribution of Water Pollution Source Based on Remote Sensing Inversion in Pearl River Delta. Econ. Geogr. 2018, 38, 172–178. [Google Scholar]
- Svatonova, H. Analysis of visual interpretation of satellite data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Ding, F.; Yang, J.; Zheng, Z. Remote sensing information extraction of black and odorous water based on deep learning. J. Yangtze River Sci. Res. Inst. 2021, 39, 156–162. (In Chinese) [Google Scholar]
- Yu, J.; Luo, S. Detection method of illegal building based on YOLOv5. Comput. Eng. Appl. 2021, 57, 236–244. (In Chinese) [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A New Backbone that Can Enhance Learning Capability of CNN. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 390–391. [Google Scholar]
- Liu, T.; Zhou, B.; Zhao, Y.; Yan, S. Ship Detection Algorithm Based on Improved YOLOV5. In Proceedings of the International Conference on Automation, Control, and Robotics Engineering, Dalian, China, 15–17 July 2021; pp. 483–487. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3. [Google Scholar]
- Yang, C.; Yang, Z.; Liao, S.; Hong, Z.; Nai, W. Triple-GAN with Variable Fractional Order Gradient Descent Method and Mish Activation Function. In Proceedings of the 12th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 22–23 August 2020; Volume 1, pp. 244–247. [Google Scholar]
- Rahman, M.A.; Wang, Y. Optimizing Intersection-over-Union in Deep Neural Networks for Image Segmentation. In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, 12–14 December 2016; Springer: Cham, Switzerland, 2016; pp. 234–244. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 2969239–2969250. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Pei, A.; Chen, G.; Li, H.; Wang, B. Method for cloud removal of optical remote sensing images using improved CGAN network. Trans. Chin. Soc. Agric. Eng. 2020, 36, 194–202. (In Chinese) [Google Scholar]
- Li, C.; Deng, X.; Zhao, H. Thin cloud removal algorithm based on wavelet analysis for remote sensing images. Digit. Technol. Appl. 2017, 6, 137–139, 143. (In Chinese) [Google Scholar]
- Markchom, T.; Lipikorn, R. Thin cloud removal using local minimization and logarithm image transformation in HSI color space. In Proceedings of the 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), Poitiers, France, 24–27 September 2018; pp. 100–104. [Google Scholar]
- Song, X.; Liu, L.; Li, C.; Wang, J.; Zhao, C. Cloud removing based on single remote sensing image. Opt. Technol. 2006, 2, 299–303. (In Chinese) [Google Scholar]
- Li, H.; Shen, H.; Du, B.; Wu, K. A High-fidelity method of removing thin cloud from remote sensing digital images based on homomorphic filtering. Remote Sens. Inf. 2011, 30, 41–44, 58. (In Chinese) [Google Scholar]
- Liang, D.; Kong, J.; Hu, G.; Huang, L. The removal of thick cloud and cloud shadow of remote sensing image based on support vector machine. Acta Geod. Cartogr. Sin. 2012, 41, 225–231, 238. (In Chinese) [Google Scholar]
- Yang, A.P.; Xing, J.N.; Liu, J.; Li, X.X. Single image dehazing based on middle channel compensation. J. Northeast. Univ. 2021, 42, 180–188. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Shang, J.; Zhang, Z.; Zhang, Y.; Liu, S. A new end-to-end image dehazing algorithm based on residual attention mechanism. J. Northwest. Polytech. Univ. 2021, 39, 901–908. [Google Scholar] [CrossRef]
- Karimi, H.; Navid, H.; Seyedarabi, H.; Jørgensen, R.N. Development of pixel-wise U-Net model to assess performance of cereal sowing. Biosyst. Eng. 2021, 208, 260–271. [Google Scholar] [CrossRef]
- Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
Waveband | Central Wavelength of Sentinel-2A/nm | Bandwidth of Sentinel-2A/nm | Central Wavelength of Sentinel-2B/nm | Bandwidth of Sentinel-2B/nm | Spatial Resolution/m |
---|---|---|---|---|---|
Band 1 Coastal aerosols | 443.9 | 27 | 442.3 | 45 | 60 |
Band 2 Blue | 496.6 | 98 | 492.1 | 98 | 10 |
Band 3 Green | 560 | 45 | 559 | 46 | 10 |
Band 4 Red | 664.5 | 38 | 665 | 39 | 10 |
Band 5 Vegetation red edge | 703.9 | 19 | 703.8 | 20 | 20 |
Band 6 Vegetation red edge | 740.2 | 18 | 739.1 | 18 | 20 |
Band 7 Vegetation red edge | 782.5 | 28 | 779.7 | 28 | 20 |
Band 8 Near infrared | 835.1 | 145 | 833 | 133 | 10 |
Band 8A Narrow near infrared | 864.8 | 33 | 864 | 32 | 20 |
Band 9 Water vapor | 945 | 26 | 943.2 | 27 | 60 |
Band 10 Shortwave infrared-$cirrus | 1373.5 | 75 | 1376.9 | 76 | 60 |
Band 11 Shortwave infrared | 1613.7 | 143 | 1610.4 | 141 | 20 |
Band 12 Shortwave infrared | 2202.4 | 242 | 2185.7 | 238 | 20 |
Acquisition Time | Orbit Number | Splice Domain Number |
---|---|---|
20201111T022929 | R046 | T52TCQ |
20201025T023759 | R089 | T51TWF |
20201025T023759 | R089 | T51TWJ |
20210426T024539 | R132 | T51TWJ |
Abbreviation | Description | Formula |
---|---|---|
MNDFI | Modified normalized difference fire index | |
NBR | Normalized burn ratio | |
BAI | Burned area index | |
NDVI | Normalized difference vegetation index | |
MCRC | Modified crop residue cover | |
NDTI | Normalized difference tillage index |
Model Used for Object Detection | Backbone | mAP75/% | mAP50/% | Size of Parameters/MB | FPS |
---|---|---|---|---|---|
Faster Region-Based Convolutional Neural Network (R-CNN) | ResNet50 | 66.90 | 89.90 | 164.48 | 26.3 |
Mask R-CNN | ResNet50 | 79.10 | 93.20 | 174.8 | 26.0 |
RetinaNet | ResNet50 | 72.00 | 93.40 | 144.4 | 26.6 |
Single-Shot Multibox Detector (SSD) | SSDVGG16 | 78.70 | 94.10 | 97.56 | 48.8 |
You Only Look Once version 5 (YOLOv5s) | CSPDarknet | 70.36 | 93.54 | 28.22 | 500 |
Improved YOLOv5s | CSPDarnet + CBAM | 74.03 | 94.69 | 28.35 | 476 |
Model Used for Object Detection | Size of Parameters/MB | P/% | R/% | mAP75/% | FPS |
---|---|---|---|---|---|
YOLOv5s | 28.22 | 85.95 | 93.57 | 70.36 | 500 |
YOLOv5s − Mish | 28.22 | 86.98 | 94.75 | 72.24 | 500 |
YOLOv5s + Convolutional Block Attention Module (CBAM) | 28.35 | 87.34 | 92.03 | 71.06 | 487 |
Improved YOLOv5s | 28.35 | 87.66 | 93.78 | 74.03 | 476 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Li, J.; Du, J.; Zhao, B.; Hu, Y.; Li, D.; Yu, W. Identification of Smoke from Straw Burning in Remote Sensing Images with the Improved YOLOv5s Algorithm. Atmosphere 2022, 13, 925. https://doi.org/10.3390/atmos13060925
Liu H, Li J, Du J, Zhao B, Hu Y, Li D, Yu W. Identification of Smoke from Straw Burning in Remote Sensing Images with the Improved YOLOv5s Algorithm. Atmosphere. 2022; 13(6):925. https://doi.org/10.3390/atmos13060925
Chicago/Turabian StyleLiu, Hua, Jian Li, Jia Du, Boyu Zhao, Yating Hu, Dongming Li, and Weilin Yu. 2022. "Identification of Smoke from Straw Burning in Remote Sensing Images with the Improved YOLOv5s Algorithm" Atmosphere 13, no. 6: 925. https://doi.org/10.3390/atmos13060925
APA StyleLiu, H., Li, J., Du, J., Zhao, B., Hu, Y., Li, D., & Yu, W. (2022). Identification of Smoke from Straw Burning in Remote Sensing Images with the Improved YOLOv5s Algorithm. Atmosphere, 13(6), 925. https://doi.org/10.3390/atmos13060925