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Abstract: Controlling straw burning is important for ensuring the ambient air quality and for
sustainable agriculture. Detecting burning straw is vital for managing and controlling straw burning.
Existing methods for detecting straw combustion mainly look for combustion products, especially
smoke. In this study, the improved You Only Look Once version 5 (YOLOv5s) algorithm was used to
detect smoke in Sentinel-2 images captured by remote sensing. Although the original YOLOv5s model
had a faster detection speed, its detection accuracy was poor. Thus, a convolutional block attention
module was added to the original model. In addition, in order to speed up the convergence of the
model, this study replaced the leaky Rectified Linear Unit (leaky ReLU) activation function with the
Mish activation function. The accuracy of the improved model was approximately 4% higher for the
same detection speed. The improved YOLOv5s had a higher detection accuracy and speed compared
to common target detection algorithms, such as RetinaNet, mask Region-Based Convolutional Neural
Network (R-CNN), Single-Shot Multibox Detector (SSD), and faster R-CNN. The improved YOLOv5s
analyzed an image in 2 ms. In addition, mAP50 exceeded 94%, demonstrating that with this study’s
improved method, smoke can be quickly and accurately identified. This work may serve as a reference
for improving smoke detection, and for the effective management and control of straw burning.

Keywords: YOLOv5s; smoke detection; Sentinel-2 remote sensing image; CBAM; activation function

1. Introduction

In Northeast China farmers burn agricultural residue (straw) to eliminate pests. How-
ever, straw burning sharply increases the ground temperature, which can directly destroy
the living environment of beneficial microorganisms in the soil. It can indirectly reduce
the absorption of soil nutrients by crops, as well as the yield and quality of the produce.
Controlling the burning of straw is important for ensuring air quality and for sustainable
agriculture [1]. The Beijing News reported that since 12 April 2020, heavy air pollution
has affected northeast China, and the air quality index of many places has reached 500 [2].
Experts have found that the large-scale, high-intensity open-field burning of straw has been
the main cause of heavy air pollution in Northeast China since 12 April 2020. In the rural
areas of northeast China, due to the large-scale burning of straw in spring and autumn [3],
the levels of inhalable particulate matter PM10 (aerodynamic diameter between 2.5–10 µm)
and fine particulate matter PM2.5 (aerodynamic diameter smaller than 2.5 µm) can increase
between 0.5 to 4 times, respectively [4]. In addition, straw burning also produces a large
amount of pollution, such as carbon monoxide, which seriously reduces the quality of the
atmospheric environment [5,6]. To enforce the Environmental Protection Law and the Law
of the Prevention and Control of Atmospheric Pollution, the local government has set up
no-burning areas and restricted-burning areas. It is prohibited to burn straw from crops in
the open air in these areas, which include the land surrounding urban areas, both sides of a
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highway, and around airports. It is essential to enforce environmental laws, restrict straw
burning, and improve the understanding of the impact of straw burning on air quality.

Straw burning smoke detection provides important basic data for straw burning
control. Previous detection methods have mainly relied on environmental monitoring
sites distributed in the area. The environmental monitoring sites can detect straw burning
through smoke sensors, and it is important to monitor and measure the indicators reflecting
environmental quality to determine the level of environmental pollution and environmental
quality. However, due to the limited number of sites, it is increasingly difficult to meet the
high spatial and temporal resolution needed for atmospheric environmental monitoring [7].
Thus, remote sensing has become an increasingly important source of information for
managing and controlling straw burning due to its large-area, synchronous, and economical
monitoring capabilities [8].

Fire detection with satellite remote sensing can be grouped in three categories: (1) ac-
tive fire detection (thermal anomalies) [9], (2) the detection of fire effects on surface-burned
area and burn severity from changes in spectral properties of surface following fire [10],
and (3) the detection of smoke plumes, including quantitative measures, such as aerosol
optical depth. This study focused on the detection of smoke plumes because smoke is
an early product of straw burning and can be used as one of the important features for
monitoring straw burning. With the development of deep learning techniques in recent
years, significant progress has been made in computer vision. This study attempts to apply
computer vision improved by the deep-learning algorithms to the field of fire detection. In
computer vision, he morphological features of smoke are more easily captured than the
spectral features of thermal anomalies [11]. Existing methods for detecting straw combus-
tion mainly look for combustion products, especially smoke. Detecting straw combustion
is a difficult task and has been a popular topic in the field of machine vision over the last
few years [12]. To date, scholars have carried out extensive research on identifying smoke.
In the early approaches, the research object was enhanced and displayed, mainly as a band
synthetic image, which allowed manual extraction [13]. Xie et al. [14] used eight bands in
MODIS data to perform multi-channel thresholding and extract smoke pixels. On the basis
of spatiotemporal fluctuations in flame data, Yamagishi and Yamaguchi [15,16] presented
an algorithm for detecting flames, which uses color information for smoke detection and
has achieved good results. Park et al. [17] designed a random forest classifier for smoke
detection and used a spatiotemporal bag-of-features histogram to construct a random forest
classifier in the training phase, which improved the detection accuracy. Li and Yuan [18]
extracted smoke edge features using the pyramid decomposition algorithm, and proposed
a method for training and detecting smoke with a support vector machine. Although these
traditional smoke detection methods have achieved good detection accuracy in experi-
ments, several problems remain, such as low detection efficiency, the inability to process
massive amounts of data automatically, the dependence on prior knowledge, and the
manual extraction of feature information. Thus, these traditional smoke detection methods
will not become popular or widely applied [19].

As deep learning has developed in recent years, there have been major advances in
computer vision. These have effectively improved the efficiency and accuracy of target
detection, and increased the popularity and application of smoke detection methods. In
2016, the one-stage object detection network You Only Look Once version 1 (YOLOv1) was
proposed by Redmon et al. [20]. The detection speed of YOLOv1 is very fast, reaching 25 ms
per image. Thus, it can be applied to real-time detection. Moreover, it can easily be migrated
to other fields. However, YOLOv1 is not ideal for detecting small targets. Due to its loss
function, the accuracy in positioning the target is not high [21]. Thus, Redmon and Farhadi
proposed YOLOv2, which improved the recall and positioning accuracy of the YOLOv1
network [22]. YOLOv2 added an anchor box to YOLOv1. It uses K-means clustering to
calculate the anchor box size, which improves the recall rate of the algorithm. Mao et al.
developed YOLOv4 to detect marine organisms in a shallow sea [23]. Huang et al. [24]
proposed identifying pine trees abnormally discolored by a nematode infection with the
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YOLO algorithm using images taken by unmanned aerial vehicles. A smoke detection
model based on a combination of an improved traditional optical flow and YOLOv3 was
designed by Li et al. [25]. The detection accuracy of these algorithms is more than 73%, and
the recognition tasks are completed accurately and quickly. With these properties, YOLO
series algorithms are widely used in image recognition, video detection, and other target
detection applications.

The latest algorithm in the YOLO series is YOLOv5, which is an outstanding one-stage
detection model in terms of speed and accuracy. It is an optimized version of YOLOv4. It
not only has the advantages of previous versions and other networks, but it also changes
the characteristics of the earlier YOLO algorithms, which had a fast detection speed but
low accuracy. Moreover, it is more accurate when detecting small targets [26]. YOLOv5s
is the fastest model with the smallest network depth and width among the four versions
of YOLOv5.

In this study, YOLOv5s was used to identify smoke from Sentinel-2 remote sensing
images. Sentinel-2 is a component of the Copernicus program, operated by the European
Space Agency (ESA). The Sentinel-2 Multispectral Imager (MSI) was carried by two satel-
lites (Sentinel-2A and 2B), which can provide 13-band multi-spectral images at spatial
resolutions of 10, 20, or 60 m with a 5-day revisit time. Therefore, Sentinel-2 remote sensing
images have broad application prospects, including detection of smoke from crop residue
burning. Although the original YOLOv5s model has better detection speed than other tar-
get detection algorithms, its detection accuracy is poor. To improve the detection accuracy
of YOLOv5s, a Convolutional Block Attention Module (CBAM) [27] after the backbone
network was introduced in this research. CBAM has two parts: SAM (spatial attention
module) and CAM (channel attention module). It can focus on the channel features and
location information that play a decisive role in the final prediction, and the backbone
network’s ability to express features is optimized, thus improving the accuracy of model
predictions. In addition, all leaky ReLU activation functions in the Convolution + Batch
normalization + Leaky ReLU (CBL) module were replaced in this study with the Mish
activation function [28]. The Mish activation function is smoother than the leaky relu acti-
vation function, which can speed model convergence, and improve the network’s accuracy
and generalizability.

The objectives of this research were (i) to explore the potential of YOLOv5s model
and Sentinel-2 data in detection of smoke from crop residue burning, and (ii) to evaluate
the performance of CBAM for improving the accuracy of smoke detection. This study
improves the YOLOv5s algorithm so that smoke can be detected quickly and accurately
from Sentinel-2 images. It may serve as a reference for improving the detection of smoke,
and enhancing the effective management and control of straw burning.

2. Materials and Methods
2.1. Overview of the Study Area

The study area is located in the central part of Jilin Province, including Changchun,
Jilin, Siping, and Songyuan (Figure 1). Jilin Province is in the center of the Northeast China
region, lying between 121◦38′ E and 131◦19′ E, and between 40◦50′ N and 46◦19′ N. It
is adjacent to Liaoning, Inner Mongolia, and Heilongjiang. This vast land has an area
of 187,400 km2.
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Jilin Province itself produced an annual straw output of more than 40 million tons [29]. 
The amount of crop straw produced is large, but in the study area, the overall utilization 
rate is significantly lower than the national average. In addition, the winters are cold, and 
the time window for returning straw to the fields is short. Therefore, straw is frequently 
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Figure 1. Maps of the study area.

There are four distinct seasons in the study area, which has a temperate continental
monsoon climate. It is located in China’s Northeast Plain, one of the three major black
soil plains with good soil and high fertility, making the area suitable for crops. The main
crop types that produce straw annually in the study area include maize, rice, and soybean.
According to statistical data from 2020 yearbook of Jilin province, the total sown area for
these three crops in the study area was 3,124,469, 490,231, 122,809 hectares, respectively.
Jilin Province itself produced an annual straw output of more than 40 million tons [29].
The amount of crop straw produced is large, but in the study area, the overall utilization
rate is significantly lower than the national average. In addition, the winters are cold, and
the time window for returning straw to the fields is short. Therefore, straw is frequently
discarded and burnt, which causes several environmental problems. Straw burning in this
area usually occurs before spring plowing (April and May) and after the autumn harvest
(October and November).

2.2. Data Sources

Sentinel-2 is a high-resolution multispectral imaging satellite constellation, including
Sentinel-2A (launched in June 2015) and Sentinel-2B (launched in March 2017). One
satellite has a 10-day revisit period, and together, they have a complementary 5-day revisit
period. The Sentinel-2 satellites have a multispectral instrument (MSI) that can cover 13
spectral bands with spatial resolutions of 10, 20, or 60 m [30]. The Sentinel-2 satellite can
provide high-resolution Earth observation data. The data have broad application prospects.
Therefore, we used Sentinel-2 remote sensing images as the data source to construct a
dataset of images showing smoke from straw burning.

In this study, we used Sentinel-2 image data captured under clear weather conditions.
Interference from clouds and fog was excluded in advance. Information about the bands
in the Sentinel-2 images is shown in Table 1. Sentinel-2 provides data at two processing
levels: level 1C (L1C) and level 2A (L2A). L1C has undergone radiometric calibration and
geometric correction, and L2A is the product of atmospheric correction based on L1C [31].
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Table 1. Waveband parameters of Sentinel-2.

Waveband Central Wavelength
of Sentinel-2A/nm

Bandwidth
of Sentinel-2A/nm

Central Wavelength
of Sentinel-2B/nm

Bandwidth of
Sentinel-2B/nm

Spatial
Resolution/m

Band 1
Coastal aerosols 443.9 27 442.3 45 60

Band 2
Blue 496.6 98 492.1 98 10

Band 3
Green 560 45 559 46 10

Band 4
Red 664.5 38 665 39 10

Band 5
Vegetation red edge 703.9 19 703.8 20 20

Band 6
Vegetation red edge 740.2 18 739.1 18 20

Band 7 Vegetation
red edge 782.5 28 779.7 28 20

Band 8
Near infrared 835.1 145 833 133 10

Band 8A
Narrow near infrared 864.8 33 864 32 20

Band 9
Water vapor 945 26 943.2 27 60

Band 10
Shortwave

infrared-$cirrus
1373.5 75 1376.9 76 60

Band 11
Shortwave

infrared
1613.7 143 1610.4 141 20

Band 12
Shortwave

infrared
2202.4 242 2185.7 238 20

There are many repositories of Sentinel-2 data, such as the United States Geological
Survey, the European Space Agency (ESA), etc. This paper used Sentinel-2 data freely
available on the ESA website (https://scihub.copernicus.eu/dhus/#/home, accessed on
27 April 2022). Since straw burning mainly occurs in April, May, October, and November,
the imaging times were these months in 2021. The data level was L2A, and the latitude and
longitude were from 121◦38′ E to 131◦19′ E and from 40◦50′ N to 46◦19′ N. We used four
cloud-free and fog-free images with visible smoke to make datasets. The image information
is shown in Table 2.

Table 2. Images taken by Sentinel-2B under product grade MSIL2A.

Acquisition Time Orbit Number Splice Domain Number

20201111T022929 R046 T52TCQ
20201025T023759 R089 T51TWF
20201025T023759 R089 T51TWJ
20210426T024539 R132 T51TWJ

2.3. Data Preprocessing

Sentinel-2 L2A data are radiometrically calibrated, geometrically corrected, and atmo-
spherically corrected products. In this study, the spatial resolution of bands 2, 3, 4, and
8 is 10 m, and that of bands 11 and 12 is 20 m. To keep each band’s spatial resolution
consistent, we used the nearest neighbor allocation method of the Sentinel Application
Platform (SNAP) to resample all the bands to 10 m. The results were output in the IMG
storage format, which is supported by The Environment for Visualizing Images (ENVI) [32].
Bands 4, 3, and 2 were synthesized using ENVI 5.3 to form Red-Green-Blue (RGB) images.

The four images have an average size of about 5000 pixels × 5000 pixels. From these
images 893 sample images, we randomly cropped a size of 640 pixels × 640 pixels. Figure 2

https://scihub.copernicus.eu/dhus/#/home
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shows examples of positive samples with smoke and negative samples without smoke.
False positives were reduced using the negative samples.
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Figure 2. Sample of (a) positive and (b) negative images.

2.4. Dataset Construction

After data pre-processing step, the smoke in all images was manually annotated. In
order to increase the diversity of samples and avoid the overfitting problem of the model,
data augmentation operations were performed on the marked images.

2.4.1. Data Labeling

The sample images were analyzed by visual interpretation using true-color synthesis
(4-3-2), and then manually annotated. Visual interpretation has very high accuracy [33,34].
In Figure 3, the areas with smoke are marked with red boxes.
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In Figure 3, we can see the thin smoke produced by burning straw. During sampling,
it was found that the 4-3-2 band composite images do not show the thin smoke clearly
enough, so false color synthesis is necessary [34]. In this paper, for the synthesis, we
considered one fire index (the modified normalized difference fire index (MNDFI)), two
combustion indices (the burned area index (BAI) and the normalized burn ratio (NBR)),
the normalized difference tillage index (NDTI), the modified crop residue cover (MCRC),
and the normalized difference vegetation index (NDVI), as listed in Table 3.

Table 3. Index descriptions and formulae.

Abbreviation Description Formula

MNDFI Modified normalized difference fire index (B12−B8−5%)
(B12+B8+5%)

NBR Normalized burn ratio (B8−B12)
(B8+B12)

BAI Burned area index 1
(0.1−B4)2+(0.06−B8)2

NDVI Normalized difference vegetation index (B8−B4)
(B8+B4)

MCRC Modified crop residue cover (B11−B3)
(B11+B3)

NDTI Normalized difference tillage index (B11−B12)
(B11+B12)

B12 is the reflection value of the Band 12, B8 is the reflection value of the Band 8, B4 is
the reflection value of the Band 4, B11 is the reflection value of the Band 11, and B3 is the
reflection value of the Band 3.

Combining any three of the indices in Table 3, finally, the six best combinations based
on the visual interpretation were selected and presented in Figure 4. The resulting synthetic
images corresponding to Figure 3 are shown in Figure 4. The combination BAI-MCRC-
MNDFI shows the thin smoke over land more clearly than the other combinations. Therefore,
the analysis of the image samples in this paper was mainly based on the 4-3-2 band composite
images, supplemented by images synthesized with the BAI-MCRC-MNDFI combination.
Then, the images were labeled with boxes using the LabelImg tool. Since the base model
uses YOLOv5s, all images were saved in YOLO format after the labeling was completed.
For each image, the text file contained details such as the category of the sample and the
label box dimensions (width and height of the label box, and center point coordinates).
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2.4.2. Data Augmentation

The training of a deep learning model requires a large amount of data. To avoid the
impact of model overfitting, an unbalanced data distribution, or using a single background
on model training and testing, we augmented the data to expand the dataset. Operations
included translations, rotations, mirroring, changing the brightness, adding noise, and
cutting out. These operations were randomly applied to images with smoke, as shown
in Figure 5.

Atmosphere 2022, 13, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 5. Images of smoke from straw burning after various operations: (a) original image, (b) after 
translation + brightness + noise, (c) after rotation + brightness + flip, (d) after translation + brightness, 
(e) after brightness + flip, and (f) after translation + noise + cutout + brightness. 

For the augmented images, to ensure the labels were consistent with the original im-
age, any rotation, translation, or mirroring operations applied to an image were also ap-
plied to its labels [35]. 

Random rotation, translation, and mirror operations can enhance sample diversity 
and expand the amount of medium and small targets, which improve model recognition 
accuracy. Randomly changing the brightness of an image or adding noise can increase the 
stability of the model to a certain extent, even when it is disturbed. It can enhance the 
model’s robustness and reduce its sensitivity to the training data. For the cutout operation, 
a square area was randomly masked during training. This simple regularization technique 
can improve the robustness, generalizability, and performance for the model, and effec-
tively avoid overfitting [36]. The dataset contained 4713 images after the above data aug-
mentation. 

The dataset was then divided into a training set, a validation set, and a test set in the 
ratio 6:2:2. These three sets had no regional overlaps. A model was constructed using the 
training and validation sets, while an evaluation of its accuracy was carried out using the 
test set. 

2.5. YOLOv5s Model 
As shown in Figure 6, YOLOV5s has four main components: input, backbone, neck, 

and prediction. The various modules are described below. 

Figure 5. Images of smoke from straw burning after various operations: (a) original image, (b) after
translation + brightness + noise, (c) after rotation + brightness + flip, (d) after translation + brightness,
(e) after brightness + flip, and (f) after translation + noise + cutout + brightness.

For the augmented images, to ensure the labels were consistent with the original
image, any rotation, translation, or mirroring operations applied to an image were also
applied to its labels [35].

Random rotation, translation, and mirror operations can enhance sample diversity
and expand the amount of medium and small targets, which improve model recognition
accuracy. Randomly changing the brightness of an image or adding noise can increase
the stability of the model to a certain extent, even when it is disturbed. It can enhance
the model’s robustness and reduce its sensitivity to the training data. For the cutout
operation, a square area was randomly masked during training. This simple regularization
technique can improve the robustness, generalizability, and performance for the model,
and effectively avoid overfitting [36]. The dataset contained 4713 images after the above
data augmentation.

The dataset was then divided into a training set, a validation set, and a test set in the
ratio 6:2:2. These three sets had no regional overlaps. A model was constructed using the
training and validation sets, while an evaluation of its accuracy was carried out using the
test set.

2.5. YOLOv5s Model

As shown in Figure 6, YOLOV5s has four main components: input, backbone, neck,
and prediction. The various modules are described below.
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Figure 7. Slice operation. 

The input data is segmented into four slices [39], with a size of 3 × 2 × 2 per slice. 
Then, the concat operation is utilized to connect the four sections in depth, The size of 
output feature map being 12 × 2 × 2, which increases the dimensionality of the channel. 
This operation improves the receptive field of each point, reduces information loss, and 
improves the training speed. 

The main function of the SPP module [37] is to fuse local and global features, which 
effectively broadens the range of the reception of backbone features and significantly sep-
arates the most crucial context features than simply using k × k maximum pooling. 

Figure 6. YOLOv5s structure diagram.

2.5.1. Backbone Network

The backbone network of YOLOv5s has three main functional units: focus, spatial
pyramid pooling (SPP) [37], and cross-stage partial connections (CSP) [38]. As shown in
Figure 7, the slicing operation in the focus module converts the information in the wh plane
to the channel dimension, and then extracts different features through convolution, which
can reduce the information loss caused by down-sampling.
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Figure 7. Slice operation.

The input data is segmented into four slices [39], with a size of 3 × 2 × 2 per slice.
Then, the concat operation is utilized to connect the four sections in depth, The size of
output feature map being 12 × 2 × 2, which increases the dimensionality of the channel.
This operation improves the receptive field of each point, reduces information loss, and
improves the training speed.

The main function of the SPP module [37] is to fuse local and global features, which
effectively broadens the range of the reception of backbone features and significantly
separates the most crucial context features than simply using k × k maximum pooling.
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CSP is a set of cross-stage residual units [38]. There are two CSP structures in YOLOv5s.
One is used by the backbone network and has a residual unit, and the other is CSP2_X,
which does not have a residual unit. CSP2_X is made by replacing the residual unit with
ordinary CBL and applying it to the neck network, as shown in Figure 8. Compared with
ordinary CBL, the CSP structure has significant advantages. It divides the feature into two
branches and then uses the concatenation operation to better retain the feature information
from different branches, which improves feature fusion.
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2.5.2. Neck Network

The neck module is a feature transfer network between the backbone network and the
output layer. It samples and aggregates the eigenvalues extracted by the backbone network
to form aggregated features at different scales. As shown in Figure 9, the neck network of
YOLOv5s uses the feature pyramid network (FPN) [40] and the path aggregation network
(PAN) [41]. FPN transfers and combines high-level feature information by up-sampling
from the top to the bottom to convey strong semantic information. PAN is a bottom-up
feature pyramid that conveys strong localization features. The simultaneous use of both can
enhance the feature fusion and multi-scale prediction capabilities of different layers [42]. In
the neck structure of YOLOv4, ordinary convolution operations are used [42]. In contrast,
YOLOv5 uses the CSP2 structure, which was based on CSPNet, to enhance the network
feature fusion.
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2.6. Improved YOLOv5s Model

The original YOLOv5s is a 29-layer neural network built with structures such as Focus,
CBL, CSP, and SPP. There are some smoke targets, however, that take up only a small
area in the entire picture, which causes problems, such as missed and false detections.
Thus, our paper adds an attention module after the backbone network and optimizes the
activation function.

2.6.1. Optimizing the Backbone Network

The attention modules commonly used in object detection today are CBAM and
the Squeeze-and-Excitation Network (SENet) [43]. Compared with SENet, CBAM has
a spatial attention mechanism. In addition to considering the channel features of the
target, it also focuses on the location information of the target [27]. In the remote sensing
images obtained by satellites, there is low contrast between the target, the background, and
complex scenes, Therefore, in order to enhance the feature expression ability of the model
and enrich the information of smoke feature in the feature map, we introduced CBAM after
the backbone network.

As shown in Figure 10, CBAM is structured as two independent modules, CAM and
SAM. The input feature map H is passed through CAM. Each channel undergoes both max
pooling and average pooling. After a multi-layer perceptron, the resultant intermediate
vector is added element-wise and sigmoid-activated to produce a channel attention Mc [27].
H is activated by Mc to obtain the characteristic figure H′. The input to SAM is H′. This
module performs average and maximum pooling in the channel dimension and obtains
the spatial attention Ms after a convolution operation and sigmoid activation. After H′ is
activated by Ms, the final feature map H′′ is obtained:{

H′ = Mc(H)⊗ H,
H′′ = Ms(H′)⊗ H′,

(1)

where ⊗ indicates element-wise multiplication.
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The features at different scales are extracted by SPP, which is the last unit of the
backbone network, and input into the CBAM module, which focuses on the channel
features and location information, as these play a decisive role in the final prediction. CBAM
emphasizes important smoke features and suppresses general features, which enhances the
backbone network’s expression of features and improves the model’s prediction accuracy.

2.6.2. Improvement of the Nonlinear Activation Function

The smallest unit in the original YOLOv5s is the CBL structure, which is comprised
of a convolutional layer, a batch normalization layer, and a nonlinear activation function.
Nonlinear activation function is accountable for mapping the input and output of a neuron,
and contributes significantly to learning the neural network model and understanding
complex and nonlinear functions. The CBL structure of the original YOLOv5s uses the
leaky ReLU activation function [44], which is a piecewise function. Since there are different
interval functions, it is impossible to provide a consistent relationship in the prediction with
positive and negative input values. This paper replaces the original activation function
with the Mish function [28]:

f (x) = x tan h(ln(1 + ex)) (2)

The Mish function has no upper bound but has a lower bound, and it is a smooth and
non-monotonic activation function [45]. Its derivative is:

f ′(x) =
ex ϕ(x)
τ2(x)

, (3)

where
ϕ(x) = e3x + 4e2x + ex(4x + 6) + 4(x + 1) (4)

τ(x) = e2x + 2ex + 2 (5)

Note:

tanh(x) =
ex − e−x

ex + e−x (6)

The leaky ReLU and Mish activation functions and their derivatives are shown in
Figure 11. The two functions are basically the same when x > 0. When x < 0, the Mish
function is smoother than leaky ReLU. Therefore, the information can penetrate better
into the neural network, thereby improving its accuracy and generalizability. Moreover,
the Mish function is continuous, its derivative is continuous and smooth, and it can be
differentiated everywhere. During backpropagation, it is easier to carry out gradient
optimization with the Mish function, so that convergence is faster.
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2.7. Test Environment and Parameter Settings

All training and testing in this paper were performed on the same server, which had
an Intel(R) Core (TM) i7-7820X Central Processing Unit (CPU), two 11 GB RTX 2080 Ti
Graphic Processing Units (GPU), and 32 GB of running memory. We used Pytorch 1.5 as
the deep learning framework. We wrote all of our programs in Python, and utilized the
Compute Unified Device Architecture (CUDA) and Open-Source Computer Vision libraries
(OpenCV). They all ran on Linux.

During training, 64 samples were used as a processing unit. The learning rate mo-
mentum was 0.937, the initial learning rate was 0.01, the weight decay was 0.0005, the
optimization algorithm was SGD (stochastic gradient descent), and there were 600 iterations.

2.8. Evaluation Indicators

The value of the intersect over union (IOU) threshold is directly related to the output
prediction frame. Generally, the larger the threshold, the higher the prediction accuracy [46].
The main evaluation indicators used in this paper are the mean average precision (mAP) for
an IOU threshold of 0.5 (mAP50), mAP75, parameter size (MB), and the number of frames
per second (FPS). mAP is an important metric for gauging detection accuracy of the target
detection model. It is obtained from a precision (P)-recall (R) curve. The calculations for
precision (P), recall (R), and mAP are as follows.

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

mAP =
1
K

K

∑
K=1

AP(P, R, K) (9)

where the true positives (TP) are the number of positive images that are actually detected as
being positive. FP refers to the number of false positives, which is the number of negative
samples misclassified as positive samples. The false negatives (FN) are the number of
positive samples that are wrongly detected as being negative. The quantity of detection
target categories is K. K = 1 in this article. The average precision (AP) is the region enclosed
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by the coordinate axis and the P-R curve in a single-type detection, and mAP represents
the average AP for every category.

3. Results
3.1. Comparison of Different Algorithms

The results for different algorithms in detecting smoke from straw burning are shown
in Table 4. The Faster Region-Based Convolutional Neural Network (R-CNN) [47] and
RetinaNet [48] did not do as well as the improved model for all four indicators (mAP75,
mAP50, parameter size, and FPS). In terms of mAP75, Mask R-CNN [49] and Single-Shot
Multibox Detector (SSD) [50] were better than the improved model, but not as good for
mAP50, parameter size, and especially FPS. The detection speeds of Mask R-CNN and SSD
were 1/20 and 1/10 that of the improved YOLOv5s model, respectively, which does not
meet the requirements for efficient recognition. YOLOv5s outperformed the improved
model in parameter size and FPS, but had a lower accuracy, since mAP75 and mAP50 were
3.67 and 1.15 percentage points lower than those for the improved YOLOv5s, respectively.
When identifying smoke from straw burning, there is a high requirement for accuracy.
Thus, the improved algorithm is better than YOLOv5s. Overall, the comparison of mAP75,
mAP50, parameter size, and FPS shows that of the algorithms, the improved YOLOv5s
model provides higher detection accuracy and faster speed.

Table 4. Performance comparison of different smoke detection models.

Model Used for Object Detection Backbone mAP75/% mAP50/% Size of Parameters/MB FPS

Faster Region-Based
Convolutional Neural Network

(R-CNN)
ResNet50 66.90 89.90 164.48 26.3

Mask R-CNN ResNet50 79.10 93.20 174.8 26.0
RetinaNet ResNet50 72.00 93.40 144.4 26.6

Single-Shot Multibox Detector
(SSD) SSDVGG16 78.70 94.10 97.56 48.8

You Only Look Once version 5
(YOLOv5s) CSPDarknet 70.36 93.54 28.22 500

Improved YOLOv5s CSPDarnet + CBAM 74.03 94.69 28.35 476

3.2. Evaluation of the Improved Algorithm

Table 5 compares the experimental results for various versions of YOLOv5s. In YOLOv5s
−Mish, leaky ReLU was replaced by the Mish activation function. YOLOv5s + CBAM is the
original YOLOv5s with CBAM after the backbone network.

Table 5. Performance comparison between different versions of YOLOv5s in detecting smoke.

Model Used for
Object Detection Size of Parameters/MB P/% R/% mAP75/% FPS

YOLOv5s 28.22 85.95 93.57 70.36 500
YOLOv5s −Mish 28.22 86.98 94.75 72.24 500

YOLOv5s + Convolutional Block
Attention Module (CBAM) 28.35 87.34 92.03 71.06 487

Improved YOLOv5s 28.35 87.66 93.78 74.03 476

The original YOLOv5s model had the fastest detection speed, but the lowest accu-
racy, as measured by mAP75 and precision. YOLOv5s −Mish, for which only the linear
activation function has been optimized, has the same parameter size and detection speed
as the original YOLOv5s model, but the precision, recall, and mAP75 were 1.03, 1.18, and
1.88 percentage points higher, respectively. Introducing only CBAM, the model parameters
increased in size by 0.13 MB, the recall rate and detection speed decreased slightly, and the
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precision rate and mAP75 increased by 1.39 and 0.70 percentage points, respectively. The
improved YOLOv5s method proposed in this paper combines the advantages of the two
optimizations. Although the detection speed was slightly slower, the precision rate, recall
rate, and mAP75 were better compared to the original YOLOv5s model by 1.71, 0.21, and
3.67 percentage points, respectively. Hence, this approach can realize the high precision
and rapid identification of smoke from straw burning.

4. Discussion
4.1. Cloud and Haze

Smoke, clouds, and haze have very similar morphologies and spectral properties, so
clouds and haze will affect the recognition results of smoke [51]. Moreover, with thick
cloud cover, the information about smoke is completely lost. As a result, it is difficult to
identify smoke accurately in satellite imagery [51].

To date, many scholars have performed extensive studies on de-clouding and dehazing
of optical remote sensing images and have proposed several solutions. Using a wavelet
transform, Li et al. [52] removed thin clouds from panchromatic remote sensing images.
Markchom and Lipikorn [53] proposed a method for removing clouds using the HSI color
space. Song et al. [54] created a method for cloud removal using single-scene remote
sensing images. Li et al. [55] proposed a homomorphic filtering method for removing
thin clouds. Although these traditional methods for removing clouds from optical remote
sensing images have delivered satisfactory results, some of the methods for processing
thin and thick clouds cannot be used universally, as they rely on prior knowledge. the
feature information needs to be manually extracted, and the restored image details are
inaccurate. Therefore, it is not feasible to use these traditional methods for cloud removal
on a widespread basis.

With the development of machine learning, a support vector machine method was
proposed by Liang et al. [56] that removes thick clouds and cloud shadows from remote
sensing images. As compared to traditional methods, the method can better restore infor-
mation about an object on the ground obscured by thick cloud. Deep learning has led to
major breakthroughs in computer vision in recent years. In 2020, Pei et al. [51] provided a
solution for removing clouds from optical remote sensing images used an improved con-
ditional generative adversarial network (CGAN). A spatial pooling layer was introduced
into the generator of the original CGAN, and regression loss was added, which improved
the generation. In their experiments, this method achieved better results when removing
cloud and in maintaining the fidelity of the images.

Due to the problems of low contrast and blurred details in foggy images, Yang et al. [57]
decomposed an image into textural and structural layers, and dehazed the structural layers
containing most of the fog. He et al. [58] provided an image dehazing method using the
dark channel prior model, which is simple and effective but overestimates the density of
the fog and distorts colors. With the development of deep learning, Cai et al. [59] used a
convolutional neural network (CNN) to estimate the transmittance of haze. A model of
atmospheric scattering was used to restore a haze-free image. Owing to its overreliance
on atmospheric scattering, this indirect dehazing method can sometimes overestimate the
transmittance despite achieving good results. The traditional method for dehazing an
image relies on models of atmospheric scattering, which result in color distortions and
insufficient dehazing. Using a residual attention mechanism, Yang et al. [60] proposed
an end-to-end dehazing algorithm that effectively reduced the color distortion and the
dehazing was less incomplete.

There are many other de-clouding and dehazing methods. Traditional and deep learn-
ing methods have their own advantages and disadvantages. Methods for removing cloud
and fog from remote sensing images are very mature, and the image quality after cloud and
fog removal is continually increasing. In the following research, we can refer to the above-
mentioned algorithms for de-clouding and de-hazing. In addition, we can utilize cloud and
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haze removal operations on the acquired remote sensing data in order to prevent clouds
and haze from interfering with smoke detection and improve the model’s performance.

4.2. Other Artifacts

In addition to clouds and fog, there are other artifacts that can affect smoke identifica-
tion, particularly weather attributes such as wind speed, direction, and humidity, which
could impact the smoke formation and transport. In turn, this affects the accuracy of smoke
identification models.

The data used in this study are Sentinel-2 remote sensing images under clear weather
conditions. Smoke spreads more slowly in clear weather conditions and is easier to identify.
Unlike previous studies, which have mostly focused on the pixel level [61], this study
aimed to identify satellite images with smoke from straw combustion, that is, image-level
smoke recognition. In pixel-level recognition, the location and type of target is estimated
for each pixel in the image. Image-level smoke recognition learns the main features of
smoke through training, and then identifies and locates the smoke with these features. This
requires that, during training, the smoke features are as obvious as possible. Thus, we used
4-3-2 band composite images, as these can show smoke more clearly.

In order to enrich the characteristics of the smoke from straw burning as much as
possible, reduce the influence of other artifacts on smoke recognition, and improve the
accuracy of the model, in following research, we will use additional bands and indices
in training. In addition to the indices in Table 3, 13 spectral bands of the Sentinel-2
Multispectral Imager (MSI) may be good candidates for the smoke recognition model.
We can perform spectral analysis on different ground feature types (smoke vs. cloud,
smoke vs. haze, smome vs. water, etc.), and select the bands and indices by the separability
index (M) [62]. The separability index (M) is given by Equation (10):

H =
|µ1 − µ2|
(σ1 + σ2)

(10)

where µ1 and µ2 are the mean and standard deviation of category i, respectively. The larger
the value of M, the higher the separability between smoke and other ground objects; in
other words, smoke is more accurately identified. The selected band and index were used
as the model input, and the input combination with the best recognition effect was selected
through ablation experiments.

Weather attributes will have a certain impact on the smoke detection model. For
example, the smoke spreads quickly when the wind speed is high, and the smoke detection
algorithm may not be able to detect the smoke in such circumstances. Therefore, we will
explore the characteristics of smoke under different atmospheric diffusion conditions to
find the maximum detection ability of the smoke detection algorithm.

5. Conclusions and Outlook

Detecting smoke is an important way to control straw incineration, which is an
important for ensuring the ambient air quality and for sustainable agriculture. In this study,
the YOLOv5s network model was used to detect smoke in remote sensing images. CBAM
was added to YOLOv5s, and the Mish activation function was used instead of the leaky
ReLU function. Our results indicated that the improved YOLOv5s maintained the original
detection speed, with a detection speed of 476 frames per second, and achieved mAP75 and
mAP50 values of 74.03% and 94.69%, respectively, which are 3.67 and 1.15% higher than
those for the original algorithm. The improved model had both higher precision and recall
rates than the original one. Therefore, the improved method proposed in this study can
quickly and accurately identify smoke in the crop residue burning. This study may serve as
a reference for improving the detection of smoke, and enhancing the effective management
and control of straw burning.

In this study, the data only included cultivated land, and the smoke was entirely
caused by straw burning. However, we found that the burning of biomass fuel, wood,
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coal, and other materials in the surrounding area also released smoke, which had a certain
impact on the identification results of smoke produced by straw burning. In the future, we
will identify the smoke shape through the model. Based on the shape of the smoke, factors
such as wind speed, wind direction, and humidity will be taken into account to determine
the source of the smoke. According to the source of the smoke, we can classify smoke into
three categories: smoke from straw burning, smoke from domestic burning, and smoke
from factories. Based on the characteristics analysis of different types of smoke, the ability
of the model will be enhanced to distinguish smoke produced by straw burning.
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