Characteristics and Source Apportionment of Size-Fractionated Particulate Matter at Ground and above the Urban Canopy (380 m) in Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Chemical Analysis
2.2.1. Analysis of Elements
2.2.2. Analysis of Water-Soluble Ions
2.2.3. Analysis of Carbonaceous Materials
2.3. CMB Model
2.4. Cluster Analysis of Back Trajectories
3. Results and Discussion
3.1. Size-Fractionated PM Mass Characteristics
3.2. Characteristics of Chemical Compositions
3.2.1. Elements
3.2.2. Water-Soluble Ions
3.2.3. Carbonaceous Components
3.3. Source Apportionment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Rohr, A.C.; Wyzga, R.E. Attributing health effects to individual particulate matter constituents. Atmos. Environ. 2012, 62, 130–152. [Google Scholar] [CrossRef]
- Ma, J.; Chen, L.L.; Guo, Y.; Wu, Q.; Yang, M.; Wu, M.H. Phthalate diesters in Airborne PM2.5 and PM10 in a suburban area of Shanghai: Seasonal distribution and risk assessment. Sci. Total Environ. 2014, 497, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). 2006. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 26 May 2022).
- Isaksen, I.S.; Granier, C.; Myhre, G.; Berntsen, T.K.; Dalsøren, S.B.; Gauss, M.; Klimonth, Z.; Benestad, R.; Bousquet, P.; Collins, W.; et al. Atmospheric composition change: Climate—Chemistry interactions. Atmos. Environ. 2009, 43, 5138–5192. [Google Scholar] [CrossRef]
- Ramachandran, S.; Kedia, S. Black carbon aerosols over an urban region: Radiative forcing and climate impact. J. Geophys. Res. Atmos. 2010, 115, D10202. [Google Scholar] [CrossRef]
- Watson, J.G. Visibility: Science and regulation. J. Air Waste Manag. Assoc. 2002, 52, 628–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, Q.; Mysliwiec, M.; Kleeman, M.J. Source apportionment of visibility impairment using a three-dimensional source-oriented air quality model. Environ. Sci. Technol. 2014, 38, 1089–1101. [Google Scholar] [CrossRef]
- Sun, Y.L.; Zhuang, G.; Tang, A.; Wang, Y.; An, Z. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol. 2006, 40, 3148–3155. [Google Scholar] [CrossRef]
- Zhao, X.J.; Zhao, P.S.; Xu, J.; Meng, W.; Pu, W.; Dong, F.; He, D.; Shi, Q. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys. 2013, 13, 5685–5696. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhang, Y.; Han, S.; Wu, J.; Bi, X.; Shi, G.; Wang, J.; Yao, Q.; Cai, Z.; Liu, J.; et al. Vertical characteristics of PM2.5 during the heating season in Tianjin, China. Sci. Total Environ 2015, 523, 152–160. [Google Scholar] [CrossRef]
- Tie, X.; Cao, J. Aerosol pollution in China: Present and future impact on environment. Particuology 2009, 7, 426–431. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, F.; Hagler, G.; Hou, X.; Bergin, M.; Cheng, Y. Sources of excess urban carbonaceous aerosol in the Pearl River Delta Region, China. Atmos. Environ. 2011, 45, 1175–1182. [Google Scholar] [CrossRef]
- Wang, L.T.; Wei, Z.; Yang, J.; Zhang, Y.; Zhang, F.; Su, J.; Meng, C.; Zhang, Q. The 2013 severe haze over the southern Hebei, China: Model evaluation, source apportionment, and policy implications. Atmos. Chem. Phys. 2014, 14, 3151–3173. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Chong, K. Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping. Atmosphere 2022, 13, 846. [Google Scholar] [CrossRef]
- Wu, H.; Wang, T.; Wang, Q.; Cao, Y.; Qu, Y.; Nie, D. Raidative effects and chemical compositions of fine particles modulating urban heat island in Nanjing, China. Atmos. Environ. 2021, 247, 118201. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Tian, Y.; Shi, G.L.; Zeng, F.; Wu, J. The study on vertical variability of PM10 and the possible sources on a 220 m tower, in Tianjin, China. Atmos. Environ. 2011, 45, 6133–6140. [Google Scholar] [CrossRef]
- Quan, J.; Tie, X.; Zhang, Q.; Liu, Q.; Li, X.; Gao, Y. Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmos. Environ. 2014, 88, 83–89. [Google Scholar] [CrossRef]
- Chen, P.; Wang, T.; Dong, M.; Kasoar, M.; Han, Y.; Xie, M.; Li, S.; Zhuang, B.; Li, M.; Huang, T. Characterization of major natural and anthropogenic source profiles for size-fractionated PM in Yangtze River Delta. Sci. Total Environ. 2017, 598, 135–145. [Google Scholar] [CrossRef]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic aerosol and global climate change modeling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jimenez, J.L.; Canagaratna, M.R.; Allan, J.D.; Coe, H.; Ulbrich, I.; Alfarra, M.R.; Takami, A.; Middlebrook, A.M.; Sun, Y.L.; et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34, L13801. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Tian, Y.; Han, S.; Zhang, Y.; Li, X.; Feng, Y.; Wu, J.; Zhu, T. Vertical characteristics of carbonaceous species and their source contributions in a Chinese mega city. Atmos. Environ. 2012, 60, 358–365. [Google Scholar] [CrossRef]
- Han, S.; Zhang, Y.; Wu, J.; Zhang, X.; Tian, Y.; Wang, Y.; Ding, J.; Yan, W.; Bi, X.; Shi, G.; et al. Evaluation of regional background particulate matter concentration based on vertical distribution characteristics. Atmos. Chem. Phys. 2015, 15, 11165–11177. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chen, C.; Zhang, Y.; Xu, W.; Zhou, L.; Cheng, X.; Zheng, H.; Ji, D.; Li, J.; Tang, X.; et al. Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015. Sci. Rep. 2016, 6, 27151. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Wang, T.; Hu, X.; Xie, M. Chemical mass balance source apportionment of size-fractionated particulate matter in Nanjing, China. Aerosol Air Qual. Res. 2015, 15, 1855–1867. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Wang, T.; Lu, X.; Yu, Y.; Kasoar, M.; Xie, M.; Zhuang, B. Source apportionment of size-fractionated particles during the 2013 Asian Youth Games and the 2014 Youth Olympic Games in Nanjing, China. Sci. Total Environ. 2017, 579, 860–870. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Lv, Y.; Li, K.; Li, Z. Observation of atmospheric boundary layer height by round-based LiDAR during haze days. J. Remote Sens. 2013, 17, 981–992. [Google Scholar]
- Chow, J.; Watson, J. Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model. Energy Fuels 2002, 16, 222–260. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, Y.; Qiu, Y.; Zhang, H.; Du, W.; Xu, L.; Hong, Y.; Chen, Y.; Chen, J. Source apportionment of PM2.5 at the Lin’an regional background site in China with three receptor models. Atmos. Res. 2018, 202, 23–32. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, Y.; Wang, Y.; Sun, Y.; Yuan, H.; Zhuang, G. Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. J. Environ. Sci. 2008, 20, 1323–1327. [Google Scholar] [CrossRef]
- Xie, S.; Liu, Z.; Chen, T.; Hua, L. Spatiotemporal variations of ambient PM10 source contributions in Beijing in 2004 using positive matrix factorization. Atmos. Chem. Phys. 2008, 8, 2701–2716. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Yang, L.; Yuan, Q.; Yan, C.; Dong, C.; Meng, C. Source apportionment of PM2.5 in a background site in the North China Plain. Sci. Total Environ. 2016, 541, 590–598. [Google Scholar] [CrossRef]
- Stohl, A. Trajectory statistics—A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 1996, 30, 579–587. [Google Scholar] [CrossRef]
- Hwang, I.; Hopke, P. Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site. Atmos. Environ. 2007, 41, 506–518. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, X.; Gao, Z.; Wang, H.; Wang, T.; Li, Y.; Lau, G.; Yim, S. Long-Term Trends of Persistent Synoptic Circulation Events in Planetary Boundary Layer and Their Relationships with Haze Pollution in Winter Half Year over Eastern China. J. Geophys. Res. Atmos. 2018, 123, 10991–11007. [Google Scholar] [CrossRef]
- Yang, Y.; Yim, S.H.; Haywood, J.; Osborne, M.; Chan, J.C.; Zeng, Z.; Cheng, J.C. Characteristics of Heavy Particulate Matter Pollution Events over Hong Kong and Their Relationships with Vertical Wind Profiles Using High-Time-Resolution Doppler Lidar Measurements. J. Geophys. Res. Atmos. 2019, 124, 9609–9623. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Ma, J.; Yan, P.; Pan, X. Impacts of pollution and dust aerosols on the atmospheric optical properties over a polluted rural area near Beijing city. Atmos. Res. 2011, 101, 835–843. [Google Scholar] [CrossRef]
- Chow, J.; Watson, J.; Pritchett, L.; Pierson, W.; Frazier, C.; Purcell, R. The dri thermal/optical reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmos. Environ. 1993, 27, 1185–1201. [Google Scholar] [CrossRef]
- Chow, J.; Watson, J.; Chen, L.; Arnott, W.; Moosmuller, H. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ. Sci. Technol. 2004, 38, 4414–4422. [Google Scholar] [CrossRef]
- Draxler, R.; Rolph, G. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model; Access via NOAA ARL READY Website; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 2012; Available online: http://ready.arl.noaa.gov/HYSPLIT.php (accessed on 26 May 2022).
- Draxler, R.; Stunder, B.; Rolph, G.; Stein, A.; Taylor, A. HYSPLIT4 User’s Guide, version 4; Report; NOAA: Silver Spring, MD, USA, 2012. [Google Scholar]
- Wang, J.; Zhou, M.; Liu, B.; Wu, J.; Peng, X.; Zhang, Y.; Han, S.; Feng, Y.; Zhu, T. Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin. Environ. Pollut. 2016, 219, 982–992. [Google Scholar] [CrossRef]
- Wongphatarakul, V.; Friedlander, S.; Pinto, J. A comparative study of PM2.5 ambient aerosol chemical databases. Environ. Sci. Technol. 1998, 32, 3926–3934. [Google Scholar] [CrossRef]
- Wilson, J.; Kingham, S.; Sturman, A. Intraurban variations of PM10 air pollution in Christchurch, New Zealand, Implications for epidemiological studies. Sci. Total Environ. 2006, 367, 2–3. [Google Scholar] [CrossRef]
- Hwang, I.; Hopke, P.; Pinto, J. Source apportionment and spatial distributions of coarse particles during the regional air pollution study. Environ. Sci. Technol. 2008, 42, 3524–3530. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Alastuey, A.; Rosa, J.; Castanedo, Y.; Campa, A.; Pandolfi, M.; Lozano, A.; Gonzalez, J.; Querol, X. Trends of road dust emission contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. Atmos. Chem. Phys. 2014, 14, 3533–3544. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Rahn, K.; He, K.; Wen, T.; Wang, Y. A novel technique for quantifying the regional component of urban aerosol solely from its sawtooth cycles. J. Geophys. Res. 2008, 113, D21309. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Hu, M.; Zamora, M.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Jiang, Q.; Wang, Z.; Fu, P.; Li, J.; Yang, T.; Yin, Y. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J. Geophys. Res. Atmos. 2014, 119, 4380–4398. [Google Scholar] [CrossRef]
- Herner, J.; Ying, Q.; Aw, J.; Gao, O.; Chang, D.; Kleeman, M. Dominantmechanisms that shape the airborne particle size and composition in central California. Aerosol Sci. Technol. 2006, 40, 827–844. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sarin, M.M.; Sudheer, A.K. Mineral and anthropogenic aerosols in Arabian Sea-atmospheric boundary layer: Sources and spatial variability. Atmos. Environ. 2008, 42, 5169–5181. [Google Scholar] [CrossRef]
- Arimoto, R.; Duce, R.; Savoie, D.; Prospero, J.; Talbot, R.; Cullen, J.; Tomza, U.; Lewis, N.; Ray, B. Relationships among aerosol compositions from Asia and the North Pacific during Pem-West. J. Geophys. Res. 1996, 101, 2011–2023. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Tang, A.; Yuan, H.; Sun, Y.; Chen, S.; Zheng, A. Theion chemistry and source of PM2.5 aerosol in Beijing. Atmos. Environ. 2005, 39, 3771–3784. [Google Scholar] [CrossRef]
- Gao, X.; Yang, L.; Cheng, S.; Gao, R.; Zhou, Y.; Xue, L.; Shou, Y.; Wang, J.; Wang, X.; Nie, W.; et al. Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: Temporal variations and source apportionments. Atmos. Environ. 2011, 45, 6048–6056. [Google Scholar] [CrossRef]
- Tian, Y.Z.; Shi, G.L.; Han, S.; Zhang, Y.; Feng, Y.; Liu, G.R.; Gao, L.; Wu, J.; Zhu, T. Vertical characteristics of levels and potential sources of water-soluble ions in PM10 in a Chinese megacity. Sci. Total Environ. 2013, 447, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cao, J.; Tie, X.; Shen, Z.; Liu, S.; Ding, H.; Han, Y.M.; Wang, G.H.; Ho, K.F.; Qiang, J.; et al. Water-soluble ions in atmospheric aerosols measured in Xi’an, China: Seasonal variations and sources. Atmos Res. 2011, 102, 110–119. [Google Scholar] [CrossRef]
- Kim, B.; Teffera, S.; Zeldin, M. Characterization of PM2.5 and PM10 in the South Coast Air Basin of Southern California: Part 1—spatial variations. J. Air. Waste Manag. Assoc. 2000, 50, 2034–2044. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Chan, C.; Fang, M.; Cadle, S.; Chan, T.; Mulawa, P.; He, K.; Ye, B. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ. 2002, 36, 4223–4234. [Google Scholar] [CrossRef]
- Ozturk, F.; Bahreini, R.; Wagner, N.; Dubé, W.P.; Young, C.J.; Brown, S.S.; Brock, C.A.; Ulbrich, I.M.; Jimenez, J.L.; Cooper, O.R.; et al. Vertically resolved chemical characteristics and sources of submicron aerosols measured on a Tall Tower in a suburban area near Denver, Colorado in winter. J. Geophys. Res. 2013, 118, 13591–13605. [Google Scholar] [CrossRef]
- Turpin, B.; Cary, R.; Huntzicker, J. An in-situ, time-resolved analyzed for aerosol organic and elemental carbon. Aerosp. Sci. Technol. 1990, 12, 161–171. [Google Scholar] [CrossRef]
- Castro, L.M.; Pio, C.A.; Harrison, R.; Smith, D. Carbonaceous aerosol in urban and rural European atmospheres, estimation of secondary organic carbon concentrations. Atmos. Environ. 1999, 33, 2771–2781. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhu, B.; An, J.L.; Duan, Q.; Zou, J.N.; Shen, L.J. Size distribution and characterization of OC and EC in atmospheric aerosols during the Asian youth games of Nanjing, China. J. Environ. Sci. 2014, 35, 3271–3279. (In Chinese) [Google Scholar]
- Shah, S.; Cocker, D.; Miller, J.; Norbeck, J. Emission rates of particulate matter and elemental and organic carbon from In-use diesel engines. Environ. Sci. Technol. 2004, 38, 2544–2550. [Google Scholar] [CrossRef] [Green Version]
- Lan, Z.; Chen, D.; Li, X.; Huang, X.; He, L.; Denga, Y.; Feng, N.; Hu, M. Modal characteristics of carbonaceous aerosol size distribution in an urban atmosphere of South China. Atmos. Res. 2011, 100, 51–60. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.; Lowenthal, D. Sources and chemistry of PM10 aerosol in Santa Barbara County, CA. Atmos. Environ. 1996, 30, 1489–1499. [Google Scholar] [CrossRef]
- Feng, Y.; Bai, Z.; Zhu, T. The principle and application of improved-source-apportionment technique of atmospheric particulate matter Chinese. J. Environ. Sci. 2002, 23, 106–108. [Google Scholar]
- Shi, G.; Feng, Y.; Zeng, F.; Li, X.; Zhang, Y.; Wang, Y. Use of a nonnegative constrained principal component regression chemical mass balance model to study the contributions of nearly collinear sources. Environ. Sci. Technol. 2009, 43, 8867–8873. [Google Scholar] [CrossRef] [PubMed]
Site | Type | Mean | SD a | Max | Min |
---|---|---|---|---|---|
Gulou | PM10 | 108.3 | 23.4 | 145.6 | 62.7 |
PM10-2.1 | 47.3 | 10.6 | 66.1 | 36.1 | |
PM2.1 | 61.0 | 18.8 | 87.5 | 32.5 | |
PM1.1 | 40.9 | 13.0 | 72.7 | 25.3 | |
Zifeng | PM10 | 88.1 | 21.1 | 124.1 | 56.5 |
PM10-2.1 | 31.4 | 6.7 | 41.9 | 21.8 | |
PM2.1 | 56.7 | 18.6 | 89.7 | 34.6 | |
PM1.1 | 44.8 | 15.8 | 79.4 | 27.1 |
Species | PM10 | PM10-2.1 | PM2.1 | PM1.1 |
---|---|---|---|---|
PM mass | 0.139 | 0.220 | 0.097 | 0.096 |
Al | 0.251 | 0.326 | 0.151 | 0.190 |
Ca | 0.235 | 0.304 | 0.161 | 0.185 |
Fe | 0.286 | 0.355 | 0.161 | 0.213 |
K | 0.188 | 0.242 | 0.170 | 0.233 |
Mg | 0.243 | 0.314 | 0.180 | 0.229 |
Cl | 0.201 | 0.221 | 0.192 | 0.175 |
Na | 0.172 | 0.185 | 0.290 | 0.324 |
NO3- | 0.196 | 0.321 | 0.173 | 0.169 |
SO42- | 0.121 | 0.282 | 0.087 | 0.124 |
NH4+ | 0.195 | 0.405 | 0.130 | 0.117 |
OC | 0.089 | 0.125 | 0.096 | 0.093 |
EC | 0.245 | 0.424 | 0.212 | 0.210 |
CH3COO- | 0.490 | 0.487 | 0.529 | 0.598 |
HCOO- | 0.206 | 0.230 | 0.126 | 0.165 |
C2O42- | 0.278 | 0.117 | 0.425 | 0.464 |
(CH3)2NH2+ | 0.449 | 0.607 | 0.466 | 0.489 |
Gulou (20 m) | Zifeng (380 m) | |||||||
---|---|---|---|---|---|---|---|---|
PM10 | PM10-2.1 | PM2.1 | PM1.1 | PM10 | PM10-2.1 | PM2.1 | PM1.1 | |
Al | 1.24 | 0.92 | 0.32 | 0.20 | 0.81 | 0.51 | 0.30 | 0.21 |
Ca | 6.80 | 5.26 | 1.54 | 1.10 | 4.52 | 3.00 | 1.52 | 1.03 |
Cu | 0.07 | 0.04 | 0.03 | 0.018 | 0.05 | 0.03 | 0.02 | 0.016 |
Fe | 2.64 | 2.03 | 0.61 | 0.38 | 1.52 | 0.98 | 0.54 | 0.35 |
Mg | 0.74 | 0.56 | 0.18 | 0.10 | 0.48 | 0.31 | 0.17 | 0.11 |
Pb | 0.07 | 0.03 | 0.04 | 0.020 | 0.05 | 0.02 | 0.03 | 0.025 |
V | 0.008 | 0.005 | 0.004 | 0.002 | 0.005 | 0.002 | 0.003 | 0.002 |
Zn | 0.30 | 0.13 | 0.17 | 0.07 | 0.18 | 0.08 | 0.10 | 0.07 |
Na+ | 1.25 | 0.88 | 0.37 | 0.27 | 1.12 | 0.64 | 0.49 | 0.34 |
K+ | 0.94 | 0.31 | 0.63 | 0.46 | 0.99 | 0.30 | 0.69 | 0.34 |
Cl− | 2.30 | 1.13 | 1.17 | 0.78 | 1.66 | 0.80 | 0.86 | 0.64 |
NO3− | 18.82 | 5.06 | 13.76 | 9.41 | 14.03 | 2.73 | 11.30 | 8.94 |
SO42− | 13.21 | 3.81 | 9.40 | 6.37 | 11.07 | 2.16 | 8.91 | 6.94 |
NH4+ | 7.66 | 0.85 | 6.81 | 4.67 | 6.66 | 0.87 | 5.78 | 4.61 |
OC | 19.60 | 9.84 | 9.77 | 7.46 | 18.62 | 8.28 | 10.35 | 8.34 |
EC | 5.96 | 1.80 | 4.16 | 3.44 | 4.11 | 0.81 | 3.30 | 2.86 |
CH3COO− | 0.61 | 0.34 | 0.27 | 0.18 | 2.41 | 1.12 | 1.29 | 1.02 |
HCOO− | 0.61 | 0.43 | 0.18 | 0.13 | 0.42 | 0.23 | 0.19 | 0.15 |
C2O42− | 0.25 | 0.15 | 0.10 | 0.07 | 0.43 | 0.18 | 0.25 | 0.20 |
(CH3)2NH2+ | 0.12 | 0.06 | 0.06 | 0.04 | 0.09 | 0.05 | 0.04 | 0.03 |
PM Size | Cations/Anions | NO3/SO42 | OC/EC | |||
---|---|---|---|---|---|---|
GL a | ZF a | GL | ZF | GL | ZF | |
<0.43 μm | 0.99 | 1.00 | 1.44 | 0.92 | 1.78 | 3.24 |
0.43–0.65 μm | 0.94 | 0.87 | 1.35 | 1.42 | 2.35 | 2.60 |
0.65–1.1 μm | 0.93 | 0.91 | 1.68 | 1.34 | 2.66 | 3.12 |
1.1–2.1 μm | 0.91 | 0.92 | 1.44 | 1.19 | 3.18 | 4.50 |
2.1–3.3 μm | 0.98 | 1.02 | 1.32 | 1.39 | 6.07 | 11.53 |
3.3–4.7 μm | 1.09 | 1.05 | 1.55 | 1.54 | 11.30 | 13.77 |
4.7–5.8 μm | 1.35 | 0.91 | 1.15 | 0.86 | 6.69 | 13.87 |
5.8–9.0 μm | 1.66 | 1.84 | 1.52 | 1.34 | 3.62 | 5.92 |
9.0–10 μm | 1.92 | 1.47 | 1.06 | 1.04 | 3.57 | 6.77 |
PM10 | 1.08 | 1.01 | 1.42 | 1.27 | 3.29 | 4.53 |
PM10-2.1 | 1.36 | 1.27 | 1.33 | 1.27 | 5.46 | 10.28 |
PM2.1 | 0.94 | 0.91 | 1.46 | 1.28 | 2.35 | 3.13 |
PM1.1 | 0.95 | 0.91 | 1.48 | 1.29 | 2.17 | 2.92 |
Gulou (20 m) | Zifeng (380 m) | |||||||
---|---|---|---|---|---|---|---|---|
PM10 | PM10-2.1 | PM2.1 | PM1.1 | PM10 | PM10-2.1 | PM2.1 | PM1.1 | |
Construction | 5.09 | 2.69 | 2.41 | 1.28 | 3.05 | 1.22 | 1.84 | 1.11 |
Coal-fired PP | 13.84 | 7.39 | 6.45 | 4.09 | 11.65 | 4.24 | 7.41 | 5.81 |
Fugitive dust | 11.11 | 6.81 | 4.30 | 2.39 | 6.22 | 3.66 | 2.56 | 1.60 |
Soil dust | 2.77 | 1.93 | 0.84 | 0.55 | 1.83 | 0.95 | 0.88 | 0.71 |
Steel smelting | 0.79 | 0.37 | 0.41 | 0.22 | 0.70 | 0.28 | 0.42 | 0.32 |
Vehicle exhaust | 14.74 | 5.81 | 8.93 | 6.10 | 10.17 | 3.06 | 7.12 | 5.50 |
Nitrate | 19.69 | 5.98 | 13.70 | 10.65 | 17.88 | 5.27 | 12.61 | 10.47 |
Sulfate | 15.65 | 5.11 | 10.54 | 8.11 | 15.51 | 4.38 | 11.12 | 9.14 |
SOA | 18.14 | 8.68 | 9.47 | 7.31 | 17.23 | 7.54 | 9.69 | 7.79 |
Others | 6.51 | 2.54 | 3.96 | 2.12 | 3.82 | 0.76 | 3.06 | 2.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Chen, P.; Wang, T.; Xie, M.; Zhuang, B.; Li, S.; Li, M. Characteristics and Source Apportionment of Size-Fractionated Particulate Matter at Ground and above the Urban Canopy (380 m) in Nanjing, China. Atmosphere 2022, 13, 883. https://doi.org/10.3390/atmos13060883
Wu H, Chen P, Wang T, Xie M, Zhuang B, Li S, Li M. Characteristics and Source Apportionment of Size-Fractionated Particulate Matter at Ground and above the Urban Canopy (380 m) in Nanjing, China. Atmosphere. 2022; 13(6):883. https://doi.org/10.3390/atmos13060883
Chicago/Turabian StyleWu, Hao, Pulong Chen, Tijian Wang, Min Xie, Bingliang Zhuang, Shu Li, and Mengmeng Li. 2022. "Characteristics and Source Apportionment of Size-Fractionated Particulate Matter at Ground and above the Urban Canopy (380 m) in Nanjing, China" Atmosphere 13, no. 6: 883. https://doi.org/10.3390/atmos13060883
APA StyleWu, H., Chen, P., Wang, T., Xie, M., Zhuang, B., Li, S., & Li, M. (2022). Characteristics and Source Apportionment of Size-Fractionated Particulate Matter at Ground and above the Urban Canopy (380 m) in Nanjing, China. Atmosphere, 13(6), 883. https://doi.org/10.3390/atmos13060883