Ongoing Decline in the Atmospheric COS Seasonal Cycle Amplitude over Western Europe: Implications for Surface Fluxes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whelan, M.E.; Lennartz, S.T.; Gimeno, T.E.; Wehr, R.; Wohlfahrt, G.; Wang, Y.; Kooijmans, L.M.J.; Hilton, T.W.; Belviso, S.; Peylin, P.; et al. Reviews and syntheses: Carbonyl sulfide as a multi-scale tracer for carbon and water cycles. Biogeosciences 2018, 15, 3625–3657. [Google Scholar] [CrossRef] [Green Version]
- Keeling, R.F.; Graven, H.D. Insights from time series of atmospheric carbon dioxide and related tracers. Annu. Rev. Environ. Resour. 2021, 46, 85–110. [Google Scholar] [CrossRef]
- Campbell, J.E.; Berry, J.A.; Seibt, U.; Smith, S.J.; Montzka, S.A.; Launois, T.; Belviso, S.; Bopp, L.; Laine, M. Large historical growth in global terrestrial gross primary production. Nature 2017, 544, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Parazoo, N.C.; Bowman, K.W.; Baier, B.C.; Liu, J.; Lee, M.; Kuai, L.; Shiga, Y.; Baker, I.; Whelan, M.E.; Feng, S.; et al. Covariation of airborne biogenic tracers (CO2, COS, and CO) supports stronger than expected growing season photosynthetic uptake in the southeastern US. Glob. Biogeochem. Cycles 2021, 35, 1–23. [Google Scholar] [CrossRef]
- Hu, L.; Montzka, S.A.; Kaushik, A.; Andrews, A.E.; Sweeney, C.; Miller, J.; Baker, I.T.; Denning, S.; Campbell, E.; Shiga, Y.P.; et al. COS-derived GPP relationships with temperature and light help explain high-latitude atmospheric CO2 seasonal cycle amplification. Proc. Natl. Acad. Sci. USA 2021, 118, 1–10. [Google Scholar] [CrossRef]
- Lin, X.; Rogers, B.M.; Sweeney, C.; Chevallier, F.; Arshinov, M.; Dlugokencky, E.; Machida, T.; Sasakawa, M.; Tans, P.; Keppel-Aleks, G. Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification. Proc. Natl. Acad. Sci. USA 2020, 117, 21079–21087. [Google Scholar] [CrossRef]
- Montzka, S.A.; Calvert, P.; Hall, B.D.; Elkins, J.W.; Conway, T.J.; Tans, P.P.; Sweeney, C. On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. J. Geophys. Res. Atmos. 2017, 112, D09302. [Google Scholar] [CrossRef]
- Lejeune, B.; Mahieu, E.; Vollmer, M.K.; Reimann, S.; Bernath, P.F.; Boone, C.D.; Walker, K.A.; Servais, C. Optimized approach to retrieve information on atmospheric carbonyl sulfide (OCS) above the Jungfraujoch station and change in its abundance since 1995. J. Quant. Spectrosc. Radiat. Transf. 2016, 186, 81–95. [Google Scholar] [CrossRef]
- Kooijmans, L.M.J.; Uitslag, N.A.M.; Zahniser, M.S.; Nelson, D.D.; Montzka, S.A.; Chen, H. Continuous and high-precision atmospheric concentration measurements of COS, CO2, CO and H2O using a quantum cascade laser spectrometer (QCLS). Atmos. Meas. Tech. 2016, 9, 5293–5314. [Google Scholar] [CrossRef] [Green Version]
- Kooijmans, L.M.J.; Maseyk, K.; Seibt, U.; Sun, W.; Vesala, T.; Mammarella, I.; Kolari, P.; Aalto, J.; Franchin, A.; Vecchi, R.; et al. Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest. Atmos. Chem. Phys. 2017, 17, 11453–11465. [Google Scholar] [CrossRef] [Green Version]
- Belviso, S.; Lebegue, B.; Ramonet, M.; Kazan, V.; Pison, I.; Berchet, A.; Delmotte, M.; Yver-Kwok, C.; Montagne, D.; Ciais, P. A top-down approach of sources and non-photosynthetic sinks of carbonyl sulfide from atmospheric measurements over multiple years in the Paris region (France). PLoS ONE 2020, 15, 0228419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloss, C.; Tan, V.; Leen, J.B.; Madsen, G.L.; Gardner, A.; Du, X.; Kulessa, T.; Schillings, J.; Schneider, H.; Schrade, S.; et al. Airborne Mid-Infrared Cavity enhanced Absorption spectrometer (AMICA). Atmos. Meas. Tech. 2021, 14, 5271–5297. [Google Scholar] [CrossRef]
- Karu, E.; Li, M.; Ernle, L.; Brenninkmeijer, C.A.M.; Lelieveld, J.; Williams, J. Atomic emission detector with gas chromatographic separation and cryogenic pre-concentration (CryoTrap–GC–AED) for atmospheric trace gas measurements. Atmos. Meas. Tech. 2021, 14, 1817–1831. [Google Scholar] [CrossRef]
- Hannigan, J.W.; Ortega, I.; Shams, S.B.; Blumenstock, T.; Campbell, J.E.; Conway, S.; Flood, V.; Garcia, O.; Griffith, D.; Grutter, M.; et al. Global atmospheric OCS trend analysis from 22 NDACC stations. J. Geophys. Res. Atmos. 2022, 127, 1–28. [Google Scholar] [CrossRef]
- Wang, Y.; Deutscher, N.M.; Palm, M.; Warneke, T.; Notholt, J.; Baker, I.; Berry, J.; Suntharalingam, P.; Jones, N.; Mahieu, E.; et al. Towards understanding the variability in biospheric CO2 fluxes: Using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2. Atmos. Chem. Phys. 2016, 16, 2123–2138. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, M.; Deutscher, N.M.; Sherlock, V.; Palm, M.; Warneke, T.; Notholt, J. Retrieval of xCO2 from ground-based mid-infrared (NDACC) solar absorption spectra and comparison to TCCON. Atmos. Meas. Tech. 2016, 9, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Remaud, M.; Chevallier, F.; Maignan, F.; Belviso, S.; Berchet, A.; Parouffe, A.; Abadie, C.; Bacour, C.; Lennartz, S.; Peylin, P. Plant gross primary production, plant respiration and carbonyl sulfide emissions over the globe inferred by atmospheric inverse modelling. Atmos. Chem. Phys. 2022, 22, 2525–2552. [Google Scholar] [CrossRef]
- Belviso, S.; Reiter, I.M.; Loubet, B.; Gros, V.; Lathière, J.; Montagne, D.; Delmotte, M.; Ramonet, M.; Kalogridis, C.; Lebegue, B.; et al. A top-down approach of surface carbonyl sulfide exchange by a Mediterranean oak forest ecosystem in southern France. Atmos. Chem. Phys. 2016, 16, 14909–14923. [Google Scholar] [CrossRef] [Green Version]
- Belviso, S.; Abadie, C.; Montagne, D.; Hadjar, D.; Tropée, D.; Vialettes, L.; Kazan, V.; Delmotte, M.; Maignan, F.; Remaud, M.; et al. Carbonyl sulfide emissions in two agroecosystems in central France. PLoS ONE, E, PONE-D-22-03159, submitted.
- Thoning, K.W.; Tans, P.P.; Komhyr, W.D. Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res. Atmos. 1989, 94, 8549–8563. [Google Scholar] [CrossRef]
- Remaud, M.; Chevallier, F.; Cozic, A.; Lin, X.; Bousquet, P. On the impact of recent developments of the LMDz atmospheric general circulation model on the simulation of CO2 transport. Geosci. Model Dev. 2018, 11, 4489–4513. [Google Scholar] [CrossRef] [Green Version]
- Hourdin, F.; Talagrand, O. Eulerian backtracking of atmospheric tracers, I: Adjoint derivation and parametrization of subgrid-scale transport. Q. J. R. Meteorol. Soc. 2006, 132, 567–583. [Google Scholar] [CrossRef]
- Krinner, G.; Viovy, N.; de Noblet-Ducoudré, N.; Ogée, J.; Polcher, J.; Friedlingstein, P.; Ciais, P.; Sitch, S.; Prentice, I.C. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 2005, 19, 1–33. [Google Scholar] [CrossRef]
- Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.; et al. Plant functional type classification for earth system models: Results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 2015, 8, 2315–2328. [Google Scholar] [CrossRef] [Green Version]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Lardy, R.; Bellocchi, G.; Soussana, J. A new method to determine soil organic carbon equilibrium. Environ. Modell. Softw. 2011, 26, 1759–1763. [Google Scholar] [CrossRef]
- Maignan, F.; Abadie, C.; Remaud, M.; Kooijmans, L.M.J.; Kohonen, K.-M.; Commane, R.; Wehr, R.; Campbell, J.E.; Belviso, S.; Montzka, S.A.; et al. Carbonyl sulfide: Comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach. Biogeosciences 2021, 18, 2917–2955. [Google Scholar] [CrossRef]
- Abadie, C.; Maignan, F.; Remaud, M.; Ogée, J.; Campbell, J.E.; Whelan, M.E.; Kitz, F.; Spielmann, F.M.; Wohlfahrt, G.; Wehr, R.; et al. Global modelling of soil carbonyl sulfide exchange. Biogeosciences 2022, 19, 2427–2463. [Google Scholar] [CrossRef]
- Berry, J.; Wolf, A.; Campbell, J.E.; Baker, I.; Blake, N.; Blake, D.; Denning, A.S.; Kawa, S.R.; Montzka, S.A.; Seibt, U.; et al. A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle. J. Geophys. Res.-Biogeo. 2013, 118, 842–852. [Google Scholar] [CrossRef] [Green Version]
- Hauglustaine, D.A.; Hourdin, F.; Jourdain, L.; Filiberti, M.A.; Walters, S.; Lamarque, J.F.; Holland, E.A. Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation. J. Geophys. Res. Atmos. 2004, 109, 1–44. [Google Scholar] [CrossRef]
- Zumkehr, A.; Hilton, T.W.; Whelan, M.; Smith, S.; Kuai, L.; Worden, J.; Campbell, J.E. Global gridded anthropogenic emissions inventory of carbonyl sulfide. Atmos. Environ. 2018, 183, 11–19. [Google Scholar] [CrossRef]
- Lennartz, S.T.; Marandino, C.A.; von Hobe, M.; Cortes, P.; Quack, B.; Simo, R.; Booge, D.; Pozzer, A.; Steinhoff, T.; Arevalo-Martinez, D.L.; et al. Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide. Atmos. Chem. Phys. 2017, 17, 385–402. [Google Scholar] [CrossRef] [Green Version]
- Lennartz, S.T.; Gauss, M.; von Hobe, M.; Marandino, C.A. Monthly resolved modelled oceanic emissions of carbonyl sulphide and carbon disulphide for the period 2000–2019. Earth Syst. Sci. Data 2021, 13, 2095–2110. [Google Scholar] [CrossRef]
- Masotti, I.; Belviso, S.; Bopp, L.; Tagliabue, A.; Bucciarelli, E. Effects of light and phosphorus on summer DMS dynamics in subtropical waters using a global ocean biogeochemical model. Environ. Chem. 2016, 13, 379–389. [Google Scholar] [CrossRef]
- Stinecipher, J.R.; Cameron-Smith, P.J.; Blake, N.J.; Kuai, L.; Lejeune, B.; Mahieu, E.; Simpson, I.J.; Campbell, J.E. Biomass Burning unlikely to account for missing source of carbonyl sulfide. Geophys. Res. Lett. 2019, 46, 14912–14920. [Google Scholar] [CrossRef]
- Suntharalingam, P.; Kettle, A.J.; Montzka, S.M.; Jacob, D.J. Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake. Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef] [Green Version]
Budget | Type of Flux | Total (GgS yr−1) | SD * (GgS yr−1) | Data Source |
---|---|---|---|---|
Net sinks | Vegetation | −576 | 7 | [27] revised in [28] |
Oxic soils | −126 | 5 | [28] | |
Atmospheric oxidation by OH | −100 | - | [30] | |
Photolysis in the stratosphere | −30 | - | [30] | |
Anoxic soils | +96 | 2 | [28] | |
Net sources | Anthropogenic | +394 | 21 | [31] |
Oceanic | +313 | 14 | [32] **, [33,34] *** | |
Biomass burning | +48 | 9 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belviso, S.; Remaud, M.; Abadie, C.; Maignan, F.; Ramonet, M.; Peylin, P. Ongoing Decline in the Atmospheric COS Seasonal Cycle Amplitude over Western Europe: Implications for Surface Fluxes. Atmosphere 2022, 13, 812. https://doi.org/10.3390/atmos13050812
Belviso S, Remaud M, Abadie C, Maignan F, Ramonet M, Peylin P. Ongoing Decline in the Atmospheric COS Seasonal Cycle Amplitude over Western Europe: Implications for Surface Fluxes. Atmosphere. 2022; 13(5):812. https://doi.org/10.3390/atmos13050812
Chicago/Turabian StyleBelviso, Sauveur, Marine Remaud, Camille Abadie, Fabienne Maignan, Michel Ramonet, and Philippe Peylin. 2022. "Ongoing Decline in the Atmospheric COS Seasonal Cycle Amplitude over Western Europe: Implications for Surface Fluxes" Atmosphere 13, no. 5: 812. https://doi.org/10.3390/atmos13050812
APA StyleBelviso, S., Remaud, M., Abadie, C., Maignan, F., Ramonet, M., & Peylin, P. (2022). Ongoing Decline in the Atmospheric COS Seasonal Cycle Amplitude over Western Europe: Implications for Surface Fluxes. Atmosphere, 13(5), 812. https://doi.org/10.3390/atmos13050812