Tropical Cyclone Intensity Prediction Using Deep Convolutional Neural Network
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Model
2.3. Experiment Set-Up
3. Results
3.1. Model Comparison
3.2. Sensitivity Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Emanuel, K.A. Thermodynamic control of hurricane intensity. Nature 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Gao, S. The Advances and Discussions on China Operational Typhoon Forecasting. Meteorol. Mon. 2010, 36, 43–49. [Google Scholar]
- Wang, Y.; Wu, C.C. Current understanding of tropical cyclone structure and intensity changes—A review. Meteorol. Atmos. Phys. 2004, 87, 257–278. [Google Scholar] [CrossRef]
- Mei, W.; Xie, S.P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci. 2016, 9, 753–757. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P.M. Persistent extreme precipitation events in China during 1951–2010. Clim. Res. 2013, 57, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Van Oldenborgh, G.J.; van der Wiel, K.; Sebastian, A.; Singh, R.; Arrighi, J.; Otto, F.; Haustein, K.; Li, S.H.; Vecchi, G.; Cullen, H. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett. 2017, 12, 124009. [Google Scholar] [CrossRef]
- Jonkman, S.N.; Maaskant, B.; Boyd, E.; Levitan, M.L. Loss of life caused by the flooding of New Orleans after Hurricane Katrina: Analysis of the relationship between flood characteristics and mortality. Risk Anal. Off. Publ. Soc. Risk Anal. 2009, 29, 676–698. [Google Scholar] [CrossRef]
- Lee, C.T.; Huang, C.C.; Lee, J.F.; Pan, K.L.; Lin, M.L.; Dong, J.J. Statistical approach to storm event-induced landslides susceptibility. Nat. Hazards Earth Syst. Sci. 2008, 8, 941–960. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Smith, W.L. Impact of Atmospheric Retrievals on Hurricane Florence/Michael Forecasts in a Regional NWP Model. J. Geophys. Res. Atmos. 2019, 124, 8544–8562. [Google Scholar] [CrossRef] [Green Version]
- Ma, L. Research Progress on China typhoon numerical prediction models and associated major techniques. Prog. Geophys. 2014, 29, 1013–1022. [Google Scholar] [CrossRef]
- Demaria, M.; Kaplan, J. A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic Basin. Weather Forecast. 1994, 9, 209–220. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Luo, J.J. Modeling of tropical cyclone activity over the North Indian Ocean using generalised additive model and machine learning techniques: Role of Boreal summer intraseasonal oscillation. Nat. Hazards. 2022, 111, 1801–1811. [Google Scholar] [CrossRef]
- DeMaria, M.; Mainelli, M.; Shay, L.K.; Knaff, J.A.; Kaplan, J. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather Forecast. 2005, 20, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Nayak, N.C.; Mohanty, W.K. Long-term forecasting of tropical cyclones over Bay of Bengal using linear and non-linear statistical models. Geojournal 2021, 86, 1–23. [Google Scholar] [CrossRef]
- Chen, B.; Chen, B.-F.; Lin, H.-T. Rotation-blended CNNs on a new open dataset for tropical cyclone image-to-intensity regression. In Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), London, UK, 19–23 August 2018; pp. 90–99. [Google Scholar] [CrossRef]
- Tan, J.; Yang, Q.; Hu, J.; Huang, Q.; Chen, S. Tropical Cyclone Intensity Estimation Using Himawari-8 Satellite Cloud Products and Deep Learning. Remote Sens. 2022, 14, 812. [Google Scholar] [CrossRef]
- Pradhan, R.; Aygun, R.S.; Maskey, M.; Ramachandran, R.; Cecil, D.J. Tropical Cyclone Intensity Estimation Using a Deep Convolutional Neural Network. IEEE Trans. Image Processing A Publ. IEEE Signal Processing Soc. 2018, 27, 692–702. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Higa, M.; Tanahara, S.; Adachi, Y.; Ishiki, N.; Nakama, S.; Yamada, H.; Ito, K.; Kitamoto, A.; Miyata, R. Domain knowledge integration into deep learning for typhoon intensity classification. Sci. Rep. 2021, 11, 12972. [Google Scholar] [CrossRef]
- Giffard-Roisin, S.; Yang, M.; Charpiat, G.; Kumler Bonfanti, C.; Kegl, B.; Monteleoni, C. Tropical Cyclone Track Forecasting Using Fused Deep Learning From Aligned Reanalysis Data. Front. Big Data 2020, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Liu, Q.; Hang, R.; Liu, G. Predicting Tropical Cyclogenesis Using a Deep Learning Method From Gridded Satellite and ERA5 Reanalysis Data in the Western North Pacific Basin. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Wendland, W.M. Tropical storm frequencies related to sea-surface temperatures. J. Appl. Meteorol. 1977, 16, 477–481. [Google Scholar] [CrossRef] [Green Version]
- Mei, W.; Xie, S.P.; Primeau, F.; McWilliams, J.C.; Pasquero, C. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv. 2015, 1, e1500014. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.J.; Li, Q.Q. Revisiting the response of western North Pacific tropical cyclone intensity change to vertical wind shear in different directions. Atmos. Ocean. Sci. Lett. 2021, 14, 100041. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, 1409, 1556. [Google Scholar]
- Lu, X.Q.; Yu, H.; Ying, M.; Zhao, B.K.; Zhang, S.; Lin, L.M.; Bai, L.N.; Wan, R.J. Western North Pacific Tropical Cyclone Database Created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.Q.; Feng, J.X.; Fan, Y.X.; Zhu, Y.T.; Chen, D.Q. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. The dependence of hurricane intensity on climate. Nature 1987, 326, 483–485. [Google Scholar] [CrossRef]
- Holland, G.J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci. 1997, 54, 2519–2541. [Google Scholar] [CrossRef]
- Ramsay, H.A. The Effects of Imposed Stratospheric Cooling on the Maximum Intensity of Tropical Cyclones in Axisymmetric Radiative-Convective Equilibrium. J. Clim. 2013, 26, 9977–9985. [Google Scholar] [CrossRef]
- Wang, S.; Camargo, S.J.; Sobel, A.H.; Polvani, L.M. Impact of the Tropopause Temperature on the Intensity of Tropical Cyclones: An Idealized Study Using a Mesoscale Model. J. Atmos. Sci. 2014, 71, 4333–4348. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Ren, S.; Liu, Y.; Wu, G. Interactions between typhoon and subtropical anticyclone over western pacific revealed by numerical experiments. Acta Meteorol. Sin. 2007, 65, 329–340. [Google Scholar]
- Kaplan, J.; DeMaria, M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather Forecast. 2003, 18, 1093–1108. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.; Bowyer, K.; Hall, L.; Kegelmeyer, W. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. (JAIR) 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Gong, B.; Ordieres-Meré, J. Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong. Environ. Model. Softw. 2016, 84, 290–303. [Google Scholar] [CrossRef]
- Wada, A.; Usui, N. Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific. J. Oceanogr. 2007, 63, 427–447. [Google Scholar] [CrossRef]
- Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv 2014, arXiv:1312.6034. [Google Scholar]
Target | Predictors | Number | Task Type |
---|---|---|---|
MCP | TEM_850,TEM_500, GEOPH, RH, SST, U, V, VWSS, VWSD | 10 | Regression |
MWS | TEM_850,TEM_500,GEOPH, RH, SST, VWSS, VWSD | 8 | Regression |
TCI | TEM_850,TEM_500, GEOPH, RH, SST, VWSS, VWSD | 8 | Classification |
Network | Target | Learning Rate | Weight Decay | Loss Function | Optimizer |
---|---|---|---|---|---|
LeNet-5 | MCP/MWS | 1 × 10−7 | 5 × 10−5 | MSE | Adam |
TCI | 1 × 10−6 | 5 × 10−5 | Cross Entropy | Adam | |
AlexNet | MCP/MWS | 2 × 10−6 | 5 × 10−5 | MSE | Adam |
TCI | 1 × 10−5 | 5 × 10−5 | Cross Entropy | Adam | |
VGG-16s | MCP/MWS | 8 × 10−6 | 5 × 10−5 | MSE | Adam |
TCI | 4 × 10−6 | 5 × 10−5 | Cross Entropy | Adam |
Target | Evaluating Indicator | LeNet-5 | AlexNet | VGG-16s |
---|---|---|---|---|
MCP | R2 | 0.60 | 0.77 | 0.80 |
RMSE (hPa) | 14.93 | 11.20 | 10.44 | |
SMAPE | 1.18 | 0.87 | 0.75 | |
MAE (hPa) | 11.54 | 8.53 | 7.34 | |
MWS | R2 | 0.65 | 0.83 | 0.85 |
RMSE (m/s) | 8.65 | 6.03 | 5.62 | |
SMAPE | 26.07 | 17.56 | 15.49 | |
MAE (m/s) | 6.82 | 4.56 | 4.16 | |
TCI | ACC | 0.53 | 0.59 | 0.61 |
Pre | 0.52 | 0.57 | 0.55 | |
Rec | 0.49 | 0.57 | 0.58 | |
F1 | 0.50 | 0.56 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.-Y.; Shao, M.; Chen, P.-L.; Wang, Q.-G. Tropical Cyclone Intensity Prediction Using Deep Convolutional Neural Network. Atmosphere 2022, 13, 783. https://doi.org/10.3390/atmos13050783
Xu X-Y, Shao M, Chen P-L, Wang Q-G. Tropical Cyclone Intensity Prediction Using Deep Convolutional Neural Network. Atmosphere. 2022; 13(5):783. https://doi.org/10.3390/atmos13050783
Chicago/Turabian StyleXu, Xiao-Yan, Min Shao, Pu-Long Chen, and Qin-Geng Wang. 2022. "Tropical Cyclone Intensity Prediction Using Deep Convolutional Neural Network" Atmosphere 13, no. 5: 783. https://doi.org/10.3390/atmos13050783
APA StyleXu, X. -Y., Shao, M., Chen, P. -L., & Wang, Q. -G. (2022). Tropical Cyclone Intensity Prediction Using Deep Convolutional Neural Network. Atmosphere, 13(5), 783. https://doi.org/10.3390/atmos13050783