Effects of Urbanization on Extreme Climate Indices in the Valley of Mexico Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Domain, Data, and Station Classification
2.2. Quality Control Analysis and Homogenization of Climate Data
2.3. Calculation of the Indices of the Daily Climate Extremes
2.4. Statistical Analysis of the Climate Change Indices Trends and Serial Correlation Test
2.5. Patakamuri Tests for Serially Correlated Data and Calculation of the Final Climate Indices Trends
2.6. Calculation of the Average Climate Index Trend per Type of Station and Assessing the Effect of Urbanization on Extreme Climate Indices
3. Results
3.1. Mean Precipitation and Surface Temperature of the Homogenized Stations in the VMB
3.2. Statistical Analysis Results of the Climate Change Indices
3.3. Geographic Distribution of Statistically Significant Urban and Rural Station Trends for Some CCI
4. Discussion
4.1. Analysis of the Climate Change Indices
4.2. Some Recommendations to Reduce Current and Future Impacts
- Increase green areas, especially near homes, to promote cooling and reduce energy demand and costs, in addition to improving air quality. Examples of this can be planting trees and/or transforming roofs into ecological areas such as roof gardens.
- Build cold roofs, which are reflective, and are characterized according to their slope.
- Increase the use of more efficient electronic devices and equipment; this helps to reduce energy consumption, and in turn, its losses.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arguez, A.; Hurley, S.; Inamdar, A.; Mahoney, L.; Sanchez-Lugo, A.; Yang, L. Should we expect each year in the next decade (2019–28) to be ranked among the top 10 warmest years globally? Bull. Am. Meteorol. Soc. 2020, 101, E655–E663. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate Extremes: Observations, Modeling, and Impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, A.P., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Expert Team on Climate Information for Decision-Making. Available online: https://community.wmo.int/governance/commission-membership/commission-weather-climate-water-and-related-environmental-service-applications-sercom/commission-services-officers/sercom-management-group/standing-committee-climate-services/expert-team-climate-information-decision (accessed on 11 April 2022).
- Peterson, T.C.; Manton, M.J. Monitoring Changes in Climate Extremes: A Tale of International Collaboration. Bull. Am. Meteorol. Soc. 2008, 89, 1266–1271. Available online: http://www.jstor.org/stable/26220889 (accessed on 11 April 2022). [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Caesar, J. Global land-based datasets for monitoring climatic extremes. Bull. Am. Meteorol. Soc. 2013, 94, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Sui, Y.; Lang, X.; Jiang, D. Projected signals in climate extremes over China associated with a 2 °C global warming under two RCP scenarios. Int. J. Climatol. 2018, 38, e678–e697. [Google Scholar] [CrossRef]
- Panda, D.K.; Panigrahi, P.; Mohanty, S.; Mohanty, R.K.; Sethi, R.R. The 20th century transitions in basic and extreme monsoon rainfall indices in India: Comparison of the ETCCDI indices. Atmos. Res. 2016, 181, 220–235. [Google Scholar] [CrossRef]
- Van den Besselaar, E.J.M.; Klein Tank, A.M.G.; Buishand, T.A. Trends in European precipitation extremes over 1951–2010. Int. J. Climatol. 2013, 33, 2682–2689. [Google Scholar] [CrossRef]
- Barry, A.A.; Caesar, J.; Klein Tank, A.M.G.; Aguilar, E.; McSweeney, C.; Cyrille, A.M.; Touray, L.M. West Africa climate extremes and climate change indices. Int. J. Climatol. 2018, 38, e921–e938. [Google Scholar] [CrossRef]
- Aguilar, E.; Peterson, T.C.; Obando, P.R.; Frutos, R.; Retana, J.A.; Solera, M.; Soley, J.; García, I.G.; Araujo, R.M.; Santos, A.R.; et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res.-Atmos. 2005, 110, D23107. [Google Scholar] [CrossRef]
- Peterson, T.C.; Zhang, X.; Brunet-India, M.; Vázquez-Aguirre, J.L. Changes in North American extremes derived from daily weather data. J. Geophys. Res.-Atmos. 2008, 113, D07113. [Google Scholar] [CrossRef] [Green Version]
- Montero-Martínez, M.J.; Santana-Sepúlveda, J.S.; Pérez-Ortiz, N.I.; Pita-Díaz, Ó.; Castillo-Liñan, S. Comparing climate change indices between a northern (arid) and a southern (humid) basin in Mexico during the last decades. Adv. Sci Res. 2018, 15, 231–237. [Google Scholar] [CrossRef]
- Pita-Díaz, O.; Ortega-Gaucin, D. Analysis of Anomalies and Trends of Climate Change Indices in Zacatecas, Mexico. Climate 2020, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Gómez, R.; Muro-Hernández, L.J.; Flowers-Cano, R.S. Assessment of extreme precipitation through climate change indices in Zacatecas, Mexico. Theor. Appl. Climatol. 2020, 141, 1541–1557. [Google Scholar] [CrossRef]
- Montero-Martínez, M.J.; Pita-Díaz, O.; Andrade-Velázquez, M. Potential Influence of the Atlantic Multidecadal Oscillation in the Recent Climate of a Small Basin in Central Mexico. Atmosphere 2022, 13, 339. [Google Scholar] [CrossRef]
- Wang, H.J.; Sun, J.Q.; Chen, H.P.; Zhu, Y.L.; Zhang, Y.; Jiang, D.B.; Lang, X.M.; Fan, K.; Yu, E.T.; Yang, S. Extreme climate in China: Facts, simulation and projection. Meteorol. Z. 2012, 21, 279–304. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.Z.; Ou, C.Q.; Lin, G.Z.; Zhou, Q.; Shen, G.C.; Chen, P.Y.; Guo, Y.M. Global climate change: Impact of di-urnal temperature range on mortality in Guangzhou, China. Environ. Pollut. 2013, 175, 131–136. [Google Scholar] [CrossRef]
- Ruiz-García, P.; Conde-Álvarez, C.; Gómez-Díaz, J.D.; Monterroso-Rivas, A.I. Projections of Local Knowledge-Based Adaptation Strategies of Mexican Coffee Farmers. Climate 2021, 9, 60. [Google Scholar] [CrossRef]
- Dale, V.H. The relationship between land-use change and climate change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Niyogi, D.; de Noblet-Ducoudré, N.; Dickinson, R.E.; Snyder, P.K. Impacts of land use change on climate. Int. J. Climatol. 2010, 30, 1905–1907. [Google Scholar] [CrossRef] [Green Version]
- Palomeque-De la Cruz, M.Á.; Galindo-Alcántara, A.; Escalona-Maurice, M.J.; Ruiz-Acosta, S.C.; Sánchez-Martínez, A.J.; Pérez-Sánchez, E. Analysis of land use change in an urban ecosystem in the drainage area of the Grijalva river, Mexico. Rev. Chapingo Ser. Cienc. For. Y Del Ambiente 2017, 23, 105–120. [Google Scholar] [CrossRef]
- Lowry, W.P. Empirical Estimation of Urban Effects on Climate: A Problem Analysis. J. Appl. Meteorol. Climatol. 1977, 16, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Ming, C. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J. Evidence of urban-induced precipitation variability in arid climate regimes. J. Arid Environ. 2006, 67, 607–628. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Lettenmaier, D.P. Climatic trends in major U.S. urban areas, 1950–2009. Geophys. Res. Lett. 2011, 38, L16401. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Ganguly, A.R.; Nijssen, B.; Lettenmaier, D.P. Changes in Observed Climate Extremes in Global Urban Areas. Environ. Res. Lett. 2015, 10, 024005. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/10/2/024005/meta (accessed on 11 April 2022). [CrossRef]
- García-Cueto, O.R.; Santillán-Soto, N.; López-Velázquez, E.; Reyes-López, J.; Cruz-Sotelo, S.; Ojeda-Benítez, S. Trends of climate change indices in some Mexican cities from 1980 to 2010. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2018, 137, 775–790. [Google Scholar] [CrossRef]
- Dursun, D.; Yavas, M. Urbanization and the Use of Climate Knowledge in Erzurum, Turkey. Procedia Eng. 2016, 169, 324–331. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wong, N.H. Urban Micro-climate Research in High Density Cities: Case Study in Nanjing. Procedia Eng. 2016, 169, 88–99. [Google Scholar] [CrossRef]
- Bornstein, R.D. Observations of the Urban Heat Island Effect in New York City. J. Appl. Meteorol. 1968, 7, 575–582. [Google Scholar] [CrossRef]
- Cui, Y.Y.; de Foy, B. Seasonal Variations of the Urban Heat Island at the Surface and the Near-Surface and Reductions due to Urban Vegetation in Mexico City. J. Appl. Meteorol. Climatol. 2012, 51, 855–868. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, D.; Li, Z. Research on Characteristic Analysis of Urban Heat Island in Multi-scales and Urban Planning Strategies. Procedia Eng. 2016, 169, 175–182. [Google Scholar] [CrossRef]
- Yi, F.; Zhou, T.; Yu, L.; McCarl, B.; Wang, Y.; Jiang, F.; Wang, Y. Outdoor heat stress and cognition: Effects on those over 40 years old in China. Weather Clim. Extrem. 2021, 32, 100308. [Google Scholar] [CrossRef]
- Martinez-Austria, P.F.; Bandala, E.R. Temperature and Heat-Related Mortality Trends in the Sonoran and Mojave Desert Region. Atmosphere 2017, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Palafox-Juárez, E.; López-Martínez, J.; Hernández-Stefanoni, J.; Hernández-Nuñez, H. Impact of Urban Land-Cover Changes on the Spatial-Temporal Land Surface Temperature in a Tropical City of Mexico. ISPRS Int. J. Geo-Inf. 2021, 10, 76. [Google Scholar] [CrossRef]
- Jauregui, E.; Godinez, L.; Cruz, F. Aspects of heat-island development in Guadalajara, Mexico. Atmos. Environ. Part B Urban Atmos. 1992, 26, 391–396. [Google Scholar] [CrossRef]
- Jáuregui, E.; Romales, E. Urban effects on convective precipitation in Mexico City. Atmos. Environ. 1996, 30, 3383–3389. [Google Scholar] [CrossRef]
- Jáuregui, E. Possible impact of urbanization on the thermal climate of some large cities in México. Atmósfera 2005, 18, 249–252. [Google Scholar]
- Aquino-Martínez, L.P.; Quintanar, A.I.; Ochoa-Moya, C.A.; López-Espinoza, E.D.; Adams, D.K.; Jazcilevich-Diamant, A. Urban-Induced Changes on Local Circulation in Complex Terrain: Central Mexico Basin. Atmosphere 2021, 12, 904. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía. Available online: https://rde.inegi.org.mx/index.php/2013/01/06/integracion-de-un-sistema-de-cuentas-economicas-e-hidricas-en-la-cuenca-del-valle-de-mexico/ (accessed on 11 April 2022).
- Rodríguez-Tapia, L.; Pedro-Aburto, M.; Morales-Novelo, J.A.; Revollo-Fernández, D.A. Water Technology in the Paper Industry in the Valley of Mexican Basin. Water Conserv. Sci. Eng. 2020, 5, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Carrera-Hernández, J.J.; Gaskin, S.J. Water management in the Basin of Mexico: Current state and alternative scenarios. Appl. Hydrogeol. 2009, 17, 1483–1494. [Google Scholar] [CrossRef]
- Servicio Meteorológico Nacional. Available online: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica (accessed on 11 April 2022).
- ESA Land Cover CCI. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/index.php (accessed on 11 April 2022).
- Guijarro, J.A. Homogenization of Climatic Series with Climatol; Versión 3.1.1; Agencia Estatal de Meteorología (AEMET): Islas Baleares, Spain; Available online: https://www.climatol.eu/homog_climatol-en.pdf (accessed on 11 April 2022).
- Alexandersson, H. A homogeneity test applied to precipitation data. Int. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Paulhus, J.H.L.; Kohler, M.A. Interpolation of missing precipitation records. Mon. Weather Rev. 1952, 80, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Mamara, A.; Argiriou, A.A.; Anadranistakis, M. Homogenization of mean monthly temperature time series of Greece. Int. J. Climatol. 2013, 33, 2649–2666. [Google Scholar] [CrossRef]
- Abahous, H.; Guijarro, J.A.; Sifeddine, A.; Chehbouni, A.; Ouazar, D.; Bouchaou, L. Monthly precipitations over semi-arid basins in Northern Africa: Homogenization and trends. Int. J. Climatol. 2020, 40, 6095–6105. [Google Scholar] [CrossRef]
- Domonkos, P.; Guijarro, J.A.; Venema, V.; Brunet, M.; Sigró, J. Efficiency of Time Series Homogenization: Method Comparison with 12 Monthly Temperature Test Datasets. J. Climatol. 2021, 34, 2877–2891. [Google Scholar] [CrossRef]
- ClimPACT2. Available online: https://climpact-sci.org/get-started/ (accessed on 11 April 2022).
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948. [Google Scholar]
- Lehmann, E.L.; D’Abrera, H.J. Nonparametrics Statistical Methods Based on Ranks; Holden-Day: San Francisco, CA, USA, 1975. [Google Scholar]
- Patakamuri, S.K.; Muthiah, K.; Sridhar, V. Long-term homogeneity, trend, and change-point analysis of rainfall in the arid district of Ananthapuramu, Andhra Pradesh State. India Water 2020, 12, 211. [Google Scholar] [CrossRef] [Green Version]
- Von Storch, H.; Navarra, A. Misuses of Statistical Analysis in Climate Research. In Analysis of Climate Variability-Applications of Statistical Techniques; Springer: Berlin/Heidelberg, Germany, 1995; pp. 11–26. [Google Scholar]
- Kulkarni, A.; von Storch, H. Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol. Z. 1995, 4, 82–85. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Hamed, K.H. Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J. Hydrol. 2009, 368, 143–155. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kumar, N.; Panchal, C.C.; Chandrawanshi, S.K.; Thanki, J.D. Analysis of rainfall by using Mann-Kendall trend, Sen’s slope and variability at five districts of south Gujarat, India. Mausam 2017, 68, 205–222. [Google Scholar] [CrossRef]
- Fonseca, D.; Calvalho, M.J.; Marta-Almeida, M.; Melo-Goncalves, P.; Rocha, A. Recent trends of extreme temperature indices for the Iberian Peninsula. Phys. Chem. Earth Pt. A/B/C 2016, 94, 66–76. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA; p. 1535.
- Easterling, D.R. Recent changes in frost days and the frost-free season in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1327–1332. [Google Scholar] [CrossRef]
- Lu, H.; Liu, G. Recent Observations of Human-induced Asymmetric Effects on Climate in Very High-Altitude Areas. PLoS ONE 2014, 9, e81535. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Medrano-Pérez, O.R.; Montero-Martínez, M.J.; Alcudia-Aguilar, A. Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean. Appl. Sci. 2021, 11, 8284. [Google Scholar] [CrossRef]
- Behzadi, F.; Wasti, A.; Rahat, S.H.; Tracy, J.N.; Ray, P.A. Analysis of the climate change signal in Mexico City given disagreeing data sources and scattered projections. J. Hydrol. Reg. Stud. 2020, 27, 100662. [Google Scholar] [CrossRef]
- Yang, J.; Bou-Zeid, E. Should cities embrace their heat islands as shields from extreme cold? J. Appl. Meteorol. Climatol. 2018, 57, 1309–1320. [Google Scholar] [CrossRef]
- Wei, C.; Chen, W.; Lu, Y.; Blaschke, T.; Peng, J.; Xue, D. Synergies between Urban Heat Island and Urban Heat Wave Effects in 9 Global Mega Regiones from 2003 to 2020. Remote Sens. 2022, 14, 70. [Google Scholar] [CrossRef]
- Haines, A.; Kovats, R.S.; Campbell-Lendrum, D.; Corvalan, C. Climate change and human health: Impacts, vulnerability and public health. Public Health 2006, 120, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Paavola, J. Health impacts of climate change and health and social inequalities in the UK. Environ. Health 2017, 16, 61–68. [Google Scholar] [CrossRef]
- Givoni, B. Impact of planted areas on urban environmental quality: A review. Atmos. Environ. Part B Urban Atmos. 1991, 25, 289–299. [Google Scholar] [CrossRef]
- Emilsson, T.; Ode Sang, Å. Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Suburban stormwater. J. Hydrol. 2008, 350, 114–125. [Google Scholar] [CrossRef]
- CEPAL. Amenazas de Cambio Climático, Métricas de Mitigación y Adaptación en Ciudades de América Latina y el Caribe, Siclari, P., Documentos de Proyectos (LC/TS.2020/185); Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, CA, USA, 2020. [Google Scholar]
- Olivares, E.A.O.; Torres, S.S.; Jiménez, S.I.B.; Enríquez, J.O.C.; Zignol, F.; Reygadas, Y.; Tiefenbacher, J.P. Climate Change, Land Use/Land Cover Change, and Population Growth as Drivers of Groundwater Depletion in the Central Valleys, Oaxaca, Mexico. Remote Sens. 2019, 11, 1290. [Google Scholar] [CrossRef] [Green Version]
- Agencia de Protección Ambiental de Estados Unidos. Available online: https://espanol.epa.gov/la-energia-y-el-medioambiente/que-puede-hacer-para-reducir-las-islas-de-calor (accessed on 11 April 2022).
- SEDEMA. Secretaria del Medio Ambiente. Gobierno de la Ciudad de México. Available online: https://www.sedema.cdmx.gob.mx/storage/app/media/ELAC_PACCM_ConsultaPublica.pdf (accessed on 11 April 2022).
- Kioutsioukis, I.; Melas, D.; Zerefos, C. Statistical assessment of changes in climate extremes over Greece (1955–2002). Int. J. Climatol. 2010, 30, 1723–1737. [Google Scholar] [CrossRef]
LC_1992 | LC_2010 | Latitude | Longitude | Station ID | Station Name |
---|---|---|---|---|---|
30 | 30 | −99.2 | 19.217 | 9002 (r) | Ajusco |
190 | 190 | −99.19 | 19.469 | 9003 (u) | Aquiles Serdán 46 |
190 | 190 | −99.117 | 19.417 | 9007 (u) | Cincel 42 |
190 | 190 | −99.075 | 19.399 | 9009 (u) | Colonia Agrícola Oriental |
120 | 70 | −99.202 | 19.413 | 9010 (r) | Colonia América |
190 | 190 | −99.177 | 19.401 | 9012 (u) | Colonia Escandon |
190 | 190 | −99.106 | 19.428 | 9013 (u) | Colonia Moctezuma |
190 | 190 | −99.148 | 19.303 | 9014 (u) | Colonia Santa Ursula Coapa |
190 | 190 | −99.174 | 19.425 | 9015 (u) | Rodano 14 (CFE) |
70 | 190 | −99.3 | 19.35 | 9016 (s) | Cuajimalpa |
70 | 70 | −99.31 | 19.314 | 9019 (r) | Desierto de Los Leones |
190 | 190 | −99.182 | 19.297 | 9020 (u) | Desviación Alta al Pedregal |
190 | 190 | −99.186 | 19.475 | 9021 (u) | Egipto 7 |
11 | 11 | −99.173 | 19.134 | 9022 (r) | El Guarda |
190 | 190 | −99.183 | 19.3 | 9024 (u) | Hacienda Peña Pobre |
190 | 190 | −99.158 | 19.513 | 9025 (u) | Hacienda La Patera |
190 | 190 | −99.083 | 19.367 | 9026 (u) | Morelos 77 |
190 | 190 | −99.091 | 19.477 | 9029 (u) | Gran Canal Km. 06 + 250 |
70 | 70 | −99.3 | 19.333 | 9030 (r) | La Venta Cuajimalpa |
190 | 190 | −99.022 | 19.191 | 9032 (u) | Milpa Alta |
11 | 11 | −99.1 | 19.25 | 9034 (r) | Moyoguarda |
190 | 190 | −99.217 | 19.333 | 9037 (u) | Presa Ansaldo |
190 | 190 | −99.267 | 19.367 | 9038 (u) | Presa Mixcoac |
190 | 190 | −99.213 | 19.397 | 9039 (u) | Presa Tacubaya |
11 | 11 | −99.129 | 19.197 | 9041 (r) | San Francisco Tlalnepantla |
11 | 11 | −99.083 | 19.217 | 9042 (r) | San Gregorio Atlapulco |
70 | 70 | −99.079 | 19.465 | 9043 (r) | San Juan de Aragón |
120 | 190 | −99.003 | 19.179 | 9045 (s) | Santa Ana Tlacotenco |
190 | 190 | −99.233 | 19.383 | 9046 (u) | Colonia Santa Fe |
190 | 190 | −99.189 | 19.46 | 9047 (u) | Colonia Tacuba |
190 | 190 | −99.196 | 19.404 | 9048 (u) | Tacubaya Central (Obs) |
190 | 190 | −99.213 | 19.36 | 9049 (u) | Tarango |
190 | 190 | −99.217 | 19.433 | 9050 (u) | Lomas de Chapultepec |
190 | 190 | −99.004 | 19.263 | 9051 (u) | Tláhuac |
190 | 190 | −99.053 | 19.429 | 9068 (u) | Puente La Llave |
190 | 190 | −99.172 | 19.351 | 9070 (u) | Campo Experimental Coyoacán |
190 | 190 | −99.132 | 19.334 | 9071 (u) | Colonia Educación |
11 | 11 | −98.642 | 19.61 | 13,024 (r) | Potrerito |
11 | 11 | −98.772 | 19.141 | 15,007 (r) | Amecameca de Juárez (Dge) |
10 | 190 | −98.913 | 19.544 | 15,008 (s) | Atenco |
10 | 10 | −99.468 | 19.318 | 15,011 (r) | Atarasquillo |
190 | 190 | −99.239 | 19.534 | 15,013 (u) | Calacoaya |
190 | 190 | −98.846 | 19.385 | 15,017 (u) | Coatepec de Los Olivos |
11 | 190 | −98.765 | 19.325 | 15,018 (s) | Colonia Manuel A. Camacho |
120 | 120 | −99.355 | 19.596 | 15,019 (r) | Colonia Vicente Guerrero |
190 | 190 | −98.896 | 19.258 | 15,020 (u) | Chalco -San Lucas- |
11 | 11 | −98.883 | 19.483 | 15,021 (r) | Chapingo (Obs) |
11 | 11 | −99.017 | 19.657 | 15,022 (r) | Chiconautla |
120 | 120 | −99.3 | 19.5 | 15,027 (r) | El Salitre |
11 | 190 | −99.351 | 19.361 | 15,033 (s) | Huixquilucan |
11 | 11 | −98.885 | 19.087 | 15,039 (r) | Juchitepec |
190 | 190 | −99.06 | 19.61 | 15,040 (u) | Gran Canal Km 02+120 Bombas |
190 | 190 | −99.019 | 19.562 | 15,041 (u) | Gran Canal Km 27+250 |
11 | 11 | −98.914 | 19.576 | 15,044 (r) | La Grande |
70 | 190 | −99.369 | 19.299 | 15,045 (s) | La Marquesa |
190 | 190 | −99.216 | 19.563 | 15,047 (u) | Las Arboledas |
11 | 11 | −99.464 | 19.443 | 15,057 (r) | Mimiapan |
190 | 190 | −99.238 | 19.454 | 15,058 (u) | Molinito |
190 | 190 | −99.221 | 19.478 | 15,059 (u) | Molino Blanco |
120 | 120 | −99.282 | 19.623 | 15,073 (r) | Presa Guadalupe |
120 | 120 | −99.278 | 19.581 | 15,075 (r) | Presa Las Ruinas |
190 | 190 | −99.284 | 19.453 | 15,077 (u) | Presa Totolica |
70 | 190 | −98.67 | 19.353 | 15,082 (s) | Río Frío |
190 | 190 | −98.911 | 19.532 | 15,083 (u) | San Andrés |
190 | 190 | −99.114 | 19.522 | 15,092 (u) | San Juan Ixhuatepec |
120 | 11 | −98.871 | 19.19 | 15,094 (r) | San Luis Ameca |
11 | 11 | −99.368 | 19.495 | 15,095 (r) | San Luis Ayucan |
190 | 190 | −99.193 | 19.622 | 15,098 (u) | San Martín Obispo |
120 | 11 | −98.813 | 19.519 | 15,101 (r) | San Miguel Tlaixpan |
190 | 190 | −98.758 | 19.208 | 15,106 (u) | San Rafael |
11 | 11 | −99.414 | 19.558 | 15,114 (r) | Santiago Tlazala |
11 | 11 | −98.922 | 19.611 | 15,124 (r) | Tepexpan |
190 | 190 | −98.882 | 19.506 | 15,125 (u) | Texcoco (Dge) |
190 | 190 | −99.246 | 19.466 | 15127 (u) | Totolica San Bartolo |
11 | 11 | −98.675 | 19.624 | 15,135 (r) | Xochihuacan |
11 | 190 | −98.903 | 19.332 | 15,141 (s) | E.T.A. 032 Tlalpitzahuatl |
190 | 190 | −98.932 | 19.451 | 15,145 (u) | Plan Lago de Texcoco |
190 | 190 | −98.883 | 19.517 | 15,163 (u) | Texcoco (SMN) |
11 | 11 | −98.903 | 19.443 | 15,167 (r) | El Tejocote |
11 | 190 | −98.886 | 19.485 | 15,170 (s) | Chapingo (Dge) |
190 | 190 | −99.233 | 19.417 | 15,209 (u) | Presa San Joaquin |
11 | 11 | −98.727 | 19.53 | 15,210 (r) | San Juan Totolapan |
70 | 70 | −99.464 | 19.529 | 15,231 (r) | Presa Iturbide |
120 | 190 | −98.803 | 19.204 | 15,280 (s) | Tlalmanalco |
70 | 60 | −99.258 | 19.037 | 17,022 (r) | Tres Cumbres |
90 | 90 | −99.094 | 19.039 | 17,039 (r) | San Juan Tlacotenco |
11 | 11 | −98.65 | 19.6 | 29,006 (r) | Cuaula |
11 | 11 | −98.683 | 19.567 | 29,013 (r) | La Venta |
11 | 11 | −98.662 | 19.568 | 29,023 (r) | San Cristobal |
11 | 11 | −98.632 | 19.597 | 29,025 (r) | San Marcos Huaquilpan |
Label | Land Cover Classification System |
---|---|
10 | Cropland, rainfed |
20 | Cropland, irrigated or post-flooding |
30 | Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%) |
40 | Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%) |
50 | Tree cover, broadleaved, evergreen, closed to open (>15%) |
60 | Tree cover, broadleaved, deciduous, closed to open (>15%) |
70 | Tree cover, needleleaved, evergreen, closed to open (>15%) |
80 | Tree cover, needleleaved, deciduous, closed to open (>15%) |
90 | Tree cover, mixed leaf type (broadleaved and needleleaved) |
100 | Mosaic tree and shrub (>50%)/herbaceous cover (<50%) |
110 | Mosaic herbaceous cover (>50%)/tree and shrub (<50%) |
120 | Shrubland |
130 | Grassland |
140 | Lichens and mosses |
150 | Sparse vegetation (tree, shrub, herbaceous cover) (<15%) |
160 | Tree cover, flooded, fresh or brackish water |
170 | Tree cover, flooded, saline water |
180 | Shrub or herbaceous cover, flooded, fresh/saline/brackish water |
190 | Urban areas |
200 | Bare areas |
210 | Water bodies |
Short Name | Long Name | Definition |
---|---|---|
FD | Frost Days | Number of days when TN < 0 °C |
TNlt2 | TN below 2 °C | Number of days when TN < 2 °C |
TNltm2 | TN below −2 °C | Number of days when TN < −2 °C |
TNltm20 | TN below −20 °C | Number of days when TN < −20 °C |
ID | Ice Days | Number of days when TX < 0 °C |
SU | Summer days | Number of days when TX > 25 °C |
TR | Tropical nights | Number of days when TN > 20 °C |
GSL | Growing Season Length | Annual number of days between the first occurrence of 6 consecutive days with TM > 5 °C and the first occurrence of 6 consecutive days with TM < 5 °C |
TXx | Max TX | Warmest daily TX |
TNn | Min TN | Coldest daily TN |
TNx | Max TN | Warmest daily TN |
TXn | Min TX | Coldest daily TX |
DTR | Daily Temperature Range | Mean difference between daily TX and daily TN |
WSDI | Warm spell duration indicator | Annual number of days contributing to events where 6 or more consecutive days experience TX > 90th percentile |
WSDI5 | WSDI-5 | Annual number of days contributing to events where 5 or more consecutive days experience TX > 90th percentile |
CSDI | Cold spell duration indicator | Annual number of days contributing to events where 6 or more consecutive days experience TN < 10th percentile |
CSDI5 | CSDI-5 | Annual number of days contributing to events where 5 or more consecutive days experience TN < 10th percentile |
TXgt50p | Fraction of days with above average temperature | Percentage of days where TX > 50th percentile |
TX10p | Number of cool days | Percentage of days when TX < 10th percentile |
TX90p | Number of hot days | Percentage of days when TX > 90th percentile |
TN10p | Number of cold nights | Percentage of days when TN < 10th percentile |
TN90p | Number of warm nights | Percentage of days when TN > 90th percentile |
TMge5 | TM of at least 5 °C | Number of days when TM ≥ 5 °C |
TMlt5 | TM below 5 °C | Number of days when TM < 5 °C |
TMge10 | TM of at least 10 °C | Number of days when TM ≥ 10 °C |
TMlt10 | TM below 10 °C | Number of days when TM < 10 °C |
TXge30 | TX of at least 30 °C | Number of days when TX ≥ 30 °C |
TXge35 | TX of at least 35 °C | Number of days when TX ≥ 35 °C |
TX7TN7 | 7 consecutive hot days and nights | Annual count of 7 consecutive days where both TX > 95th percentile and TN > 95th percentile |
TXb7TNb7 | 7 consecutive cold days and nights | Annual number of 7 consecutive days where both TX < 5th percentile and TN < 5th percentile |
TMm | Mean TM | Mean daily mean temperature |
TXm | Mean TX | Mean daily maximum temperature |
TNm | Mean TN | Mean daily minimum temperature |
HDDheat18 | Annual sum of 18 − TM | A measure of the energy demand needed to heat a building |
CDDcold18 | Annual sum of TM − 18 | A measure of the energy demand needed to cool a building |
GDDgrow10 | Annual sum of TM − 10 | A measure of heat accumulation to predict plant and animaldevelopmental rates |
CDD | Consecutive Dry Days | Maximum number of consecutive dry days (when PR < 1.0 mm) |
CWD | Consecutive Wet Days | Maximum number of consecutive wet days (when PR ≥ 1.0 mm) |
R10mm | Number of heavy rain days | Number of days when PR ≥ 10 mm |
R20mm | Number of very heavy rain days | Number of days when PR ≥ 20 mm |
R30mm | Number of extremely heavy rain days | Number of days when PR ≥ 30 mm |
RX1day | Max 1-day PR | Maximum 1-day PR total |
RX3day | Max 3-day PR | Maximum 3-day PR total |
RX5day | Max 5-day PR | Maximum 5-day PR total |
PRCPTOT | Annual total wet day PR | Sum of daily PR ≥ 1.0 mm |
SDII | Daily PR intensity | Annual total PR divided by the number of wet days (when total PR ≥ 1.0 mm) |
R95p | Total annual PR from heavy rain days | Annual sum of daily PR > 95th percentile |
R99p | Total annual PR from very heavy rain days | Annual sum of daily PR > 99th percentile |
R95pTOT | Contribution from very wet days | 100 × r95p/PRCPTOT |
R99pTOT | Contribution from extremely wet days | 100 × r99p/PRCPTOT |
MPOD | Breakpoints | Outliers | |
---|---|---|---|
Maximum Temperature | 36.24 | 44 (33) | 7 (5) |
Minimum Temperature | 39.54 | 33 (28) | 5 (4) |
Precipitation | 54.46 | 4 (4) | 7 (5) |
Climate Temperature Index | M–K Test | Serially Correlated | Patakamuri Rejected | % | Climate Precipitation Index | M–K Test | Serially Correlated | Patakamuri Rejected | % |
---|---|---|---|---|---|---|---|---|---|
FD | 83 | 71 | 9 | 82.2 | CDD | 5 | 1 | 0 | 5.6 |
TNlt2 | 16 | 15 | 0 | 17.8 | CWD | 50 | 36 | 10 | 44.4 |
TNltm2 | 49 | 41 | 8 | 45.6 | R10mm | 27 | 6 | 3 | 26.7 |
TNltm20 | 0 | 0 | 0 | 0.0 | R20mm | 41 | 25 | 5 | 40.0 |
ID | 0 | 0 | 0 | 0.0 | R30mm | 37 | 14 | 5 | 35.6 |
SU | 65 | 51 | 7 | 64.4 | RX1day | 32 | 17 | 7 | 27.8 |
TR | 0 | 0 | 0 | 0.0 | RX3day | 18 | 3 | 0 | 20.0 |
GSL | 3 | 3 | 0 | 3.3 | RX5day | 19 | 3 | 0 | 21.1 |
TXx | 45 | 22 | 7 | 42.2 | PRCPTOT | 34 | 4 | 0 | 37.8 |
TNn | 78 | 76 | 4 | 82.2 | SDII | 53 | 43 | 13 | 44.4 |
TNx | 48 | 40 | 14 | 37.8 | R95p | 36 | 23 | 7 | 32.2 |
TXn | 50 | 31 | 10 | 44.4 | R99p | 30 | 12 | 3 | 30.0 |
DTR | 41 | 38 | 15 | 28.9 | R95pTOT | 33 | 25 | 6 | 30.0 |
WSDI | 65 | 42 | 11 | 60.0 | R99pTOT | 26 | 12 | 4 | 24.4 |
WSDI5 | 67 | 48 | 4 | 70.0 | |||||
CSDI | 76 | 42 | 14 | 68.9 | |||||
CSDI5 | 83 | 65 | 8 | 83.3 | |||||
TXgt50p | 81 | 80 | 15 | 73.3 | |||||
TX10p | 70 | 61 | 10 | 66.7 | |||||
TX90p | 68 | 67 | 3 | 72.2 | |||||
TN10p | 79 | 76 | 8 | 78.9 | |||||
TN90p | 48 | 46 | 13 | 38.9 | |||||
TMge5 | 19 | 7 | 1 | 20.0 | |||||
TMlt5 | 25 | 3 | 0 | 27.8 | |||||
TMge10 | 40 | 37 | 2 | 42.2 | |||||
TMlt10 | 40 | 37 | 3 | 41.1 | |||||
TXge30 | 8 | 3 | 1 | 7.8 | |||||
TXge35 | 0 | 0 | 0 | 0.0 | |||||
TX7TN7 | 0 | 0 | 0 | 0.0 | |||||
TXb7TNb7 | 0 | 0 | 0 | 0.0 | |||||
TMm | 83 | 83 | 7 | 84.4 | |||||
TXm | 26 | 26 | 2 | 26.7 | |||||
TNm | 75 | 75 | 12 | 70.0 | |||||
HDDheat18 | 84 | 84 | 5 | 87.8 | |||||
CDDcold18 | 15 | 9 | 1 | 15.6 | |||||
GDDgrow10 | 80 | 80 | 6 | 82.2 |
Climate Index | Urban | Suburban | Rural | Urban Change Rate (%) |
---|---|---|---|---|
FD | −0.289 | −0.333 | −0.511 | −43.41 |
SU | 1.040 | 0.605 | 0.640 | 62.55 |
TNn | 0.087 | 0.060 | 0.085 | 2.52 |
WSDI | 0.010 | 0.006 | 0.055 | −82.62 |
WSDI5 | 0.118 | 0.130 | 0.134 | −11.63 |
CSDI | −0.094 | −0.045 | −0.069 | 35.70 |
CSDI5 | −0.218 | −0.202 | −0.178 | 22.12 |
TXgt50p | 0.409 | 0.427 | 0.346 | 18.32 |
TX10p | −0.152 | −0.146 | −0.157 | −2.72 |
TX90p | 0.191 | 0.206 | 0.178 | 7.35 |
TN10p | −0.236 | −0.186 | −0.190 | 24.01 |
TMm | 0.023 | 0.022 | 0.022 | 7.75 |
TNm | 0.031 | 0.026 | 0.023 | 32.89 |
HDDheat18 | −6.522 | −6.891 | −7.233 | −9.84 |
GDDgrow10 | 8.250 | 7.376 | 6.843 | 20.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero-Martínez, M.J.; Andrade-Velázquez, M. Effects of Urbanization on Extreme Climate Indices in the Valley of Mexico Basin. Atmosphere 2022, 13, 785. https://doi.org/10.3390/atmos13050785
Montero-Martínez MJ, Andrade-Velázquez M. Effects of Urbanization on Extreme Climate Indices in the Valley of Mexico Basin. Atmosphere. 2022; 13(5):785. https://doi.org/10.3390/atmos13050785
Chicago/Turabian StyleMontero-Martínez, Martín José, and Mercedes Andrade-Velázquez. 2022. "Effects of Urbanization on Extreme Climate Indices in the Valley of Mexico Basin" Atmosphere 13, no. 5: 785. https://doi.org/10.3390/atmos13050785
APA StyleMontero-Martínez, M. J., & Andrade-Velázquez, M. (2022). Effects of Urbanization on Extreme Climate Indices in the Valley of Mexico Basin. Atmosphere, 13(5), 785. https://doi.org/10.3390/atmos13050785