Intercomparison of Vaisala RS92 and RS41 Radiosonde Temperature Sensors under Controlled Laboratory Conditions
Abstract
:1. Introduction
- -
- Those corrected by means of calibration, evaluated as the difference with respect to traceable reference values and hereafter reported as calibration errors;
- -
- The radiation errors due to the heating of sensors by solar radiation, which introduces a warm bias in temperature sensors and a dry bias in humidity sensors;
- -
- The time lag errors due to the increased response time of sensors at low temperatures, mainly below −40 °C (negligible for temperature sensors).
2. Experimental Setup and Methodology
2.1. Tests Using a Single Climatic Chamber
2.2. Fast Temperature Changes Using Two Climatic Chambers
3. Results
3.1. Tests in the Kambic Chamber
3.1.1. Noise of RS92 and RS41 Temperature Sensors
3.1.2. RS92 and RS41 Calibration Errors and Uncertainties
3.1.3. RS41 and RS92 Temperature Bias and Uncertainty
3.2. Fast Temperature Changes
3.2.1. Noise of RS92 and RS41 Temperature Sensors
3.2.2. RS92 and RS41 Calibration Errors and Uncertainties
3.2.3. RS41 and RS92 Temperature Bias and Uncertainty
4. Discussion
5. Conclusions
- The temperature sensor of RS41 is less noisy than that of RS92, with noise values less than 0.06 °C for RS41 and within 0.1 °C for RS92;
- The calibration accuracy of RS41 temperature measurements is better than that of RS92, with an absolute value of RS41 calibration error less than 0.1 °C and a calibration uncertainty less than 0.06 °C, while RS92 is affected by a cold bias in the calibration, which ranges from 0.1 °C up to a few tenths of a degree, with a calibration uncertainty less than 0.1 °C and 0.025°C larger than that provided by the manufacturer. For RS92, both the noise and the calibration uncertainty are presumably overestimated up to 0.03 °C compared to those with a ventilation on the sensors similar to radiosoundings, due to the heating of the humidity sensors affecting the temperature measurements collected in the chamber. However, the results confirm, independently of the manufacturer, the better performance of RS41compared to RS92, in terms of both higher accuracy in pre-launch temperature measurements and less demanding procedures for the quality assurance of pre-launch ground check;
- The temperature bias between RS41 and RS92 and the bias uncertainty is within ±0.1 °C and less than 0.1 °C, respectively. These values are in agreement with those reported in literature for nighttime dual soundings and indicate that the change of these radiosondes should not significantly affect the homogeneity of their temperature measurements’ time series. It is the first time that such a bias has been evaluated using laboratory tests in a climatic chamber instead of dual soundings, which suggests the possibility to integrate laboratory and dual soundings measurements for managing sensor changes within observing networks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seidel, D.J.; Ao, C.O.; Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res. 2010, 115, D16113. [Google Scholar] [CrossRef] [Green Version]
- Rapp, A.D.; Kummerow, C.D.; Fowler, L. Interactions between warm rain clouds and atmospheric preconditioning for deep convection in the tropics. J. Geophys. Res. 2011, 116, D23210. [Google Scholar] [CrossRef]
- Gaffen, D.J.; Sargent, M.; Habermann, R.E.; Lanzante, J.R. Sensitivity of tropospheric and stratospheric temperature trends to radiosonde data quality. J. Clim. 2000, 13, 1776–1796. [Google Scholar] [CrossRef]
- Free, M.; Seidel, D.J.; Angell, J.K.; Lanzante, J.; Durre, I.; Peterson, T.C. Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new data set of large-area anomaly time series. J. Geophys. Res. Atmos. 2005, 110, D22101. [Google Scholar] [CrossRef]
- McCarthy, M.P. Spatial sampling requirements for monitoring upper-air climate change with radiosondes. Int. J. Climatol. 2008, 28, 985–993. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Meyer, C.L.; Allen, R.J.; Titchner, H.A. Robust tropospheric warming revealed by iteratively homogenized radiosonde data. J. Clim. 2008, 21, 5336–5350. [Google Scholar] [CrossRef]
- McCarthy, M.P.; Thorne, P.W.; Titchner, H.A. An analysis of tropospheric humidity trends from radiosondes. J. Clim. 2009, 22, 5820–5838. [Google Scholar] [CrossRef] [Green Version]
- Thorne, P.W.; Brohan, P.; Titchner, H.A.; McCarthy, M.P.; Sherwood, S.C.; Peterson, T.C.; Haimberger, L.; Parker, D.E.; Tett, S.F.B.; Santer, B.D.; et al. A quantification of uncertainties in historical tropical tropospheric temperature trends from radiosondes. J. Geophys. Res. Atmos. 2011, 116, D12116. [Google Scholar] [CrossRef]
- Philipona, R.; Mears, C.; Fujiwara, M.; Jeannet, P.; Thorne, P.; Bodeker, G.; Haimberger, L.; Hervo, M.; Popp, C.; Romanens, G.; et al. Radiosondes show that after decades of cooling, the lower stratosphere is now warming. J. Geophys. Res. Atmos. 2018, 123, 12509–12522. [Google Scholar] [CrossRef] [Green Version]
- Sy, S.; Madonna, F.; Rosoldi, M.; Tramutola, E.; Gagliardi, S.; Proto, M.; Pappalardo, G. Sensitivity of trends to estimation methods and quantification of subsampling effects in global radiosounding temperature and humidity time series. Int. J. Climatol. 2020, 41, E1992–E2014. [Google Scholar] [CrossRef]
- Madonna, F.; Summa, D.; Di Girolamo, P.; Marra, F.; Wang, Y.; Rosoldi, M. Assessment of Trends and Uncertainties in the Atmospheric Boundary Layer Height Estimated Using Radiosounding Observations over Europe. Atmosphere 2021, 12, 301. [Google Scholar] [CrossRef]
- Whiteman, D.N.; Melfi, S.H.; Ferrare, R.A. Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl. Opt. 1992, 31, 3068–3082. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.K.; Smith, W.L.; Cuomo, V.; Taylor, J.P.; Barnet, C.D.; Di Girolamo, P.; Pappalardo, G.; Larar, A.M.; Liu, X.; Newman, S.M.; et al. Retrieval validation during the European Aqua Thermodynamic Experiment. Q. J. R. Meteorol. Soc. 2007, 133, 203–215. [Google Scholar] [CrossRef]
- Pougatchev, N.; August, T.; Calbet, X.; Hultberg, T.; Oduleye, O.; Schlüssel, P.; Stiller, B.; Germain, K.S.; Bingham, G. IASI temperature and water vapor retrievals—Error assessment and validation. Atmos. Chem. Phys. 2009, 9, 6453–6458. [Google Scholar] [CrossRef] [Green Version]
- Loew, A.; Bell, W.; Brocca, L.; Bulgin, C.E.; Burdanowitz, J.; Calbet, X.; Donner, R.V.; Ghent, D.; Gruber, A.; Kaminski, T.; et al. Validation practices for satellite-based Earth observation data across communities. Rev. Geophys. 2017, 55, 779–817. [Google Scholar] [CrossRef] [Green Version]
- Finazzi, F.; Fassò, A.; Madonna, F.; Negri, I.; Sun, B.; Rosoldi, M. Statistical harmonization and uncertainty assessment in the comparison of satellite and radiosonde climate variables. Environmetrics 2019, 30, e2528. [Google Scholar] [CrossRef]
- Haimberger, L.; Tavolato, C.; Sperka, S. Homogenization of the Global Radiosonde Temperature Dataset through Combined Comparison with Reanalysis Background Series and Neighboring Stations. J. Clim. 2012, 25, 8108–8131. [Google Scholar] [CrossRef]
- Hersbach, H.; de Rosnay, P.; Bell, B.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Alonso-Balmaseda, M.; Balsamo, G.; Bechtold, P.; et al. Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Rep. Ser. 2018, 27. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Madonna, F.; Tramutola, E.; Sy, S.; Serva, F.; Proto, M.; Rosoldi, M.; Gagliardi, S.; Amato, F.; Marra, F.; Fassò, A.; et al. The new Radiosounding HARMonization (RHARM) data set of homogenized radiosounding temperature, humidity and wind profiles with uncertainties. J. Geophys. Res. Atmos. 2022, 127, e2021JD035220. [Google Scholar] [CrossRef]
- Bodeker, G.E.; Bojinski, S.; Cimini, D.; Dirksen, R.J.; Haeffelin, M.; Hannigan, J.W.; Hurst, D.F.; Leblanc, T.; Madonna, F.; Maturilli, M.; et al. Reference upper-air observations for climate: From concept to reality. Bull. Am. Meteorol. Soc. 2016, 97, 123–135. [Google Scholar] [CrossRef]
- GCOS Reference Upper-Air Network (GRUAN)—The Climate Reference Network. Available online: https://www.gruan.org/ (accessed on 4 April 2022).
- BIPM. Le Système International d’Unités/The International System of Units (‘The SI Brochure’), 9th ed.; International Bureau of Weights and Measures: Paris, France, 2019; ISBN 978-92-822-2272-0. Available online: http://www.bipm.org/en/si/si_brochure/ (accessed on 4 April 2022).
- Dirksen, R.J.; Sommer, M.; Immler, F.J.; Hurst, D.F.; Kivi, R.; Vömel, H. Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmos. Meas. Tech. 2014, 7, 4463–4490. [Google Scholar] [CrossRef] [Green Version]
- Thorne, P.W.; Madonna, F.; Schulz, J.; Oakley, T.; Ingleby, B.; Rosoldi, M.; Tramutola, E.; Arola, A.; Buschmann, M.; Mikalsen, A.C.; et al. Making better sense of the mosaic of environmental measurement networks: A system-of-systems approach and quantitative assessment. Geosci. Instrum. Methods Data Syst. 2017, 6, 453–472. [Google Scholar] [CrossRef] [Green Version]
- Gaffen, D.J. Temporal inhomogeneities in radiosonde temperature records. J. Geophys. Res. 1994, 99, 3667–3676. [Google Scholar] [CrossRef]
- Parker, D.E.; Cox, D.I. Toward a consistent global climatological rawinsonde database. Int. J. Climatol. 1995, 15, 473–496. [Google Scholar] [CrossRef]
- Lanzante, J.R. Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. Int. J. Climatol. 1996, 16, 1197–1226. [Google Scholar] [CrossRef]
- Sherwood, S.; Lanzante, J.; Meyer, C. Radiosonde daytime biases and late 20th century warming. Science 2005, 309, 1556–1559. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, S.C.; Nishant, N. Atmospheric changes through 2012 as shown by iteratively homogenised radiosonde temperature and wind data (IUKv2). Environ. Res. Lett. 2015, 10, 054007. [Google Scholar] [CrossRef]
- Haimberger, L.; Tavolato, C.; Sperka, S. Toward Elimination of the Warm Bias in Historic Radiosonde Temperature Records—Some New Results from a Comprehensive Intercomparison of Upper-Air Data. J. Clim. 2008, 21, 4587–4606. [Google Scholar] [CrossRef]
- Nash, J.; Oakley, T.; Vomel, H.; Wei, L.I. WMO Intercomparison of High Quality Radiosonde Systems Yangjiang, China, 12 July–3 August 2010. In WMO Instruments and Observing Methods; Report No. 107; World Meteorological Organization: Geneva, Switzerland, 2011; Available online: https://library.wmo.int/doc_num.php?explnum_id=9467 (accessed on 4 April 2022).
- Vaisala. Vaisala Radiosonde RS92-SGP. Available online: https://www.vaisala.com/sites/default/files/documents/RS92SGP-Datasheet-B210358EN-F-LOW.pdf (accessed on 4 April 2022).
- Vaisala. Vaisala Radiosonde RS41 Measurement Performance. Available online: https://www.vaisala.com/sites/default/files/documents/WEA-MET-RS41-Performance-White-paper-B211356EN-B-LOW-v3.pdf (accessed on 4 April 2022).
- Jauhiainen, H.; Survo, P.; Lehtinen, R.; Lentonen, J. Radiosonde RS41 and RS92 Key Differences and Comparison Test Results in Different Locations and Climates. In Proceedings of the TECO-2014, WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observations, Saint Petersburg, Russia, 7–9 July 2014. [Google Scholar]
- Survo, P.; Lehtinen, R.; Kauranen, J. SI traceability of Vaisala Radiosonde RS41 Sounding Data—Calibration and Uncertainty Analysis. In Proceedings of the TECO-2014, WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observations, Saint Petersburg, Russia, 7–9 July 2014. [Google Scholar]
- Dirksen, R.J.; Bodeker, G.E.; Thorne, P.W.; Merlone, A.; Reale, T.; Wang, J.; Hurst, D.F.; Demoz, B.B.; Gardiner, T.D.; Ingleby, B.; et al. Managing the transition from Vaisala RS92 to RS41 radiosondes within the Global Climate Observing System Reference Upper-Air Network (GRUAN): A progress report. Geosci. Instrum. Methods Data Syst. 2020, 9, 337–355. [Google Scholar] [CrossRef]
- Von Rohden, C.; Sommer, M.; Naebert, T.; Motuz, V.; Dirksen, R.J. Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41. Atmos. Meas. Tech. 2022, 15, 383–405. [Google Scholar] [CrossRef]
- Vaisala. Comparison of Vaisala Radiosondes RS41 and RS92. Available online: https://www.vaisala.com/sites/default/files/documents/RS-Comparison-White-Paper-B211317EN.pdf (accessed on 4 April 2022).
- Jensen, M.P.; Holdridge, D.J.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K.L. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site. Atmos. Meas. Tech. 2016, 9, 3115–3129. [Google Scholar] [CrossRef] [Green Version]
- Kawai, Y.; Katsumata, M.; Oshima, K.; Hori, M.E.; Inoue, J. Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics. Atmos. Meas. Tech. 2017, 10, 2485–2498. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Reale, T.; Schroeder, S.; Pettey, M.; Smith, R. On the Accuracy of Vaisala RS41 versus RS92 Upper-Air Temperature Observations. J. Atmos. Ocean. Technol. 2019, 36, 635–653. [Google Scholar] [CrossRef]
- Jing, X.; Shao, X.; Liu, T.-C.; Zhang, B. Comparison of GRUAN RS92 and RS41 Radiosonde Temperature Biases. Atmosphere 2021, 12, 857. [Google Scholar] [CrossRef]
- Mona, L.; Cornacchia, C.; D’Amico, G.; Di Girolamo, P.; Pappalardo, G.; Pisani, G.; Summa, D.; Wang, X.; Cuomo, V. Characterization of the variability of the humidity and cloud fields as observed from a cluster of ground-based lidar systems. Q. J. R. Meteorol. Soc. 2007, 133, 257–271. [Google Scholar] [CrossRef]
- Rosoldi, M.; Gumà Claramunt, P.; Madonna, F.; Amodeo, A.; Binietoglou, I.; D’Amico, G.; Giunta, A.; Mona, L.; Papagiannopoulos, N.; Pappalardo, G. Study of thin clouds at CNR-IMAA Atmospheric Observatory (CIAO). Ann. Geophys. 2013, 56. [Google Scholar] [CrossRef]
- Madonna, F.; Burlizzi, P.; Giunta, A.; Binietoglou, I.; Perrone, M.R.; Pappalardo, G. Validation of COSMIC Water Vapor Profiles Using Raman Lidar Measurements Performed at CIAO. In Proceedings of the SPIE Remote Sensing, Volume 8182, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII, Prague, Czech Republic, 19–22 September 2011. [Google Scholar] [CrossRef]
- Madonna, F.; Kivi, R.; Dupont, J.-C.; Ingleby, B.; Fujiwara, M.; Romanens, G.; Hernandez, M.; Calbet, X.; Rosoldi, M.; Giunta, A.; et al. Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective. Atmos. Meas. Tech. 2020, 13, 3621–3649. [Google Scholar] [CrossRef]
- Merlone, A.; Lopardo, G.; Sanna, F.; Bell, S.; Benyon, R.; Bergerud, R.; Bertiglia, F.; Bojkovski, J.; Böse, N.; Brunet, M.; et al. The MeteoMet project—Metrology for meteorology: Challenges and results. Meteorol. Appl. 2015, 22, 820–829. [Google Scholar] [CrossRef] [Green Version]
- Merlone, A.; Sanna, F.; Beges, G.; Bell, S.; Beltramino, G.; Bojkovski, J.; Brunet, M.; del Campo, D.; Castrillo, A.; Chiodo, N.; et al. The MeteoMet2 project—Highlights and results. Meas. Sci. Technol. 2018, 29, 025802. [Google Scholar] [CrossRef] [Green Version]
- Merlone, A.; Al-Dashti, H.; Faisal, N.; Cerveny, R.S.; AlSarmi, S.; Bessemoulin, P.; Brunet, M.; Driouech, F.; Khalatyan, Y.; Peterson, T.C.; et al. Temperature extreme records: World Meteorological Organization metrological and meteorological evaluation of the 54.0 °C observations in Mitribah, Kuwait and Turbat, Pakistan in 2016/2017. Int. J. Climatol. 2019, 39, 5154–5169. [Google Scholar] [CrossRef]
- Preston-Thomas, H. The International Temperature Scale of 1990 (ITS-90). Metrologia 1990, 27, 3. [Google Scholar] [CrossRef]
- Vaisala. DigiCORA Sounding System MW41. Available online: https://www.vaisala.com/sites/default/files/documents/B211221EN-F-Brochure.pdf (accessed on 18 November 2021).
- Vaisala. Vaisala Sounding Processing Subsystem SPS311G. Available online: https://www.vaisala.com/sites/default/files/documents/WEA-MET-SPS311-Datasheet-B210492EN.pdf (accessed on 4 April 2022).
- Vaisala. Vaisala Ground Check Set GC25. Available online: https://www.vaisala.com/en/search?k=gc25&items_per_page=20&countyAddresmqihz= (accessed on 20 August 2021).
- Vaisala. Ground Check Device RI41/RI41-B. Available online: https://www.vaisala.com/sites/default/files/documents/RI41-Datasheet-B211322EN.pdf (accessed on 4 April 2022).
- Dr. Schulz & Partner GmbH. Available online: http://www.drschulz.com (accessed on 20 August 2021).
- Immler, F.; Miloshevich, L. GRUAN Task Team on Radiosondes. Pre-Launch Procedures for Vaisala RS92 Radiosonde Observations for GRUAN. Technical Document GRUAN-TD-5. Available online: https://gruan.files.wordpress.com/2011/06/gruan-td-5_rs92-pre-launch_v022.pdf (accessed on 4 April 2022).
- Vaisala. 2010–12|Revised Solar Radiation Correction Table RSN2010|T, RS92 Data Continuity. Available online: https://www.vaisala.com/en/sounding-data-continuity (accessed on 4 April 2022).
- Kowal, A.; Merlone, A.; Sawiński, T. Long-term stability of meteorological temperature sensors. Meteorol. Appl. 2020, 27, e1795. [Google Scholar] [CrossRef] [Green Version]
Radiosonde Model | Sensor Type | Measurement Range | Ground Check | Calibration Repeatability 1 |
---|---|---|---|---|
RS92 | Capacity wire | +60 °C to −90 °C | Correction against Pt100 | 0.15 °C |
RS41 | Platinum resistor | +60 °C to −90 °C | No correction needed | 0.1 °C |
Kambic Settings | Temperature (°C) | Relative Humidity (%) |
---|---|---|
1 | −40 | Off 1 |
2 | −20 | Off 1 |
3 | 0 | Off 1 |
4 | 20 | 20 |
5 | 20 | 60 |
6 | 20 | 98 |
7 | 40 | 20 |
8 | 40 | 60 |
9 | 40 | 95 |
Kambic Settings | |
---|---|
1 | −0.18 |
2 | −0.18 |
3 | −0.15 |
4 | −0.15 |
5 | −0.15 |
6 | −0.15 |
7 | −0.27 |
8 | −0.27 |
9 | −0.27 |
T Rise | Before Change | After Change | ||||
---|---|---|---|---|---|---|
(°C) | Chamber Instability | RS41 Noise | RS92 Noise | Chamber Instability | RS41 Noise | RS92 Noise |
“0 + 20” #1 | 0.02 | 0.04 | 0.12 | 0.01 | 0.09 | 0.13 |
“0 + 20” #3 | 0.02 | 0.05 | 0.10 | 0.01 | 0.13 | 0.17 |
T Drop | Before Change | After Change | ||||
(°C) | Chamber Instability | RS41 Noise | RS92 Noise | Chamber Instability | RS41 Noise | RS92 Noise |
“20 − 5” #4 | 0.02 | 0.05 | 0.09 | 0.02 | 0.13 | 0.27 |
“+20 − 0” #2 | 0.01 | 0.03 | 0.04 | 0.01 | 0.10 | 0.28 |
T Rise (°C) | Before Change | After Change | ||||||
---|---|---|---|---|---|---|---|---|
Errcal(RS41) | U[Errcal(RS41)] | Errcal(RS92) | U[Errcal(RS92)] | Errcal(RS41) | U[Errcal(RS41)] | Errcal(RS92) | U[Errcal(RS92)] | |
“0 + 20”#1 | 0.14 | 0.05 | −0.08 | 0.12 | −0.10 | 0.08 | 0 | 0.13 |
“0 + 20”#3 | −0.04 | 0.06 | −0.21 | 0.11 | 0.17 | 0.13 | −0.02 | 0.17 |
T Drop (°C) | Before Change | After Change | ||||||
Errcal(RS41) | U[Errcal(RS41)] | Errcal(RS92) | U[Errcal(RS92)] | Errcal(RS41) | U[Errcal(RS41)] | Errcal(RS92) | U[Errcal(RS92)] | |
“20 − 5” #4 | −0.10 | 0.05 | 0 | 0.09 | −0.19 | 0.13 | −0.22 | 0.27 |
“20 − 0” #2 | 0.17 | 0.04 | −0.02 | 0.044 | −0.11 | 0.10 | −0.28 | 0.28 |
T Rise (°C) | Before Change | After Change | ||
---|---|---|---|---|
ΔTabs(RS92, RS41) | U[ΔTabs(RS92, RS41)] | ΔTabs(RS92, RS41) | U[ΔTabs(RS92, RS41)] | |
“0 + 20”#1 | −0.22 | 0.13 | 0.10 | 0.16 |
“0 + 20”#3 | −0.17 | 0.12 | −0.19 | 0.21 |
T Drop (°C) | Before Change | After Change | ||
ΔTabs(RS92, RS41) | U[ΔTabs(RS92, RS41)] | ΔTabs(RS92, RS41) | U[ΔTabs(RS92, RS41)] | |
“20 − 5” #4 | 0.10 | 0.11 | −0.03 | 0.30 |
“20 − 0” #2 | −0.19 | 0.06 | −0.17 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosoldi, M.; Coppa, G.; Merlone, A.; Musacchio, C.; Madonna, F. Intercomparison of Vaisala RS92 and RS41 Radiosonde Temperature Sensors under Controlled Laboratory Conditions. Atmosphere 2022, 13, 773. https://doi.org/10.3390/atmos13050773
Rosoldi M, Coppa G, Merlone A, Musacchio C, Madonna F. Intercomparison of Vaisala RS92 and RS41 Radiosonde Temperature Sensors under Controlled Laboratory Conditions. Atmosphere. 2022; 13(5):773. https://doi.org/10.3390/atmos13050773
Chicago/Turabian StyleRosoldi, Marco, Graziano Coppa, Andrea Merlone, Chiara Musacchio, and Fabio Madonna. 2022. "Intercomparison of Vaisala RS92 and RS41 Radiosonde Temperature Sensors under Controlled Laboratory Conditions" Atmosphere 13, no. 5: 773. https://doi.org/10.3390/atmos13050773
APA StyleRosoldi, M., Coppa, G., Merlone, A., Musacchio, C., & Madonna, F. (2022). Intercomparison of Vaisala RS92 and RS41 Radiosonde Temperature Sensors under Controlled Laboratory Conditions. Atmosphere, 13(5), 773. https://doi.org/10.3390/atmos13050773