Heatwaves in South Asia: Characterization, Consequences on Human Health, and Adaptation Strategies
Abstract
:1. Introduction
2. Method
3. Heatwave Scenario in Global South Asian Countries
3.1. Historical Temperature Trends
3.2. Heatwave Definitions
4. Health Risk Associated with Heatwaves in South Asian Countries
5. Existing Policies for Climate Change Mitigation and Heatwave Management
6. Community-Based Adaptation Strategies for Heatwave Moderation
6.1. Outdoor Cooling Strategies
6.2. Infrastructural Adaptations
6.3. Passive Cooling Strategies (Indoor)
6.4. Heat Action Plans (HAPs)
6.5. Administrative and Policy Measures
6.6. Behavioral Measures
7. Remarks
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sixth Assessment Report of Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switzerland, 2021; Volume IPCC AR6 W. [Google Scholar]
- Lau, N.-C.; Nath, M.J. A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Clim. 2012, 25, 4761–4784. [Google Scholar] [CrossRef]
- World Meteorological Organization. State of the Climate in Asia; World Meteorological Organization: Geneva, Switzerland, 2021; ISBN 9789263112736. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; pp. 1–864. [Google Scholar]
- Mani, M.; Bandyopadhyay, S.; Chonabayashi, S.; Markandya, A.; Thomas, M. South Asia’s Hotspots and Precipitation; World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Regional fact sheet—Asia. In Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switzerland, 2021; pp. 8–9.
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchcik, M. Defining heat waves-different approaches. Geogr. Pol. 2006, 79, 47. [Google Scholar]
- Robinson, P.J. On the definition of a heat wave. J. Appl. Meteorol. Climatol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Wilkinson, H. UK Heatwaves (GWPF Factsheet 3); The Global Warming Policy Forum: London, UK, 2018; p. 2. [Google Scholar]
- Xu, Z.; FitzGerald, G.; Guo, Y.; Jalaludin, B.; Tong, S. Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. Environ. Int. 2016, 89–90, 193–203. [Google Scholar] [CrossRef]
- Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol. Rev. 2002, 24, 190–202. [Google Scholar] [CrossRef]
- Kovats, R.S.; Bouma, M.J.; Hajat, S.; Worrall, E.; Haines, A. El Niño and health. Lancet 2003, 362, 1481–1489. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S.; Wilkinson, P. Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK. Occup. Environ. Med. 2004, 61, 893–898. [Google Scholar] [CrossRef] [Green Version]
- Kovats, R.S.; Campbell-Lendrum, D.; Matthies, F. Climate change and human health: Estimating avoidable deaths and disease. RiskAnal. Int. J. 2005, 25, 1409–1418. [Google Scholar] [CrossRef]
- Bicknell, J.; Dodman, D.; Satterthwaite, D. Adapting Cities to Climate Change: Understanding and Addressing the Development Challenges (Sterling: Earthscan); Routledge Taylor and Francis Group: London, UK, 2009. [Google Scholar]
- Hintz, M.J.; Luederitz, C.; Lang, D.J.; von Wehrden, H. Facing the heat: A systematic literature review exploring the transferability of solutions to cope with urban heat waves. Urban Clim. 2018, 24, 714–727. [Google Scholar] [CrossRef]
- Karimi, A.; Sanaieian, H.; Farhadi, H.; Norouzian-Maleki, S. Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Rep. 2020, 6, 1670–1684. [Google Scholar] [CrossRef]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Leete, R.; Jones, G. South Asia’s Future Population: Are There Really Grounds for Optimism? Int. Fam. Plan. Perspect. 1991, 17, 108–113. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Jim, C.Y. Assessing climate-adaptation effect of extensive tropical green roofs in cities. Landsc. Urban Plan. 2015, 138, 54–70. [Google Scholar] [CrossRef]
- Kotharkar, R.; Ghosh, A. Review of heat wave studies and related urban policies in South Asia. Urban Clim. 2021, 36, 100777. [Google Scholar] [CrossRef]
- IPCC. Assessment Report of the Intergovernmental Panel on Climate Change. In IPCC, 2014: Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Aich, V.; Akhundzadah, N.A.; Knuerr, A.; Khoshbeen, A.J.; Hattermann, F.; Paeth, H.; Scanlon, A.; Paton, E.N. Climate Change in Afghanistan Deduced from Reanalysis and Coordinated Regional Climate Downscaling Experiment (CORDEX)—South Asia Simulations. Climate 2017, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- United Nations (UN). World Population Prospects 2019. Available online: https://population.un.org/wpp/ (accessed on 14 February 2022).
- Chhogyel, N.; Kumar, L. Climate change and potential impacts on agriculture in Bhutan: A discussion of pertinent issues. Agric. Food Secur. 2018, 7, 79. [Google Scholar] [CrossRef]
- The World Bank. Climate Risk Country Profile: Maldives; The World Bank Group: Washington, DC, USA, 2021. [Google Scholar]
- The World Bank. Climate Risk Country Profile—Bhutan; The World Bank Group: Washington, DC, USA, 2021. [Google Scholar]
- Lai, A.T.; Lin, I.C.; Yang, Y.W.; Wu, M.F. Climate Change and Human Health; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Wienert, U.; Kuttler, W. The dependence of the urban heat island intensity on latitude—A statistical approach. Meteorol. Z. 2005, 14, 677–686. [Google Scholar] [CrossRef]
- World Bank Group. Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/download-data (accessed on 12 March 2022).
- Sivakumar, M.V.K.; Stefanski, R. Climate change in South Asia. In Climate Change and Food Security in South Asia; Springer: Berlin, Germany, 2010; pp. 13–30. [Google Scholar]
- Zahid, M.; Rasul, G. Changing trends of thermal extremes in Pakistan. Clim. Change 2012, 113, 883–896. [Google Scholar] [CrossRef]
- World Bank Group. Climate Risk Country Profile—Sri Lanka; The World Bank Group: Washington, DC, USA, 2021. [Google Scholar]
- Azhar, G.S.; Mavalankar, D.; Nori-Sarma, A.; Rajiva, A.; Dutta, P.; Jaiswal, A.; Sheffield, P.; Knowlton, K.; Hess, J.J. Heat-Related Mortality in India: Excess All-Cause Mortality Associated with the 2010 Ahmedabad Heat Wave. PLoS ONE 2014, 9, e91831. [Google Scholar] [CrossRef] [PubMed]
- Dhimal, M.; Karki, K.; Aryal, K.; Shrestha, S.; Pradhan, B.; Nepal, S.; Adhikari, T.; Khanal, M.; Jha, B.; Pun, S.; et al. Effects of Climate Factors on Diarrheal Diseases at National and Sub-national Levels in Nepal. In Proceedings of the Climate change and diarrheal diseases in Nepal, Geneva, Switzerland, 1 May–31 December 2016. [Google Scholar]
- Nasim, W.; Amin, A.; Fahad, S.; Awais, M.; Khan, N.; Mubeen, M.; Wahid, A.; Rehman, M.H.; Ihsan, M.Z.; Ahmad, S.; et al. Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan. Atmos. Res. 2018, 205, 118–133. [Google Scholar] [CrossRef]
- Nissan, H.; Burkart, K.; Coughlan de Perez, E.; VanAalst, M.; Mason, S. Defining and predicting heat waves in Bangladesh. J. Appl. Meteorol. Climatol. 2017, 56, 2653–2670. [Google Scholar] [CrossRef]
- Nori-Sarma, A.; Benmarhnia, T.; Rajiva, A.; Azhar, G.S.; Gupta, P.; Pednekar, M.S.; Bell, M.L. Advancing our Understanding of Heat Wave Criteria and Associated Health Impacts to Improve Heat Wave Alerts in Developing Country Settings. Int. J. Environ. Res. Public Health 2019, 16, 2089. [Google Scholar] [CrossRef] [Green Version]
- Rohini, P.; Rajeevan, M.; Srivastava, A.K. On the Variability and Increasing Trends of Heat Waves over India. Sci. Rep. 2016, 6, 26153. [Google Scholar] [CrossRef] [Green Version]
- Saeed, F.; Almazroui, M.; Islam, N.; Khan, M.S. Intensification of future heat waves in Pakistan: A study using CORDEX regional climate models ensemble. Nat. Hazards 2017, 87, 1635–1647. [Google Scholar] [CrossRef]
- Sharma, S.; Mujumdar, P. Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Sci. Rep. 2017, 7, 15582. [Google Scholar] [CrossRef] [Green Version]
- Dhimal, M.; Nepal, B.; Bista, B.; Neupane, T.; Dahal, S.; Raj, A.; Pandey, A.; Jha, K. Assessing Trends of Heat Waves and Perception of People about Health Risks of Heat Wave in Nepal; Nepal Health Research Council (NHRC): Kathmandu, Nepal, 2018. [Google Scholar]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Stu. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys.Res. Atmos. 2014, 119, 12–500. [Google Scholar] [CrossRef] [Green Version]
- Das, J.; Umamahesh, N.V. Heat Wave Magnitude over India under Changing Climate: Projections from CMIP5 and CMIP6 Experiments. Int. J. Climatol. 2022, 42, 331–351. [Google Scholar] [CrossRef]
- Nairn, J.R.; Fawcett, R.J.B. The excess heat factor: A metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Health 2014, 12, 227–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nori-Sarma, A.; Anderson, G.B.; Rajiva, A.; ShahAzhar, G.; Gupta, P.; Pednekar, M.S.; Son, J.-Y.; Peng, R.D.; Bell, M.L. The impact of heat waves on mortality in Northwest India. Environ. Res. 2019, 176, 108546. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, A.; Ingole, V.; Basagaña, X.; Ranzani, O.; Milà, C.; Ballester, J.; Tonne, C. Association between ambient temperature and heat waves with mortality in South Asia: Systematic review and meta-analysis. Environ. Int. 2021, 146, 106170. [Google Scholar] [CrossRef] [PubMed]
- Golechha, M.; Mavalankar, D.; Bhan, S.C. India: Heat Wave and Action Plan Implementation in Indian Cities BT—Urban Climate Science for Planning Healthy Cities. In Urban Climate Science for Planning Healthy Cities; Ren, C., McGregor, G., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 285–308. ISBN 978-3-030-87598-5. [Google Scholar]
- Mazdiyasni, O.; AghaKouchak, A.; Davis, S.J.; Madadgar, S.; Mehran, A.; Ragno, E.; Sadegh, M.; Sengupta, A.; Ghosh, S.; Dhanya, C.T. Increasing probability of mortality during Indian heat waves. Sci. Adv. 2017, 3, e1700066. [Google Scholar] [CrossRef] [Green Version]
- Alam, N.; Lindeboom, W.; Begum, D.; Kim Streatfield, P. The association of weather and mortality in Bangladesh from 1983–2009. Glob. Health Action 2012, 5, 19121. [Google Scholar] [CrossRef]
- Hashizume, M.; Wagatsuma, Y.; Hayashi, T.; Saha, S.K.; Streatfield, K.; Yunus, M. The effect of temperature on mortality in rural Bangladesh—A population-based time-series study. Int. J. Epidemiol. 2009, 38, 1689–1697. [Google Scholar] [CrossRef] [Green Version]
- Ghumman, U.; Horney, J. Characterizing the impact of extreme heat on mortality, Karachi, Pakistan, June 2015. Prehospital. Disaster Med. 2016, 31, 263–266. [Google Scholar] [CrossRef]
- Saleem, M.; Shah, S.Z.; Azam, S. Heat wave killings in Pakistan and possible strategies to prevent the future heat wave fatalities. Res. Rev. Healthc. Open Access J. 2018, 1, 1–5. [Google Scholar]
- Shrestha, S.L.; Shrestha, I.L.; Shrestha, N. Region-wise effects of climate sensitive variables on some specific disease burdens in Nepal. Open Atmos. Sci. J. 2016, 10, 63–83. [Google Scholar] [CrossRef] [Green Version]
- Budhathoki, N.K.; Zander, K.K. Socio-economic impact of and adaptation to extreme heat and cold of farmers in the food bowl of Nepal. Int. J. Environ. Res. Public Health 2019, 16, 1578. [Google Scholar] [CrossRef] [Green Version]
- Naveendrakumar, G.; Vithanage, M.; Kwon, H.H.; Chandrasekara, S.S.K.; Iqbal, M.C.M.; Pathmarajah, S.; Fernando, W.C.D.K.; Obeysekera, J. South Asian perspective on temperature and rainfall extremes: A review. Atmos. Res. 2019, 225, 110–120. [Google Scholar] [CrossRef]
- Khan Barakzai, M.A.; Burney, S.M.A. Modeling the Impact of High Temperature on Mortality in Pakistan. Sustainability 2022, 14, 332. [Google Scholar] [CrossRef]
- Burkart, K.; Schneider, A.; Breitner, S.; Khan, M.H.; Krämer, A.; Endlicher, W. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environ. Pollut. 2011, 159, 2035–2043. [Google Scholar] [CrossRef] [Green Version]
- Cho, H. Climate Change Risk Assessment for Kurunegala, Sri Lanka: Water and Heat Waves. Climate 2020, 8, 140. [Google Scholar] [CrossRef]
- Bessell-Browne, P.; Epstein, H.E.; Hall, N.; Buerger, P.; Berry, K. Severe Heat Stress Resulted in High Coral Mortality on Maldivian Reefs following the 2015–2016 El Niño Event. Oceans 2021, 2, 14. [Google Scholar] [CrossRef]
- Anwar, M.Y.; Warren, J.L.; Pitzer, V.E. Diarrhea Patterns and Climate: A Spatiotemporal Bayesian Hierarchical Analysis of Diarrheal Disease in Afghanistan. Am. J. Trop. Med. Hyg. 2019, 101, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Dhimal, M.; Bhandari, D.; Dhimal, M.L.; Kafle, N.; Pyakurel, P.; Mahotra, N.; Akhtar, S.; Ismail, T.; Dhiman, R.C.; Groneberg, D.A.; et al. Impact of Climate Change on Health and Well-Being of People in Hindu Kush Himalayan Region: A Narrative Review. Front. Physiol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Ding, X.; Wu, Y.; Sun, Y. Temperature and risk of infectious diarrhea: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2021, 28, 68144–68154. [Google Scholar] [CrossRef]
- Corner, R.J.; Dewan, A.M.; Hashizume, M. Modelling typhoid risk in Dhaka Metropolitan Area of Bangladesh: The role of socio-economic and environmental factors. Int. J. Health Geogr. 2013, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Kelly-Hope, L.A.; Alonso, W.J.; Thiem, V.D.; Canh, D.G.; Anh, D.D.; Lee, H.; Miller, M.A. Temporal trends and climatic factors associated with bacterial enteric diseases in Vietnam, 1991–2001. Environ. Health Perspect. 2008, 116, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Rodo, X.; Pascual, M.; Fuchs, G.; Faruque, A.S.G. ENSO and cholera: A nonstationary link related to climate change? Proc. Natl. Acad. Sci. USA 2002, 99, 12901–12906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The World Bank. Climate Risk Country Profile: Pakistan; Word Bank: Washington, DC, USA, 2021. [Google Scholar]
- The World Bank. Climate Risk Country Profile: India; Word Bank: Washington, DC, USA, 2021. [Google Scholar]
- The World Bank. Climate Risk Country Profile: Afghanistan; Word Bank: Washington, DC, USA, 2021. [Google Scholar]
- The World Bank. Climate Risk Country Profile: Bangladesh; Word Bank: Washington, DC, USA, 2021. [Google Scholar]
- National Resources Defense Council. Expanding Heat Resilience Across India; National Resources Defense Council: New York, NY, USA, 2019. [Google Scholar]
- Sheikh, A.T.; Raza, H.; Khalid, B.; Bhatt, M.; Doherty, E.; Booth, K. Karachi Heatwave Management Plan: A Guide to Planning and Response; Commissioner Karachi: Karachi, Pakistan, 2017. [Google Scholar]
- Climate and Development Knowledge Network. Heat action in Cities in Bangladesh and Nepal. Available online: https://cdkn.org/project/heat-action-cities-bangladesh-and-nepal (accessed on 3 February 2022).
- Noori, M.; Sherzad, H. Current State of Early Warning System in Afghanistan: An outlook of the Flood Early Warning System; National Environmental Protection Agency, Afghanistan National Disaster Management Authority and United Nations Environment Programme: Kabul, Afghanistan, 2020. [Google Scholar]
- The World Bank. Climate Risk Country Profile: Nepal; Word Bank: Washington, DC, USA, 2021. [Google Scholar]
- Erell, E.; Pearlmutter, D.; Boneh, D.; Kutiel, P.B. Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Clim. 2014, 10, 367–386. [Google Scholar] [CrossRef]
- Falasca, S.; Ciancio, V.; Salata, F.; Golasi, I.; Rosso, F.; Curci, G. High albedo materials to counteract heat waves in cities: An assessment of meteorology, buildings energy needs and pedestrian thermal comfort. Build. Environ. 2019, 163, 106242. [Google Scholar] [CrossRef]
- Ahmedabad Municipal Corporation. Ahmedabad Heat Action Plan: Guide to Extreme Heat Planning in Ahmedabad, India. Available online: https://www.nrdc.org/sites/default/files/ahmedabad-heat-action-plan-2016.pdf (accessed on 14 April 2022).
- Wamsler, C.; Brink, E.; Rivera, C. Planning for climate change in urban areas: From theory to practice. J. Clean. Prod. 2013, 50, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Emmanuel, R.; Rosenlund, H.; Johansson, E. Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. Int. J. Climatol. 2007, 27, 1995–2004. [Google Scholar] [CrossRef] [Green Version]
- Marcotullio, P.J.; Schmeltz, M.T. Future Heat Risk in South Asia and the Need for Ecosystem Mitigation. In Ecosystem-Based Disaster and Climate Resilience: Integration of Blue-Green Infrastructure in Sustainable Development; Mukherjee, M., Shaw, R., Eds.; Springer: Singapore, 2021; pp. 225–252. ISBN 978-981-16-4815-1. [Google Scholar]
- Galagoda, R.U.; Jayasinghe, G.Y.; Halwatura, R.U.; Rupasinghe, H.T. The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort. Urban For. Urban Green. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- Venter, Z.S.; Krog, N.H.; Barton, D.N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 2020, 709, 136193. [Google Scholar] [CrossRef]
- Hamstead, Z.A.; Kremer, P.; Larondelle, N.; McPhearson, T.; Haase, D. Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecol. Indic. 2016, 70, 574–585. [Google Scholar] [CrossRef]
- Weber, N.; Haase, D.; Franck, U. Zooming into temperature conditions in the city of Leipzig: How do urban built and green structures influence earth surface temperatures in the city? Sci. Total Environ. 2014, 496, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Myint, S.W.; Wentz, E.A.; Fan, C. Rooftop Surface Temperature Analysis in an Urban Residential Environment. Remote Sens. 2015, 7, 12135–12159. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Fu, G.; Liu, X.; Fu, F. Urban planning indicators, morphology and climate indicators: A case study for a north-south transect of Beijing, China. Build. Environ. 2011, 46, 1174–1183. [Google Scholar] [CrossRef]
- Loughnan, M.; Carroll, M.; Tapper, N.J. The relationship between housing and heat wave resilience in older people. Int. J. Biometeorol. 2015, 59, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Ehsan, S.; Abbas, F.; Ibrahim, M.; Ahmad, B.; Farooque, A.A. Thermal Discomfort Levels, Building Design Concepts, and Some Heat Mitigation Strategies in Low-Income Communities of a South Asian City. Int. J. Environ. Res. Public Health 2021, 18, 2535. [Google Scholar] [CrossRef] [PubMed]
- Taleb, H.M. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U.A.E. buildings. Front. Archit. Res. 2014, 3, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Hughes, B.R.; Calautit, J.K.; Ghani, S.A. The development of commercial wind towers for natural ventilation: A review. Appl. Energy 2012, 92, 606–627. [Google Scholar] [CrossRef]
- Lee, H.; Lee, W.; Yoo, J.H. Assessment of medium-range ensemble forecasts of heat waves. Atmos. Sci. Lett. 2016, 17, 19–25. [Google Scholar] [CrossRef]
- Margolis, H.G. Heat Waves and Rising Temperatures: Human Health Impacts and the Determinants of Vulnerability BT—Climate Change and Global Public Health. In Climate Change and Global Public Health; Pinkerton, K.E., Rom, W.N., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 123–161. ISBN 978-3-030-54746-2. [Google Scholar]
- Bélanger, D.; Gosselin, P.; Valois, P.; Abdous, B. Perceived Adverse Health Effects of Heat and Their Determinants in Deprived Neighbourhoods: A Cross-Sectional Survey of Nine Cities in Canada. Int. J. Environ. Res. Public Health 2014, 11, 11028–11053. [Google Scholar] [CrossRef] [Green Version]
- Knowlton, K.; Kulkarni, S.P.; Azhar, G.S.; Mavalankar, D.; Jaiswal, A.; Connolly, M.; Nori-Sarma, A.; Rajiva, A.; Dutta, P.; Deol, B.; et al. Development and Implementation of South Asia’s First Heat-Health Action Plan in Ahmedabad (Gujarat, India). Int. J. Environ. Res. Public Health 2014, 11, 3473–3492. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.L.; Shrestha, I.L.; Shrestha, N.; Joshi, R.D. Statistical Modeling of Health Effects on Climate-Sensitive Variables and Assessment of Environmental Burden of Diseases Attributable to Climate Change in Nepal. Environ. Modeling Assess. 2017, 22, 459–472. [Google Scholar] [CrossRef]
- Van der Linden, N.; Longden, T.; Richards, J.R.; Khursheed, M.; Goddijn, W.M.T.; vanVeelen, M.J.; Khan, U.R.; van der Linden, M.C. The use of an “acclimatisation” heatwave measure to compare temperature-related demand for emergency services in Australia, Botswana, Netherlands, Pakistan, and USA. PLoS ONE 2019, 14, e0214242. [Google Scholar] [CrossRef] [PubMed]
- Thornes, J.E.; Fisher, P.A.; Rayment-Bishop, T.; Smith, C. Ambulance call-outs and response times in Birmingham and the impact of extreme weather and climate change. Emerg. Med. J. 2014, 31, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Onur, A.C.; Tezer, A. Ecosystem services based spatial planning decision making for adaptation to climate changes. Habitat Int. 2015, 47, 267–278. [Google Scholar] [CrossRef]
- Hajat, S.; O’Connor, M.; Kosatsky, T. Health effects of hot weather: From awareness of risk factors to effective health protection. Lancet 2010, 375, 856–863. [Google Scholar] [CrossRef]
- Dutta-Koehler, M.C. Making Climate Adaptation Work: Strategies for Resource Constrained South Asian Mega-Cities. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013. [Google Scholar]
- Azhar, G. Indian Summer: Three Essays on Heatwave Vulnerability, Estimation and Adaptation. In Indian Summer: Three Essays on Heatwave Vulnerability, Estimation and Adaptation; The Pardee RAND Graduate School: Santa Monica, CA, USA, 2020. [Google Scholar] [CrossRef]
- Sun, S.; Xu, X.; Lao, Z.; Liu, W.; Li, Z.; Higueras García, E.; He, L.; Zhu, J. Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Build. Environ. 2017, 123, 277–288. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hartmann, C.; Moser-Reischl, A.; von Strachwitz, M.F.; Paeth, H.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Tree cooling effects and human thermal comfort under contrasting species and sites. Agric. For. Meteorol. 2020, 287, 107947. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Pitman, S.D.; Daniels, C.B.; Ely, M.E. Green infrastructure as life support: Urban nature and climate change. Trans. R. Soc. S. Aust. 2015, 139, 97–112. [Google Scholar] [CrossRef]
- Lee, I.; Voogt, J.A.; Gillespie, T.J. Analysis and Comparison of Shading Strategies to Increase Human Thermal Comfort in Urban Areas. Atmosphere 2018, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Satterthwaite, D.; Archer, D.; Colenbrander, S.; Dodman, D.; Hardoy, J.; Mitlin, D.; Patel, S. Building Resilience to Climate Change in Informal Settlements. One Earth 2020, 2, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Coma, J.; Pérez, G.; de Gracia, A.; Burés, S.; Urrestarazu, M.; Cabeza, L.F. Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Build. Environ. 2017, 111, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Y.; Jingping, C.; Liping, C.; Zhemin, S.; Xiaodong, Z.; Dan, W.; Wenhua, W. Effects of vegetation status in urban green spaces on particle removal in a street canyon atmosphere. Acta Ecol. Sin. 2007, 27, 4590–4595. [Google Scholar] [CrossRef]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The urban heat island: Implications for health in a changing environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef]
- Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The effect of multi-dimensional indicators on urban thermal conditions. J. Clean. Prod. 2018, 177, 115–123. [Google Scholar] [CrossRef]
- Prieto, A.; Knaack, U.; Auer, T.; Klein, T. Passive cooling & climate responsive façade design: Exploring the limits of passive cooling strategies to improve the performance of commercial buildings in warm climates. Energy Build. 2018, 175, 30–47. [Google Scholar] [CrossRef]
- Pisello, A.L. State of the art on the development of cool coatings for buildings and cities. Sol. Energy 2017, 144, 660–680. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M.; Akbari, H. Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy Build. 2007, 39, 1167–1174. [Google Scholar] [CrossRef]
- Toloo, G.S.; FitzGerald, G.; Aitken, P.; Verrall, K.; Tong, S. Are heat warning systems effective? Environ. Health 2013, 12, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, S.; Nitschke, M.; Wondmagegn, B.Y.; Tong, M.; Xiang, J.; Hansen, A.; Nairn, J.; Karnon, J.; Bi, P. Evaluating cost benefits from a heat health warning system in Adelaide, South Australia. Aust. N. Z. J. Public Health 2021, 46, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Fouillet, A.; Rey, G.; Wagner, V.; Laaidi, K.; Empereur-Bissonnet, P.; LeTertre, A.; Frayssinet, P.; Bessemoulin, P.; Laurent, F.; DeCrouy-Chanel, P. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int. J. Epidemiol. 2008, 37, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Hajat, S.; Kosatky, T. Heat-related mortality: A review and exploration of heterogeneity. J. Epidemiol. Community Health 2010, 64, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, M.A.; Loken, B.; Hornik, R.C. Use of mass media campaigns to change health behaviour. Lancet 2010, 376, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
Countries | Annual Average Temperature Range (1990–2010) | Historic Trend (per Decade) (1990–2010) | Increased Trend (1950–2010) |
---|---|---|---|
Afghanistan | 5 to 15 °C | 0.27 °C | 2.5 °C to 3.0 °C |
Pakistan | 15 to 20 °C | 0.17 °C | 2.5 °C to 3.0 °C |
Nepal | −5 to 15 °C | 0.14 °C | 1.0 °C to 1.5 °C |
Bhutan | −5 to 15 °C | 0.15 °C | N/A |
India | 20 to 30 °C | 0.11 °C | 1.0 °C to 1.5 °C |
Bangladesh | 25 to 30 °C | 0.09 °C | 1.0 °C to 3.0 °C |
Sri Lanka | 25 to 30 °C | 0.17 °C | 1.0 °C to 3.0 °C |
Maldives | 25 to 30 °C | 0.07 °C | 0.8 °C |
Country | Threshold | Duration | Heatwave Definition | Reference |
---|---|---|---|---|
Afghanistan | 90th percentile | 3 consecutive days | Heatwaves are defined as in a year with at least three consecutive days above the threshold for the reference period 1981–2010. The threshold is calculated as the 90th percentile of daily maxima, centered on a 31-day window. | [25] |
Pakistan | >40 °C and 45 °C | 5 or 7 consecutive days | Temperature >40 °C and 45 °C for five and seven consecutive days. | [34] |
Pakistan | 45 °C or above | 5 consecutive days | 45 °C or above temperature for five consecutive days is considered a heatwave. | [42] |
Pakistan | 90th, 95th, and 99th percentile | - | The maximum temperature above different percentiles, namely, 90th, 95th, and 99th, is a heatwave. | [45] |
Pakistan | >45 °C and >40 °C | - | Heatwave will be considered when the maximum temperature for the understudy meteorological station is >45 °C for plains and >40 °C for hilly areas. | [36] |
Pakistan | 42 °C, then a noted rise of 5 °C to 6 °C | 8 consecutive days | When the average maximum temperature of the understudy station is equal to 42 °C, then a noted rise of 5 °C to 6 °C for 8 days or more is considered as a heatwave. | [36] |
Pakistan | >45 °C | 8 consecutive days | When the maximum temperature for a station is >45 °C for >8 days, it is considered a heatwave irrespective of the normal temperature trend. | [38] |
Nepal | - | - | “Heatwave” is defined as a period of abnormally and uncomfortably hot and humid weather. | [39] |
Bhutan, Maldives | 95th percentile | ≥3 days | A heatwave is defined as a period of three or more days where the daily temperature is above the long-term 95th percentile of the daily mean temperature. | [28,29] |
India | 44.5–46.8 °C | - | Qualified as a “heatwave” with daily maximum temperatures varying between 44.5–46.8 °C. | [36] |
India | 85th and 90th percentile | 3 or 5 consecutive days | The number of three or five consecutive days with maximum temperature above the 90th percentile. | [43] |
India | 90th percentile | - | 90th percentile of daily maximum (daytime) temperatures. | [41] |
India | ≥97th percentile | ≥2 days | Heatwaves were defined as ≥2 days with local temperature ≥97th percentile. | [40] |
Bangladesh | 95th percentile | 3 consecutive days | Daily minimum and maximum temperatures over the 95th percentile for three consecutive days are qualified as heatwaves. | [39] |
Sri Lanka | 95th percentile | ≥3 days | A heatwave is defined as a period of three or more days where the daily temperature is above the long-term 95th percentile of the daily mean temperature. | [35] |
Location | Study Period | Impacts of Heatwaves | Reference |
---|---|---|---|
Pakistan | 2015 heatwaves | The 2015 heatwaves in Pakistan resulted in the death toll of 1233 due to hyperthermia. Around 65,000 people were treated for heatstroke. | [56] |
Pakistan | 2000–2019 | All-cause mortality increased by 27% with a temperature range between 35–40 °C, while by 11% with a temperature range between 30–35 °C. | [60] |
Karachi, Pakistan | 2015 heatwaves | Heat-related causes of death during June 2015 heatwaves were 18% higher than the reference period of June 2014 [95% CI: 13.87–22.53]. | [55] |
Nepal | 2009–2014 | Hospitalization/death increased by 2.1% to 7.3% per 1 °C rise in temperature. All-cause deaths rose by 0.9% to 8.2% per 1 °C change in temperature below or above 20 °C. | [57] |
Bhutan | 1961–1990 | Heat-related deaths in people above 65 years could increase to 49 deaths per 100,000 by the 2080s. | [29] |
Ahmedabad, India | May 2010 heatwave | Around 4462 all-cause deaths occurred, comprising 1344 excess all-cause deaths, an estimated 43.1% increase compared to 2009 and 2011 (3118 deaths). | [36] |
India | 2000–2012 | Across communities, total mortality increased by 18.1% during heatwave days compared to non-heatwave days [95% CI: −5.3, 47.3]. | [49] |
India | 1992–2016 | Across India, in the 24 years between 1992 and 2016, 25,716 heat-related deaths were reported, with 1111 and 2040 deaths reported in 2015 and 2016, respectively. | [51] |
India | 1972, 1988, 1998, and 2003 | During the 1972, 1988, 1998, and 2003 heatwaves, with over ten heatwave days on average across India, heat-related mass mortality ranged between 650 and 1500 people. | [52] |
Bangladesh | 1989–2011 | Mortality increased by 22% during heatwave days [95% CI: 8–38]. | [39] |
Bangladesh | 2003–2007 | Heat effects increased the all-cause mortality by 1–3%. | [61] |
Sri Lanka | 2019 | The outbreak of diseases caused by heatwaves was identified as a serious concern. | [62] |
Maldives | 2015–2016 | Severe heat stress resulted in high coral mortality on Maldivian Reefs following the 2015–2016 El Niño event. | [63] |
Countries | Nation/Local Action Plans | Interventions | Reference |
---|---|---|---|
Afghanistan |
|
| [72] |
Pakistan |
|
| [70] |
|
| [75] | |
Nepal |
|
| [78] |
|
| [76] | |
Bhutan |
|
| [29] |
India |
|
| [71] |
|
| [74] | |
Bangladesh |
|
| [73] |
|
| [76] | |
Sri Lanka |
|
| [35] |
Maldives |
|
| [28] |
Approach | Adaptation Strategies | Stakeholders | Significance | Reference |
---|---|---|---|---|
Outdoor cooling strategies |
|
|
| [18,79,80] |
|
|
| [18] | |
|
|
| [81,82] | |
|
|
| [83,84] | |
Infrastructural |
|
|
| [85,86,87] |
|
|
| [88,89,90,91,92,93,94] | |
Passive cooling strategies(indoor) |
|
|
| [91,95] |
|
| [95] | ||
|
| [95,96] | ||
Heat action plans (HAPs) |
|
|
| [81,97] |
|
| [17,98,99,100] | ||
|
| [101,102,103] | ||
Administrative and policy |
|
|
| [104,105] |
|
|
| [106,107] | |
|
|
| [106] | |
|
|
| [106] | |
|
|
| [17,40,49,102,103,106] | |
|
|
| [17] | |
|
|
| [107] | |
Behavioral |
|
|
| [36,94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Andhikaputra, G.; Wang, Y.-C. Heatwaves in South Asia: Characterization, Consequences on Human Health, and Adaptation Strategies. Atmosphere 2022, 13, 734. https://doi.org/10.3390/atmos13050734
Sharma A, Andhikaputra G, Wang Y-C. Heatwaves in South Asia: Characterization, Consequences on Human Health, and Adaptation Strategies. Atmosphere. 2022; 13(5):734. https://doi.org/10.3390/atmos13050734
Chicago/Turabian StyleSharma, Ayushi, Gerry Andhikaputra, and Yu-Chun Wang. 2022. "Heatwaves in South Asia: Characterization, Consequences on Human Health, and Adaptation Strategies" Atmosphere 13, no. 5: 734. https://doi.org/10.3390/atmos13050734
APA StyleSharma, A., Andhikaputra, G., & Wang, Y. -C. (2022). Heatwaves in South Asia: Characterization, Consequences on Human Health, and Adaptation Strategies. Atmosphere, 13(5), 734. https://doi.org/10.3390/atmos13050734