Investigation of Policy Relevant Background (PRB) Ozone in East Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Scope of the Study
2.2. GEOS-Chem Boundary Condition for Long-Range Transport Influence
2.3. WRF-CMAQ Air Quality Model
3. Results and Discussion
3.1. Base Case Simulation
3.2. Seasonal Influence on Long-Range Transport over EA
3.3. Policy Relevant Background Ozone and the Contribution from Stratospheric Ozone Transport
3.3.1. Regional Perspective on Policy Relevant Background Ozone
3.3.2. Influence of Stratospheric Ozone Transport on Policy Relevant Background Ozone
3.3.3. Policy Relevant Background Ozone in Selected Cities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- USEPA. Health Risk and Exposure Assessment for Ozone; U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- McDonald-Buller, E.C.; Allen, D.T.; Brown, N.; Jacob, D.J.; Jaffe, D.; Kolb, C.E.; Lefohn, A.S.; Oltmans, S.; Parrish, D.D.; Yarwood, G.; et al. Establishing Policy Relevant Background (PRB) Ozone Concentrations in the United States. Environ. Sci. Technol. 2011, 45, 9484–9497. [Google Scholar] [CrossRef]
- CRS. Background Ozone: Challenges in Science and Policy; CRS: Washington, DC, USA, 2019. [Google Scholar]
- Li, J.; Wang, Z.; Akimoto, H.; Gao, C.; Pochanart, P.; Wang, X. Modeling study of ozone seasonal cycle in lower troposphere over east Asia. J. Geophys. Res. Atmos. 2007, 112, D22S25. [Google Scholar] [CrossRef]
- Ou Yang, C.-F.; Lin, N.-H.; Sheu, G.-R.; Lee, C.-T.; Wang, J.-L. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmos. Environ. 2012, 46, 279–288. [Google Scholar] [CrossRef]
- Emery, C.; Jung, J.; Downey, N.; Johnson, J.; Jimenez, M.; Yarwood, G.; Morris, R. Regional and global modeling estimates of policy relevant background ozone over the United States. Atmos. Environ. 2012, 47, 206–217. [Google Scholar] [CrossRef]
- Hogrefe, C.; Henderson, B.; Tonnesen, G.; Mathur, R.; Matichuk, R. Multiscale Modeling of Background Ozone: Research Needs to Inform and Improve Air Quality Management. EM Magazine, 1 November 2020; 1–6. [Google Scholar]
- Zhang, L.; Jacob, D.J.; Downey, N.V.; Wood, D.A.; Blewitt, D.; Carouge, C.C.; van Donkelaar, A.; Jones, D.B.A.; Murray, L.T.; Wang, Y. Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2° × 2/3° horizontal resolution over North America. Atmos. Environ. 2011, 45, 6769–6776. [Google Scholar] [CrossRef] [Green Version]
- Aijun, D.; Tao, W.; Likun, X.; Jian, G.; Andreas, S.; Hengchi, L.; Dezhen, J.; Yu, R.; Xuezhong, W.; Xiaolin, W.; et al. Correction to “Transport of north China air pollution by midlatitude cyclones: Case study of aircraft measurements in summer 2007”. J. Geophys. Res. Atmos. 2009, 114, D11399. [Google Scholar] [CrossRef] [Green Version]
- Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gassó, S.; Gill, T.; Laulainen, N.S.; Lu, F.; et al. Asian dust events of April 1998. J. Geophys. Res. Atmos. 2001, 106, 18317–18330. [Google Scholar] [CrossRef]
- Isaac, T.B.; Daniel, A.J. Long-range transport of ozone, carbon monoxide, and aerosols to the NE Pacific troposphere during the summer of 2003: Observations of smoke plumes from Asian boreal fires. J. Geophys. Res. Atmos. 2005, 110, D05303. [Google Scholar] [CrossRef]
- Derwent, R.G.; Jenkin, M.E. Hydrocarbons and the long-range transport of ozone and pan across Europe. Atmos. Environ. Part A Gen. Top. 1991, 25, 1661–1678. [Google Scholar] [CrossRef]
- Fischer, E.V.; Jacob, D.J.; Yantosca, R.M.; Sulprizio, M.P.; Millet, D.B.; Mao, J.; Paulot, F.; Singh, H.B.; Roiger, A.; Ries, L.; et al. Atmospheric peroxyacetyl nitrate (PAN): A global budget and source attribution. Atmos. Chem. Phys. 2014, 14, 2679–2698. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, T.; Samuelsson, U.; Grennfelt, P.; Thomsen, E.L. Peroxyacetyl nitrate in long-range transported polluted air. Nature 1981, 293, 553–555. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Zhao, C.; Liu, X.; Lin, N.-H.; Chen, W.-N. Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B 2014, 66, 23733. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.S.; Dong, X.; Gao, Y.; Wong, D.C.; Lam, Y.F. Sensitivity and linearity analysis of ozone in East Asia: The effects of domestic emission and intercontinental transport. J. Air Waste Manag. Assoc. 2012, 62, 1102–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.C.; Lam, Y.F.; Kuhlmann, G.; Wenig, M.O.; Chan, K.L.; Hartl, A.; Ning, Z. An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong. Atmos. Environ. 2013, 80, 478–487. [Google Scholar] [CrossRef]
- Wang, M.; Fu, Q. Stratosphere-Troposphere Exchange of Air Masses and Ozone Concentrations Based on Reanalyses and Observations. J. Geophys. Res. Atmos. 2021, 126, e2021JD035159. [Google Scholar] [CrossRef]
- Griffiths, P.T.; Murray, L.T.; Zeng, G.; Shin, Y.M.; Abraham, N.L.; Archibald, A.T.; Deushi, M.; Emmons, L.K.; Galbally, I.E.; Hassler, B.; et al. Tropospheric ozone in CMIP6 simulations. Atmos. Chem. Phys. 2021, 21, 4187–4218. [Google Scholar] [CrossRef]
- Lin, M.; Fiore, A.M.; Cooper, O.R.; Horowitz, L.W.; Langford, A.O.; Levy Ii, H.; Johnson, B.J.; Naik, V.; Oltmans, S.J.; Senff, C.J. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. J. Geophys. Res. Atmos. 2012, 117, D00V22. [Google Scholar] [CrossRef] [Green Version]
- Itahashi, S.; Mathur, R.; Hogrefe, C.; Zhang, Y. Modeling stratospheric intrusion and trans-Pacific transport on tropospheric ozone using hemispheric CMAQ during April 2010—Part 1: Model evaluation and air mass characterization for stratosphere–troposphere transport. Atmos. Chem. Phys. 2020, 20, 3373–3396. [Google Scholar] [CrossRef] [Green Version]
- Lam, Y.F.; Fu, J.S. Corrigendum to “A novel downscaling technique for the linkage of global and regional air quality modeling”. Atmos. Chem. Phys. 2009, 9, 9169–9185. Atmos. Chem. Phys. 2010, 10, 4013–4031. [Google Scholar] [CrossRef] [Green Version]
- Environ. Upgrade of a Regional Air Quality Modelling System (PATH)—Feasibility Study; ENVIRON Hong Kong Limited: Hong Kong, China, 2011. [Google Scholar]
- Holmes, C.D.; Jacob, D.J.; Corbitt, E.S.; Mao, J.; Yang, X.; Talbot, R.; Slemr, F. Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 2010, 10, 12037–12057. [Google Scholar] [CrossRef] [Green Version]
- Selin, N.E.; Daniel, J.J.; Robert, M.Y.; Sarah, S.; Lyatt, J.; Elsie, M.S. Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Glob. Biogeochem. Cycles 2008, 22, GB2011. [Google Scholar] [CrossRef]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.B.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.S.; Reddy, S.; Fu, J.S.; et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 9, 5131–5153. [Google Scholar] [CrossRef] [Green Version]
- Lam, Y.F.; Fu, J.S.; Wu, S.; Mickley, L.J. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States. Atmos. Chem. Phys. 2011, 11, 4789–4806. [Google Scholar] [CrossRef] [Green Version]
- CESY. China Electricity Statistical YearBook 2005; National Bureau of Statistics of China: Beijing, China, 2005; p. 42.
- Huang, K.; Fu, J.S.; Hsu, N.C.; Gao, Y.; Dong, X.; Tsay, S.-C.; Lam, Y.F. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmos. Environ. 2013, 78, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q.; et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. Atmos. 2003, 108, 23. [Google Scholar] [CrossRef]
- Du, Y.; Lam, Y.F.; Fu, J.S. Top-down emission inventory development for INTEX-B. In Proceedings of the A&WMA’s 101th Annual Conference, Detroit, MI, USA, 16–19 June 2009. [Google Scholar]
- Lam, Y.F.; Cheung, C.C.; Zhang, X.; Fu, J.S.; Fung, J.C.H. Development of a new emission reallocation method for industrial sources in China. Atmos. Chem. Phys. 2021, 21, 12895–12908. [Google Scholar] [CrossRef]
- Hakami, A.; Henze, D.K.; Seinfeld, J.H.; Chai, T.; Tang, Y.; Carmichael, G.R.; Sandu, A. Adjoint inverse modeling of black carbon during the Asian Pacific Regional Aerosol Characterization Experiment: Adjoint Inverse Modeling of Black Carbon. J. Geophys. Res. Atmos. 2005, 110, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sartelet, K.N.; Hayami, H.; Sportisse, B. MICS Asia Phase II—Sensitivity to the aerosol module. Atmos. Environ. 2008, 42, 3562–3570. [Google Scholar] [CrossRef] [Green Version]
- Akimoto, H.; Nagashima, T.; Kawano, N.; Jie, L.; Fu, J.S.; Wang, Z. Discrepancies between MICS-Asia III simulation and observation for surface ozone in the marine atmosphere over the northwestern Pacific Asian Rim region. Atmos. Chem. Phys. 2020, 20, 15003–15014. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, H.J.; Lee, S.H. The Characteristics of Tropospheric Ozone Seasonality Observed from Ozone Soundings at Pohang, Korea. Environ. Monit. Assess. 2006, 118, 1–12. [Google Scholar] [CrossRef]
- Hwang, S.-H.; Kim, J.; Cho, G.-R. Observation of secondary ozone peaks near the tropopause over the Korean peninsula associated with stratosphere-troposphere exchange. J. Geophys. Res. Atmos. 2007, 112, D16305. [Google Scholar] [CrossRef] [Green Version]
- Kalabokas, P.; Hjorth, J.; Foret, G.; Dufour, G.; Eremenko, M.; Siour, G.; Cuesta, J.; Beekmann, M. An investigation on the origin of regional springtime ozone episodes in the western Mediterranean. Atmos. Chem. Phys. 2017, 17, 3905–3928. [Google Scholar] [CrossRef] [Green Version]
Case Name | Description | Removed Emissions 1 |
---|---|---|
Full EM | Base case with no emissions reduction | - |
Zero-out EA | Remove East Asia’s emissions | STREETS (all pollutants) |
Zero-out NA | Remove North America’s emissions | NEI 05 for US, CAC for Canada & BRAVO for Mexico |
Configuration | Options |
---|---|
Model Code | CMAQ Version 5.0.1 |
Horizontal Grid Mesh | D1–27 km (East Asia) |
Vertical Grid Mesh | 34 Layers |
Grid Interaction | One-way nesting |
Initial/Boundary Condition | GEOS-Chem global chemistry model |
Emissions | |
Emissions Processing | INTEX-B with a top-down approach [26,31] |
Sub-grid-scale Plumes | No PinG |
Chemistry | |
Gas-Phase Chemistry | CB05 |
Aerosol Chemistry | AE4/ISORROPIA |
Secondary Organic Aerosols | SORGAM |
Cloud Chemistry | RADM |
Horizontal Transport | |
Eddy Diffusivity | K-theory |
Vertical Transport | |
Eddy Diffusivity | ACM2 |
Deposition Scheme | M3Dry |
Numeric | |
Gas-Phase Chemistry Solver | EBI |
Horizontal Advection Scheme | PPM |
Scenario Name | GEOS-Chem Initial & Boundary Conditions (Case Name) | CMAQ Emission Description |
---|---|---|
Base case | Full Global emissions, including anthropogenic + biogenic + biomass burning (Full EM) | All emissions from the PATH system (including biogenic, biomass burning, etc.) |
NA0 | Removal of NEI05, CAC and BRAVO emissions from global inventory (Zero-out NA) | All emissions from the PATH system (including biogenic, biomass burning, etc.) |
EA0 | Removal of STREETS (all pollutants) from global inventory (Zero-out EA) | Removal of all anthropogenic (INTEX-B and TRACE-P Ship) emissions from the CMAQ domain |
STT | EA0 with the removal of stratospheric ozone from the upper level of GEO-Chem input (Zero-out EA) | Removal of all anthropogenic (INTEX-B and TRACE-P Ship) emissions from the CMAQ domain |
Month | Ryori, Japan (39°02′ N 141°49′ E) | Tap Mun, Hong Kong (22°28′ N 114°21′ E) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean(Obs) | Mean(Model) | MB | MAE | RMSE | Mean (Obs) | Mean (Model) | MB | MAE | RMSE | |
January | 37.6 | 38.5 | +0.8 | 4.3 | 5.8 | 31.8 | 52.2 | +21.1 | 25.3 | 28.9 |
April | 49.0 | 49.6 | +0.7 | 9.0 | 11.9 | 29.3 | 48.8 | +21.8 | 26.5 | 33.3 |
July | 31.8 | 32.9 | +1.1 | 12.8 | 15.2 | 22.7 | 27.5 | +5.2 | 13.4 | 17.9 |
October | 40.2 | 37.0 | −2.8 | 11.2 | 14.8 | 49.5 | 51.3 | +2.7 | 16.1 | 22.3 |
Month (ppbv) | South Temperate | Plateau Climate | North Subtropical | North Tropical | Mid Subtropical | Mid Temperate | South Subtropical |
---|---|---|---|---|---|---|---|
JAN | 0.83 | 0.44 | 0.67 | 0.37 1 | 0.49 | 0.85 | 0.43 |
APR | 1.17 1 | 0.61 1 | 0.76 1 | 0.28 | 0.60 1 | 1.47 1 | 0.44 1 |
JUL | 0.16 | 0.15 | 0.08 | 0.24 | 0.10 | 0.32 | 0.16 |
OCT | 0.68 | 0.59 | 0.44 | 0.19 | 0.26 | 0.83 | 0.18 |
Month (ppbv) | South Temperate | Plateau Climate | North Subtropical | North Tropical | Mid Subtropical | Mid Temperate | South Subtropical | Avg. |
---|---|---|---|---|---|---|---|---|
JAN | 31 (2) | 35 (13) | 35 (5) | 46 (14) | 37 (16) | 28 (5) | 39 (13) | 35.8 |
APR | 39 1 (15) | 50 1 (9) | 44 1 (21) | 37 1 (15) | 59 1 (20) | 38 1 (10) | 47 1 (16) | 44.8 1 |
JUL | 20 (25) | 27 (12) | 15 (27) | 20 (13) | 16 (22) | 24 (20) | 16 (16) | 19.7 |
OCT | 27 (13) | 38 (10) | 26 (19) | 25 (30) | 27 (22) | 26 (10) | 23 (21) | 27.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, Y.F.; Cheung, H.M. Investigation of Policy Relevant Background (PRB) Ozone in East Asia. Atmosphere 2022, 13, 723. https://doi.org/10.3390/atmos13050723
Lam YF, Cheung HM. Investigation of Policy Relevant Background (PRB) Ozone in East Asia. Atmosphere. 2022; 13(5):723. https://doi.org/10.3390/atmos13050723
Chicago/Turabian StyleLam, Yun Fat, and Hung Ming Cheung. 2022. "Investigation of Policy Relevant Background (PRB) Ozone in East Asia" Atmosphere 13, no. 5: 723. https://doi.org/10.3390/atmos13050723
APA StyleLam, Y. F., & Cheung, H. M. (2022). Investigation of Policy Relevant Background (PRB) Ozone in East Asia. Atmosphere, 13(5), 723. https://doi.org/10.3390/atmos13050723