Changes in Precipitation Conditions in the Warm Half-Year in the Polish–Saxon Border Region in Relation to the Atmospheric Circulation
Abstract
:1. Introduction
2. Materials and Methods
- Precipitation totals (RR);
- Frequency of dry days (R < 1);
- Frequency of intensive precipitations (RR10);
- 95th percentile of precipitation totals (R95p).
3. Results
3.1. Precipitations and Circulation Conditions
3.2. Precipitations under Particular Circulation Conditions
3.3. Multiannual Changes in Precipitations Depending on Circulation Conditions
4. Discussion
5. Conclusions
- Precipitations in the region can significantly vary in a relatively small area. This concerns both current precipitation conditions and their multiannual changes depending on the circulation types.
- Considering the fact that most of the observed trends were statistically insignificant, it is hard to precisely predict the direction of further changes of precipitations in the region.
- The significant increase in the magnitude and frequency of intensive precipitations for some stations in the lowlands, even for the anticyclonic circulation, indicates that these regions can be additionally affected by heavy precipitations in the future. This may result in the intensification of urban flood occurrence, due to the fact that most of urban areas in the region are located at the lower elevations.
- The negative trends for the precipitation totals and strong precipitations for the northern circulation, especially in the higher hypsometric zones, can indicate that these areas (where the orographic effect plays an important role) can become less exposed to the heavy rainfall episodes. The decline in precipitation totals can potentially disturb the ecological balance in the biologically sensitive region of the Karkonoski National Park in the summits of the Giant Mountains.
- The positive tendency of the SW-A type contributes to the rising number of dry days. Considering also the rising tendency of heat stress conditions, such trends can consequently intensify drought occurrence, cause problems with hydropower generation and affect groundwater resources in the PSBR.
- Taking into account the relatively high dependence of the precipitation conditions on the selected types of atmospheric circulation, further and more detailed research in this field is recommended. This also concerns the studies related to the impact of precipitation and circulation conditions on flood problems, especially flash flood occurrence, which has become one of the most important problems over the last years. Such research can be also linked to the estimation of drought conditions, including detailed analysis on meteorological and hydrological drought, their impact on social–economic and environmental sectors, and the dependence on circulation issues.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. AR5 Synthesis Report: Climate Change 2014. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. Available online: https://archive.ipcc.ch/report/ar5/syr/ (accessed on 6 December 2021).
- Rajczak, J.; Schär, C. Projections of Future Precipitation Extremes Over Europe: A Multimodel Assessment of Climate Simulations. J. Geophys. Res. Atmos. 2017, 122, 10773–10800. [Google Scholar] [CrossRef]
- Hänsel, S. Changes in the Characteristics of Dry and Wet Periods in Europe (1851–2015). Atmosphere 2020, 11, 1080. [Google Scholar] [CrossRef]
- Ruo, R.; Li, L.; Xu, C.-Y.; Chen, J.; Guo, S. Extreme Precipitation Changes in Europe from the Last Millennium to the End of the Twenty-First Century. J. Clim. 2020, 34, 567–588. [Google Scholar] [CrossRef]
- Meier, R.; Schwaab, J.; Seneviratne, S.I.; Sprenger, M.; Lewis, E.; Davin, E.L. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 2021, 14, 473–478. [Google Scholar] [CrossRef]
- Pal, J.S.; Giorgi, F.; Bi, X. Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys. Res. Lett. 2004, 31, L13202. [Google Scholar] [CrossRef]
- Halmova, D.; Pekarova, P.; Olbrimek, J.; Miklanek, P.; Pekar, J. Precipitation Regime and Temporal Changes in the Central Danubian Lowland Region. Adv. Meteorol. 2015, 2015, 715830. [Google Scholar] [CrossRef] [Green Version]
- Hoy, A.; Feske, N.; Štepánek, P.; Skalák, P.; Schmitt, A.; Schneider, P. Climatic Changes and Their Relation to Weather Types in a Transboundary Mountainous Region in Central Europe. Sustainability 2018, 10, 2049. [Google Scholar] [CrossRef] [Green Version]
- Hofstätter, M.; Lexer, A.; Homann, M.; Blöschl, G. Large-scale heavy precipitation over central Europe and the role of atmospheric cyclone track types. Int. J. Climatol. 2018, 38, 497–517. [Google Scholar] [CrossRef] [Green Version]
- Ionita, M.; Nagavciuc, V.; Kumar, R.; Rakovec, O. On the curious case of the recent decade, mid-spring precipitation deficit in central Europe. NPJ Clim. Atmos. Sci. 2020, 3, 49. [Google Scholar] [CrossRef]
- Zeder, J.; Fischer, E.M. Observed extreme precipitation trends and scaling in Central Europe. Weather Clim. Extrem. 2020, 29, 100266. [Google Scholar] [CrossRef]
- Moravec, V.; Markonis, Y.; Rakovec, O.; Svoboda, M.; Trnka, M.; Kumar, R.; Hanel, M. Europe under multi-year droughts: How severe was the 2014–2018 drought period? Environ. Res. Lett. 2021, 16, 034062. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Jania, J.A. Extreme Hydro-meteorological Events and their Impacts. From the Global down to the Regional Scale. Geogr. Pol. 2007, 75, 9–24. [Google Scholar]
- European Commission. Regions 2020: The Climate Change Challenge for European Regions. European Commission, Directorate-General Regional Policy, Policy Development, Conception, forward Studies, Impact Assessment, 2009, Brussels, Belgium. Available online: https://climate-adapt.eea.europa.eu/metadata/publications/regions-2020-the-climate-challenge-for-european-regions (accessed on 6 December 2021).
- Franke, J.; Goldberg, V.; Freydank, E.; Eichelmann, U. Statistical analysis of regional climate trends in Saxony, Germany. Clim. Res. 2004, 27, 145–150. [Google Scholar] [CrossRef]
- Dankers, R.; Hiederer, R. Extreme Temperatures and Precipitation in Europe: Analysis of a High-Resolution Climate Change Scenario; JRC Scientific and Technical Reports; European Comission, Institute for Environment and Sustainability: Luxembourg, 2008; p. 82. [Google Scholar]
- Hansel, S.; Matschullat, J. Precipitation variability and changes in Saxony between 1901 and 2012. In Environmental Changes and Adaptation Strategies, Proceedings of the International Scientific Conference, Skalica, Slovakia, 9–11 September 2013; Šiška, B., Nejedlík, P., Hájková, L., Kožnarová, V., Eds.; Research Gate: Berlin, Germany, 2013. [Google Scholar]
- Anders, I.; Stagl, J.; Auer, I.; Pavlik, D. Climate Change in Central and Eastern Europe. In Managing Protected Areas in Central and Eastern Europe Under Climate Change; Advances in Global Change Research; Rannov, S., Neubert, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 58, pp. 17–30. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, I.B.; Fleig, A.K.; Tallaksen, M.; Hisdal, H. Recent trends in monthly temperature and precipitation patterns in Europe. In Hydrology in a Changing World: Environmental and Human Dimensions, Proceedings of FRIEND-Water, Montpellier, France, 7–10 October 2014; Ben Ammar, S., Taupin, J.D., Zouari, K., Eds.; IAHS Publication: Wallingford, UK, 2014; pp. 132–137. [Google Scholar]
- Jaagus, J.; Aasa, A.; Aniskevich, S.; Boincean, B.; Bojariu, R.; Briede, A.; Danilovich, I.; Castro, F.D.; Dumitrescu, A.; Labuda, M.; et al. Long-term changes in drought indices in eastern and central Europe. Int. J. Climatol. 2022, 42, 225–249. [Google Scholar] [CrossRef]
- Zebisch, M.; Grothmann, T.; Schröter, D.; Hasse, C.; Fritsch, U.; Cramer, W. Climate Change in Germany—Vulnerability and Adaptation of climate sensitive Sectors. Umweltbundesamt 2005, 2005, 44–56. [Google Scholar]
- Marosz, M.; Wójcik, R.; Biernacik, D.; Jakusik, E.; Pilarski, M.; Owczarek, M.; Miętus, M. Zmienność klimatu Polski od połowy XX wieku. Rezultaty projektu Klimat (Poland’s climate variability 1951–2008. KLIMAT project’s results). Pr. I Studia Geogr. 2011, 47, 51–66. [Google Scholar]
- DWD. Nationaler Klimareport. Klima—Gestern, Heute und in der Zukunft. Deutcher Wetterdienst. 2020. Available online: https://www.dwd.de/DE/leistungen/nationalerklimareport/download_report_auflage-4.html (accessed on 7 December 2021).
- Ziernicka-Wojtaszek, A.; Kopcińska, J. Variation in Atmospheric Precipitation in Poland in the Years 2001–2018. Atmosphere 2020, 11, 794. [Google Scholar] [CrossRef]
- Łupikasza, E.; Małarzewski, Ł. Precipitation Change. In Climate Change in Poland; Falarz, M., Ed.; Springer: Cham, Switzerland, 2021; pp. 349–373. [Google Scholar] [CrossRef]
- Hänsel, S.; Matschullat, J. Monthly trends of daily heavy precipitation indicators from lowland to mountainous regions in Saxony, Germany. In Proceedings of the Sustainable Development and Bioclimate, The High Tatras—Stará Lesná Congress Centre of the SAS Academia, Stará Lesna, Slovakia, 5–8 October 2009; Geophysical Institute of the SAS: Bratislava, Slovakia, 2009. [Google Scholar]
- Łupikasza, E.; Hänsel, S.; Matschullat, J. Regional and seasonal variability of extreme precipitation trends in southern Poland and central-eastern Germany 1951–2006. Int. J. Climatol. 2011, 31, 2249–2271. [Google Scholar] [CrossRef]
- Schwarzak, S.; Hänsel, S.; Matschullat, J. Projected changes in extreme precipitation characteristics for Central Eastern Germany (21st century, model-based analysis). Int. J. Climatol. 2015, 35, 2724–2734. [Google Scholar] [CrossRef]
- Somorowska, U. Changes in Drought Conditions in Poland over the Past 60 Years Evaluated by the Standardized Precipitation-Evapotranspiration Index. Acta Geophys. 2016, 64, 2530–2549. [Google Scholar] [CrossRef] [Green Version]
- Szwed, M. Variability of precipitation in Poland under climate change. Theor. Appl. Climatol. 2019, 135, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Umweltbundesamt. Monitoringbericht Zur Deutschen Anpassungsstrategiean Den Klimawandel (Monitoring Report on the German Adaptation Strategy to Climate Change); Bericht der Interministeriellen Arbeitsgruppe Anpassungsstrategie der Bundesregierung; Umweltbundesamt: Dessau, Germany, 2019; p. 276. [Google Scholar]
- Pińskwar, I.; Choryński, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor. Appl. Climatol. 2019, 135, 773–787. [Google Scholar] [CrossRef] [Green Version]
- Deumlich, D.; Gericke, A. Frequency Trend Analysis of Heavy Rainfall Days for Germany. Water 2020, 12, 1950. [Google Scholar] [CrossRef]
- Pińskwar, I.; Choryński, A. Projections of Precipitation Changes in Poland. In Climate Change in Poland; Falarz, M., Ed.; Springer: Cham, Switzerland, 2021; pp. 529–544. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradníček, P.; Pišoft, P.; Štěpánek, P.; Bělínová, M.; Dobrovolný, P. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theor. Appl. Climatol. 2012, 110, 17–34. [Google Scholar] [CrossRef]
- Sipek, V. The influence of large-scale climatic patterns on precipitation, temperature, and discharge in Czech river basins. J. Hydrol. Hydromech. 2013, 61, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Rulfová, Z.; Beranová, R.; Kyselý, J. Climate change scenarios of convective and large-scale precipitation in the Czech Republic based on EURO-CORDEX data. Int. J. Climatol. 2016, 37, 2451–2465. [Google Scholar] [CrossRef]
- Beranová, R.; Kyselý, J. Trends of precipitation characteristics in the Czech Republic over 1961–2012, their spatial patterns and links to temperature and the North Atlantic Oscillation. Int. J. Climatol. 2018, 132, 515–527. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradníček, P.; Dobrovolný, P.; Štěpánek, P.; Trnka, M. Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019. Int. J. Climatol. 2021, 41, 3881–3902. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradnícek, P.; Dobrovolný, P.; Rehor, J.; Trnka, M.; Lhotka, O.; Štepánek, P. Circulation and Climate Variability in the Czech Republic between 1961 and 2020: A Comparison of Changes for Two “Normal” Periods. Atmosphere 2022, 13, 137. [Google Scholar] [CrossRef]
- Řehoř, J.; Brázdil, R.; Lhotka, O.; Trnka, M.; Balek, J.; Štepánek, P.; Zahradníček, P. Precipitation in the Czech Republic in Light of Subjective and Objective Classifications of Circulation Types. Atmosphere 2021, 12, 1536. [Google Scholar] [CrossRef]
- Rulfová, Z.; Beranová, R.; Plavcová, E. Compound Temperature and Precipitation Events in the Czech Republic: Differences of Stratiform versus Convective Precipitation in Station and Reanalysis Data. Atmosphere 2021, 12, 87. [Google Scholar] [CrossRef]
- Lünich, K.; Pluntke, T.; Prasser, M. (Eds.) Lausitzer Neiße—Charakteristik und Klima der Region (Lusatian Neisse—Characteristics and Climate of the Region); Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie: Dresden, Germany, 2014; p. 75.
- Pluntke, T.; Schwarzak, S.; Kuhn, K.; Lünich, K.; Adynkiewicz-Piragas, M.; Otop, I.; Miszuk, B. Climate analysis as a basis for a sustainable water management at the Lusatian Neisse. Meteorol. Hydrol. Water Manag. 2016, 4, 3–11. [Google Scholar] [CrossRef]
- Mehler, S.; Völlings, A.; Flügel, I.; Szymanowski, M.; Błaś, M.; Sobik, M.; Migała, K.; Werner, M.; Kryza, M.; Miszuk, B.; et al. Das Klima im Polnisch-Sächsischen Grenzraum (Climate of the Polish-Saxon Border Area); Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie: Dresden, Germany, 2014; p. 80.
- Miszuk, B.; Otop, I.; Strońska, M.; Schwarzak, S.; Surke, M. Tourism-climate conditions and their future development in the Polish-Saxon border area. Meteorol. Z. 2016, 25, 421–434. [Google Scholar] [CrossRef]
- Miszuk, B. Multi-Annual Changes in Heat Stress Occurrence and Its Circulation Conditions in the Polish–Saxon Border Region. Atmosphere 2021, 12, 163. [Google Scholar] [CrossRef]
- Miszuk, B.; Adynkiewicz-Piragas, M.; Kolanek, A.; Lejcuś, I.; Zdralewicz, I.; Strońska, M. Climate changes and their impact on selected sectors of the Polish-Saxon border region under RCP8.5 scenario conditions. Meteorol. Z. 2022, 31, 53–68. [Google Scholar] [CrossRef]
- Adynkiewicz-Piragas, M.; Miszuk, B. Risk analysis related to impact of climate change on water resources and hydropower production in the Lusatian Neisse River basin. Sustainability 2020, 12, 5060. [Google Scholar] [CrossRef]
- Kostecki, S.; Banasiak, R. The Catastrophe of the Niedów Dam—The Causes of the Dam’s Breach, Its Development, and Consequences. Water 2020, 13, 3254. [Google Scholar] [CrossRef]
- Degirmendžic, J.; Kożuchowski, K.; Żmudzka, E. Changes of air temperature and precipitation in Poland in the period 1951–2000 and their relationship to atmospheric circulation. Int. J. Climatol. 2004, 24, 291–310. [Google Scholar] [CrossRef]
- Van Ulden, A.P.; van Oldenborgh, G.J. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos. Chem. Phys. 2006, 6, 863–881. [Google Scholar] [CrossRef] [Green Version]
- Łupikasza, E. Relationships between occurrence of high precipitation and atmospheric circulation in Poland using different classifications of circulation types. Phys. Chem. Earth 2010, 35, 448–455. [Google Scholar] [CrossRef]
- Twardosz, R.; Łupikasza, E.; Niedźwiedź, T. The influence of atmospheric circulation on the type of precipitation. Theor. Appl. Climatol. 2011, 104, 233–250. [Google Scholar] [CrossRef] [Green Version]
- Twardosz, R.; Niedźwiedź, T.; Łupikasza, E. Temporal Variability in the Form and Type of Precipitation Kraków in Relation to Circulation Patterns; Jagiellonian University: Kraków, Poland, 2011; p. 177. [Google Scholar]
- Młyński, D.; Cebulska, M.; Wałęga, A. Trends, Variability, and Seasonality of Maximum Annual Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere 2018, 9, 313. [Google Scholar] [CrossRef] [Green Version]
- Trigo, R.M.; Osborn, T.J.; Corte-Real, J. The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Clim. Res. 2002, 20, 9–17. [Google Scholar] [CrossRef]
- Werner, P.C.; Garstengarbe, F.-W.; Wechsung, F. Großwetterlagen and precipitation trends in the Elbe river catchment. Meteorol. Z. 2008, 17, 61–66. [Google Scholar] [CrossRef]
- Niedźwiedź, T.; Twardosz, R.; Walanus, A. Long-term variability of precipitation series in east central Europe in relation to circulation patterns. Theor. Appl. Climatol. 2009, 98, 337–350. [Google Scholar] [CrossRef]
- Hoy, A.; Schucknecht, A.; Sepp, M.; Matschullat, J. Large-scale synoptic types and their impact on European precipitation. Theor. Appl. Climatol. 2014, 116, 19–35. [Google Scholar] [CrossRef]
- Nowosad, M.; Stach, A. Relation between extensive extreme precipitation in Poland and atmospheric circulation. Quaest. Geogr. 2014, 33, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, K.; Skiba, D. Circulation types classification for hourly precipitation events in Lublin (East Poland). Open Geosci. 2016, 8, 214–230. [Google Scholar] [CrossRef]
- Cleary, D.M.; Wynn, J.G.; Ionita, M.; Forray, F.L.; Onac, B.P. Evidence of long-term NAO influence on East-Central Europe winter precipitation from aa guano-derived δ15 N record. Sci. Rep. 2017, 7, 14095. [Google Scholar] [CrossRef] [Green Version]
- Brieber, A.; Hoy, A. Statistical analysis of very high-resolution precipitation data and relation to atmospheric circulation in Central Germany. Adv. Sci. Res. 2019, 16, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Wibig, J.; Piotrowski, P. Impact of the air temperature and atmospheric circulation on extreme precipitation in Poland. Int. J. Climatol. 2018, 38, 4533–4549. [Google Scholar] [CrossRef]
- Araźny, A.; Bartczak, A.; Maszewski, R.; Krzemiński, M. The influence of atmospheric circulation on the occurrence of dry and wet periods in Central Poland in 1954–2018. Theor. Appl. Climatol. 2021, 146, 1079–1095. [Google Scholar] [CrossRef]
- Alexandersson, H. A homogeneity test applied to precipitation data. Int. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Schär, C.; Ban, N.; Fischer, E.M.; Rajczak, J.; Schmidli, J.; Frei, C.; Giorgi, F.; Thomas, R.K.; Kendon, E.J.; Tank, A.M.G.K.; et al. Percentile indices for assessing changes in heavy precipitation events. Clim. Chang. 2016, 137, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Ojrzyńska, H. Cyrkulacyjne Uwarunkowania Przestrzennego Rozkładu Temperatury Powietrza w Terenie Zróżnicowanym Morfologicznie na Przykładzie Sudetów (Circulation Conditionings of Air Temperature Spatial Differentiation in Morphologically Diverse Area with the Use of an Example of the Western Sudeten); Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego: Wrocław, Poland, 2015; p. 228. [Google Scholar]
- Ojrzyńska, H.; Bilińska, D.; Werner, M.; Kryza, M.; Malkiewicz, M. The influence of atmospheric circulation conditions on Betula and Alnus pollen concentrations in Wrocław, Poland. Aerobiologia 2020, 36, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Ojrzyńska, H. Calendar of Circulation Types for 1971–2018; Obtained directly from the Author; University of Wrocław: Wrocław, Poland, 2021; unpublished work. [Google Scholar]
- Bissolli, P.; Dittmann, E. The objective weather type classification of the German Weather Service and its possibilities of application to environmental and meteorological investigations. Meteorol. Z. 2001, 10, 253–260. [Google Scholar] [CrossRef]
- Kwiatkowski, J. Opady rzeczywiste w Sudetach (Actual precipitations in the Sudetes Mountains). Przegl. Geofiz. 1978, 23, 35–44. [Google Scholar]
- Błażejczyk, K. Sezonowa i wieloletnia zmienność niektórych elementów klimatu w Tatrach i Karkonoszach w latach 1951–2015 (Seasonal and multiannual variability of selected elements of climate in the Tatra and Karkonosze Mts over the 1951–2015 period). Przegl. Geogr. 2019, 91, 41–62. [Google Scholar] [CrossRef]
- Ilnicki, P.; Farat, R.; Górecki, K.; Lewandowski, P. Long-term air temperaturę and precipitation variability in the Warta River catchment area. J. Water Land Dev. 2015, 27, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Melo, M.; Lapin, M.; Kapolková, H.; Pecho, J.; Kruzicová, A. Climate Trends in Slovak Part of the Carpathians. In The Carpathians: Integrating Nature and Society Towards Sustainability; Kozak, J., Ostapowicz, K., Bytnerowicz, A., Wyżga, B., Eds.; Springer: Berlin, Germany, 2013; pp. 131–150. [Google Scholar]
- Schaller, A.S.; Franke, J.; Bernhofer, C. Climate dynamics: Temporal development of the occurrence frequency of heavy precipitation in Saxony, Germany. Meteorol. Z. 2015, 29, 335–348. [Google Scholar] [CrossRef]
- Hattermann, F.F.; Kundzewicz, Z.W.; Huang, S.; Vetter, T.; Kron, W.; Burghoff, O.; Merz, B.; Bronstert, A.; Krysanova, V.; Gerstengarbe, F.-W.; et al. Flood RISK in holistic perspective—Observed changes in Germany. In Changes in Flood Risk in Europe; Special Publication No. 10; Kundzewicz, Z.W., Ed.; IAHS Press: Wallingford, UK, 2012; pp. 212–237. [Google Scholar]
- Bednorz, E.; Wrzesiński, D.; Tomczyk, A.M.; Jasik, D. Classification of Synoptic Conditions of Summer Floods in Polish Sudeten Mountains. Water 2019, 11, 1450. [Google Scholar] [CrossRef] [Green Version]
- Wypych, A.; Ustrnul, Z.; Czekierda, D.; Palarz, A.; Sulikowska, A. Extreme precipitation events in the Polish Carpathians and their synoptic determinants. Időjárás 2018, 22, 145–158. [Google Scholar] [CrossRef]
- Kunze, T.; Hellmuth, O.; Görner, C.; Bernhofer, C. Estimation of the Maximum Physically Possible Precipitation in Saxony Using a Mesoscale Atmospheric Mode; Leibniz Institute for Tropospheric Research, Technical University Dresden: Leipzig, Germany, 2008; p. 44. [Google Scholar]
Station | Abbreviation | Location | Hypsometric Zone | Altitude [m a.s.l.] |
---|---|---|---|---|
Żagań | ŻG | Poland | Lowlands | 100 |
Bad Muskau | BM | Germany | Lowlands | 127 |
Graustein | GR | Germany | Lowlands | 139 |
Halbendorf | HA | Germany | Lowlands | 142 |
Königswartha | KW | Germany | Lowlands | 142 |
Sobolice | SO | Poland | Lowlands | 140 |
Waldhufen-Diehsa | WD | Germany | Uplands | 198 |
Sulików | SU | Poland | Uplands | 215 |
Kubschütz-Bauzten | K-B | Germany | Uplands | 234 |
Görlitz | GÖ | Germany | Uplands | 238 |
Pilchowice | PL | Poland | Uplands | 245 |
Bierna | BR | Poland | Uplands | 270 |
Gryfów Śl. | GŚ | Poland | Mountain foreland | 325 |
Kemnitz | KE | Germany | Mountain foreland | 325 |
Jelenia Góra | JG | Poland | Mountain foreland | 342 |
Rębiszów | RB | Poland | Mountain foreland | 420 |
Jakuszyce | JA | Poland | Mountains | 860 |
Śnieżka | ŚN | Poland | Mountains | 1603 |
Region | Index | NE-A | NE-C | NW-A | NW-C | SE-A | SE-C | SW-A | SW-C | XX-A | XX-C |
---|---|---|---|---|---|---|---|---|---|---|---|
Lowlands | RR | 5 | - | - | - | - | 4 | - | 1 | - | 1 |
RR10 | 4 | - | - | - | - | 2 | - | - | 1 | 2 | |
R < 1 | 6 | - | 1 | 1 | 1 | - | - | - | - | - | |
R95p | 4 | - | - | - | - | 1 | - | 1 | - | 1 | |
Uplands | RR | 4 | 3 | 1 | - | - | 1 | - | 1 | - | 1 |
RR10 | 4 | 1 | 1 | - | - | 3 | - | 1 | - | 1 | |
R < 1 | 6 | - | - | 1 | 5 | - | - | - | - | - | |
R95p | 3 | 3 | 1 | - | - | - | - | 2 | - | - | |
Mountain foreland | RR | 1 | 3 | - | - | - | 1 | - | 1 | - | - |
RR10 | 2 | 1 | - | - | - | - | - | 2 | 1 | - | |
R < 1 | 4 | - | - | 1 | 1 | - | - | - | - | - | |
R95p | 1 | 3 | - | - | - | - | - | 1 | - | - | |
Mountains | RR | - | 2 | - | - | - | 1 | 1 | - | - | - |
RR10 | - | 2 | - | - | - | - | 1 | - | - | - | |
R < 1 | 2 | - | - | - | - | - | - | - | - | - | |
R95p | - | 2 | - | - | - | - | 1 | - | - | - |
Circulation Type | NE | NW | SE | SW | XX |
---|---|---|---|---|---|
anticyclonic | −1.02 | −0.81 | 0.24 | 3.18 | −0.21 |
cyclonic | −0.17 | −0.37 | 0.30 | −0.78 | −0.36 |
Station | RR [mm] | RR10 [days] | R < 1 [days] | R95p [mm] |
---|---|---|---|---|
ŻG | 6.2 | 0.1 | 0.9 | 0.1 |
BM | 8.8 | 0.7 | 1.0 | 0.4 |
GR | 11.0 | 0.6 | 0.0 | 0.4 |
HA | 10.2 | 0.4 | 1.0 | 0.4 |
KW | 15.7 | 1.0 | 1.0 | 0.6 |
SO | 18.8 | 0.4 | −0.3 | 0.5 |
LO | 11.8 | 0.5 | 0.6 | 0.4 |
WD | 8.3 | 0.7 | 1.2 | 0.4 |
SU | −2.1 | 0.0 | 0.6 | −0.1 |
K−B | 5.1 | 0.2 | 1.1 | 0.3 |
GÖ | 3.0 | 0.2 | 1.4 | 0.4 |
PL | −4.6 | 0.1 | 1.6 | 0.4 |
BR | 11.0 | 0.4 | −0.2 | 0.2 |
UP | 3.5 | 0.3 | 1.0 | 0.3 |
GŚ | 1.9 | 0.4 | 1.2 | 0.4 |
KE | 1.0 | 0.1 | 0.8 | 0.2 |
JG | 4.1 | 0.5 | 0.9 | 0.2 |
RB | −11.3 | −0.4 | 1.6 | 0.0 |
MF | −1.1 | 0.2 | 1.1 | 0.2 |
JA | −6.7 | 0.1 | 1.8 | 0.0 |
ŚN | −52.6 | −1.1 | 0.7 | −1.3 |
MO | −29.7 | −0.5 | 1.3 | −0.7 |
Station | NE−A | NE−C | NW−A | NW−C | SE−A | SE−C | SW−A | SW−C | XX−A | XX−C |
---|---|---|---|---|---|---|---|---|---|---|
ŻG | −1.36 | −0.96 | −2.22 | −2.88 | 2.14 | 0.07 | 11.38 | 1.03 | 0.84 | −1.46 |
BM | 1.52 | 0.47 | −3.02 | −1.46 | 0.85 | 0.84 | 12.33 | −1.02 | 0.34 | −1.49 |
GR | −1.67 | 0.08 | −2.77 | −1.54 | 0.06 | 2.86 | 13.76 | 1.84 | −0.44 | −0.41 |
HA | −1.16 | −0.92 | −3.52 | −2.83 | 0.60 | 3.72 | 12.88 | 4.16 | −0.49 | −1.59 |
KW | −0.77 | 1.08 | −2.62 | −1.34 | −0.31 | 5.39 | 12.53 | 3.83 | −0.90 | −0.13 |
SO | 0.38 | −0.02 | −4.09 | −3.03 | 0.28 | 5.28 | 14.49 | 8.25 | 0.55 | −2.03 |
LO | −0.51 | −0.05 | −3.04 | −2.18 | 0.60 | 3.03 | 12.90 | 3.02 | −0.02 | −1.19 |
WD | −0.98 | −0.91 | −3.88 | −3.01 | 0.53 | 2.47 | 13.32 | 3.30 | 0.02 | −1.96 |
SU | −3.52 | −1.17 | −4.25 | −4.97 | 0.61 | 0.32 | 6.23 | 3.74 | 1.69 | −0.92 |
K−B | −1.66 | −0.40 | −3.62 | −2.65 | −0.18 | 4.17 | 9.16 | 2.50 | −0.80 | −1.03 |
GÖ | −1.63 | −0.05 | −3.92 | −4.17 | 1.07 | 0.94 | 9.71 | 3.18 | 0.36 | −2.34 |
PL | −2.50 | −2.01 | −3.71 | −5.72 | 0.87 | 0.16 | 10.32 | 0.45 | −1.56 | −1.21 |
BR | −2.36 | 1.06 | −2.78 | −3.64 | −0.39 | 1.52 | 10.55 | 7.05 | 1.38 | −0.64 |
UP | −2.11 | −0.58 | −3.69 | −4.03 | 0.42 | 1.60 | 9.88 | 3.37 | 0.18 | −1.35 |
GŚ | −2.51 | −3.02 | −3.90 | −4.26 | 0.20 | 1.45 | 10.50 | 5.41 | 0.12 | −1.94 |
KE | −2.33 | −1.66 | −3.12 | −3.29 | 0.86 | 0.15 | 11.75 | 0.74 | −0.27 | −1.74 |
JG | −1.67 | −2.27 | −3.79 | −6.14 | 1.15 | 2.66 | 12.63 | 2.78 | 1.07 | −2.09 |
RB | −2.62 | −4.10 | −5.00 | −5.29 | −0.37 | −0.19 | 10.28 | −2.59 | −1.51 | −0.71 |
MF | −2.28 | −2.76 | −3.95 | −4.75 | 0.46 | 1.02 | 11.29 | 1.59 | −0.15 | −1.62 |
JA | −1.87 | −3.37 | −10.36 | −10.18 | 1.85 | 7.40 | 14.69 | −3.58 | 0.04 | −1.74 |
ŚN | −5.61 | −30.15 | −5.50 | −9.06 | −0.82 | −3.10 | 11.15 | −9.81 | −0.93 | −2.28 |
MO | −3.74 | −16.76 | −7.93 | −9.62 | 0.52 | 2.15 | 12.92 | −6.70 | −0.45 | −2.01 |
Station | NE−A | NE−C | NW−A | NW−C | SE−A | SE−C | SW−A | SW−C | XX−A | XX−C |
---|---|---|---|---|---|---|---|---|---|---|
ŻG | −0.10 | −0.05 | −0.07 | −0.11 | 0.11 | −0.04 | 0.32 | 0.06 | 0.05 | −0.06 |
BM | 0.03 | 0.08 | −0.07 | −0.04 | 0.04 | 0.07 | 0.52 | 0.13 | 0.03 | −0.06 |
GR | −0.09 | −0.02 | −0.05 | −0.10 | 0.02 | 0.10 | 0.59 | 0.23 | −0.02 | −0.04 |
HA | −0.06 | −0.01 | −0.06 | −0.09 | 0.03 | 0.21 | 0.29 | 0.16 | 0.00 | −0.07 |
KW | 0.02 | −0.01 | 0.04 | −0.05 | 0.06 | 0.22 | 0.67 | 0.15 | −0.02 | 0.00 |
SO | 0.01 | −0.13 | −0.04 | −0.12 | 0.08 | 0.16 | 0.30 | 0.30 | 0.04 | −0.12 |
LO | −0.03 | −0.02 | −0.04 | −0.09 | 0.06 | 0.12 | 0.45 | 0.17 | 0.01 | −0.06 |
WD | −0.07 | 0.00 | −0.03 | −0.09 | 0.04 | 0.26 | 0.55 | 0.13 | 0.03 | −0.08 |
SU | −0.18 | −0.06 | 0.01 | −0.21 | 0.04 | 0.09 | 0.24 | −0.01 | 0.06 | −0.01 |
K−B | −0.05 | −0.13 | −0.06 | −0.13 | 0.02 | 0.20 | 0.31 | 0.14 | −0.02 | −0.07 |
GÖ | −0.02 | 0.05 | −0.11 | −0.12 | 0.00 | −0.06 | 0.45 | 0.02 | 0.06 | −0.05 |
PL | −0.12 | 0.06 | −0.11 | −0.22 | 0.04 | 0.00 | 0.42 | 0.10 | −0.02 | −0.03 |
BR | −0.13 | 0.06 | −0.09 | −0.16 | −0.03 | −0.01 | 0.52 | 0.26 | 0.06 | −0.01 |
UP | −0.10 | 0.00 | −0.07 | −0.16 | 0.02 | 0.08 | 0.42 | 0.11 | 0.03 | −0.04 |
GŚ | −0.02 | −0.11 | −0.02 | −0.12 | −0.02 | 0.01 | 0.68 | 0.10 | 0.00 | −0.07 |
KE | −0.04 | −0.07 | −0.06 | −0.11 | −0.02 | 0.00 | 0.42 | 0.02 | 0.02 | −0.08 |
JG | −0.08 | −0.07 | −0.05 | −0.25 | 0.00 | 0.13 | 0.57 | 0.26 | 0.05 | −0.07 |
RB | −0.08 | −0.09 | −0.05 | −0.26 | −0.09 | 0.03 | 0.32 | 0.00 | −0.09 | −0.07 |
MF | −0.06 | −0.09 | −0.05 | −0.19 | −0.03 | 0.04 | 0.50 | 0.10 | −0.01 | −0.07 |
JA | 0.00 | −0.03 | −0.25 | −0.32 | 0.09 | 0.09 | 0.62 | −0.07 | 0.06 | −0.07 |
ŚN | −0.13 | −0.60 | −0.26 | −0.31 | −0.09 | −0.17 | 0.54 | 0.02 | −0.07 | −0.09 |
MO | −0.07 | −0.32 | −0.26 | −0.32 | 0.00 | −0.04 | 0.58 | −0.03 | −0.01 | −0.08 |
Station | NE−A | NE−C | NW−A | NW−C | SE−A | SE−C | SW−A | SW−C | XX−A | XX−C |
---|---|---|---|---|---|---|---|---|---|---|
ŻG | −0.93 | −0.16 | −0.26 | −0.12 | 0.23 | 0.60 | 2.50 | −0.43 | −0.21 | −0.25 |
BM | −1.33 | −0.07 | −0.10 | −0.19 | 0.13 | 0.37 | 2.89 | −0.18 | −0.20 | −0.27 |
GR | −1.19 | 0.07 | −0.29 | −0.29 | 0.27 | 0.25 | 2.19 | −0.52 | −0.23 | −0.30 |
HA | −1.09 | −0.06 | 0.16 | −0.11 | 0.22 | 0.24 | 2.69 | −0.55 | −0.14 | −0.24 |
KW | −1.01 | −0.03 | 0.19 | −0.23 | 0.20 | 0.22 | 2.86 | −0.74 | −0.12 | −0.26 |
SO | −1.18 | −0.23 | −0.12 | −0.16 | 0.24 | 0.23 | 2.19 | −0.83 | −0.19 | −0.27 |
LO | −1.12 | −0.08 | −0.07 | −0.18 | 0.22 | 0.32 | 2.55 | −0.54 | −0.18 | −0.27 |
WD | −0.86 | −0.03 | 0.13 | −0.07 | 0.25 | 0.35 | 2.74 | −0.84 | −0.18 | −0.18 |
SU | −1.08 | −0.06 | −0.03 | −0.13 | 0.26 | 0.43 | 2.38 | −0.66 | −0.22 | −0.19 |
K−B | −0.80 | −0.14 | 0.01 | −0.15 | 0.32 | 0.33 | 2.28 | −0.46 | −0.08 | −0.19 |
GÖ | −0.81 | −0.12 | 0.20 | −0.08 | 0.32 | 0.37 | 2.50 | −0.53 | −0.20 | −0.19 |
PL | −0.99 | −0.05 | 0.24 | −0.12 | 0.30 | 0.58 | 2.62 | −0.52 | −0.16 | −0.25 |
BR | −1.04 | −0.11 | −0.10 | −0.12 | 0.26 | 0.33 | 1.94 | −1.00 | −0.20 | −0.21 |
UP | −0.93 | −0.09 | 0.08 | −0.11 | 0.29 | 0.40 | 2.41 | −0.67 | −0.17 | −0.20 |
GŚ | −0.99 | 0.15 | 0.16 | −0.08 | 0.35 | 0.34 | 2.50 | −0.71 | −0.18 | −0.26 |
KE | −1.00 | −0.18 | 0.08 | −0.12 | 0.27 | 0.50 | 2.05 | −0.45 | −0.10 | −0.24 |
JG | −1.18 | 0.12 | −0.04 | −0.11 | 0.41 | 0.54 | 2.28 | −0.63 | −0.22 | −0.20 |
RB | −1.00 | 0.11 | 0.31 | −0.09 | 0.33 | 0.51 | 2.34 | −0.39 | −0.14 | −0.24 |
MF | −1.04 | 0.05 | 0.13 | −0.10 | 0.34 | 0.47 | 2.29 | −0.55 | −0.16 | −0.24 |
JA | −1.07 | 0.04 | 0.66 | 0.02 | 0.18 | 0.37 | 2.07 | 0.03 | −0.17 | −0.22 |
ŚN | −1.00 | 0.25 | 0.07 | −0.12 | 0.36 | 0.25 | 1.59 | −0.42 | −0.02 | −0.21 |
MO | −1.04 | 0.15 | 0.37 | −0.05 | 0.27 | 0.31 | 1.83 | −0.20 | −0.10 | −0.22 |
Station | NE−A | NE−C | NW−A | NW−C | SE−A | SE−C | SW−A | SW−C | XX−A | XX−C |
---|---|---|---|---|---|---|---|---|---|---|
ŻG | −0.08 | −0.88 | −0.22 | −0.46 | 0.64 | −0.03 | 0.55 | 0.89 | 0.82 | −0.84 |
BM | 0.31 | −0.32 | 0.07 | −0.36 | 0.32 | −0.62 | 0.57 | 0.22 | 0.25 | −1.24 |
GR | 0.12 | 0.07 | −0.12 | −0.45 | −0.11 | 0.19 | 0.89 | 0.65 | −0.33 | −0.17 |
HA | −0.05 | −0.14 | −0.09 | −1.42 | 0.19 | 0.32 | 0.40 | 1.24 | −0.30 | −1.20 |
KW | −0.09 | 0.10 | 0.16 | −0.49 | −0.26 | 0.92 | 0.66 | 0.84 | −0.64 | 0.01 |
SO | 0.18 | −0.35 | −0.32 | −0.69 | 0.07 | 1.10 | 0.57 | 1.53 | 0.59 | −1.09 |
LO | 0.07 | −0.25 | −0.09 | −0.65 | 0.14 | 0.31 | 0.61 | 0.90 | 0.07 | −0.76 |
WD | 0.03 | −0.17 | −0.33 | −1.30 | 0.28 | 0.30 | 0.85 | 1.35 | 0.01 | −1.10 |
SU | −0.36 | −0.26 | −0.22 | −1.74 | 0.52 | −0.57 | 0.08 | 0.59 | 1.56 | −0.32 |
K−B | −0.04 | −0.36 | −0.10 | −0.92 | 0.02 | 0.59 | 0.47 | 0.92 | −0.56 | −0.68 |
GÖ | −0.29 | −0.30 | −0.13 | −1.67 | 0.72 | −0.54 | 0.52 | 0.66 | 0.43 | −1.06 |
PL | −0.10 | −1.41 | −0.32 | −1.99 | 0.21 | 0.06 | 0.70 | 0.45 | −1.01 | −0.45 |
BR | −0.21 | 0.27 | −0.04 | −0.95 | −0.19 | −0.10 | 0.17 | 1.18 | 1.28 | −0.39 |
UP | −0.16 | −0.37 | −0.19 | −1.43 | 0.26 | −0.04 | 0.47 | 0.86 | 0.29 | −0.67 |
GŚ | −0.19 | −1.02 | −0.21 | −0.93 | −0.02 | 0.29 | 0.45 | 0.92 | 0.27 | −1.06 |
KE | −0.17 | −0.51 | −0.17 | −1.13 | 0.40 | −0.34 | 0.65 | 0.71 | −0.03 | −0.75 |
JG | 0.08 | −1.19 | −0.10 | −1.81 | 0.50 | 1.05 | 0.67 | 0.47 | 0.70 | −1.04 |
RB | −0.03 | −1.41 | −0.21 | −1.42 | −0.57 | 0.27 | 0.23 | 0.02 | −0.77 | −0.29 |
MF | −0.08 | −1.03 | −0.17 | −1.32 | 0.08 | 0.32 | 0.50 | 0.53 | 0.04 | −0.79 |
JA | 0.14 | −1.86 | −0.68 | −3.53 | 0.64 | 2.86 | 0.69 | 0.71 | 0.04 | −1.24 |
ŚN | −0.73 | −8.95 | −0.52 | −2.99 | −0.39 | −0.94 | 0.01 | −1.23 | −0.21 | −1.62 |
MO | −0.30 | −5.41 | −0.60 | −3.26 | 0.13 | 0.96 | 0.35 | −0.26 | −0.09 | −1.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miszuk, B. Changes in Precipitation Conditions in the Warm Half-Year in the Polish–Saxon Border Region in Relation to the Atmospheric Circulation. Atmosphere 2022, 13, 720. https://doi.org/10.3390/atmos13050720
Miszuk B. Changes in Precipitation Conditions in the Warm Half-Year in the Polish–Saxon Border Region in Relation to the Atmospheric Circulation. Atmosphere. 2022; 13(5):720. https://doi.org/10.3390/atmos13050720
Chicago/Turabian StyleMiszuk, Bartłomiej. 2022. "Changes in Precipitation Conditions in the Warm Half-Year in the Polish–Saxon Border Region in Relation to the Atmospheric Circulation" Atmosphere 13, no. 5: 720. https://doi.org/10.3390/atmos13050720
APA StyleMiszuk, B. (2022). Changes in Precipitation Conditions in the Warm Half-Year in the Polish–Saxon Border Region in Relation to the Atmospheric Circulation. Atmosphere, 13(5), 720. https://doi.org/10.3390/atmos13050720