The Impact of Improved Topographic Resolution on the Distribution of Terrain Spectra and Grid-Size Selection for Mesoscale Models
Abstract
:1. Introduction
2. Data and Methods
2.1. Data and Site
2.2. Methods
3. Results
3.1. The Terrain Spectra with Different Resolutions
3.2. The Relationship between the Grid Size and the Exponent b
3.3. Universal Grid Sizes for Mesoscale Models of the Landslide-Prone Areas with Different Topographic Resolutions
3.4. Model Sensitivity to Grid Sizes with Different Topographic Resolutions
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scorer, R.S. Theory of waves in the lee of mountains. Q. J. R. Meteorol. Soc. 1949, 75, 41–56. [Google Scholar] [CrossRef]
- Mclntyre, M.E. On Long’s hypothesis of no upstream influence in uniformly stratified or rotating flow. J. Fluid Mech. 1972, 52, 209–243. [Google Scholar] [CrossRef]
- Klemp, J.B.; Lilly, D.K. Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci. 1978, 35, 78–107. [Google Scholar] [CrossRef] [Green Version]
- Tucker, D.F.; Reiter, E.R. Modeling heavy precipitation in complex terrain. Meteorol. Atmos. Phys. 1988, 39, 119–131. [Google Scholar] [CrossRef]
- Johnson, G.L.; Hanson, C.L. Topographic and atmospheric influences on precipitation variability over a mountainous watershed. J. Appl. Meteor. 1995, 34, 68–87. [Google Scholar] [CrossRef] [Green Version]
- Aebischer, U.; Schar, C. Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci. 1998, 55, 186–207. [Google Scholar] [CrossRef]
- Jiang, Q.F. Precipitation over concave terrain. J. Atmos. Sci. 2006, 63, 2269–2288. [Google Scholar] [CrossRef]
- Jiang, Q.F. Precipitation over multiscale terrain. Tellus 2007, 59, 321–335. [Google Scholar] [CrossRef]
- Queney, P. The problem of air flow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc. 1948, 29, 16–26. [Google Scholar] [CrossRef]
- Lu, J.H. The Panorama of South-West Vortex; Meteorology Press: Beijing, China, 1986; p. 270. [Google Scholar]
- Ding, Y.H. The Research of Mesoscale Weather and Dynamics; Meteorology Press: Beijing, China, 1996; p. 322. [Google Scholar]
- Schar, C.; Durran, D.R. Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci. 1997, 54, 534–554. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Sang, J.G.; Liu, H.Z.; Liu, S.H. Wave drag and form drag induced by small scale terrain in the nocturnal stable boundary layer. Chin. J. Geophys. 2007, 50, 43–50. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Holtslag, A.A.M.; Nappo, C.J.; van de Wiel, B.J.H.; Mahrt, L. Exploring the possible role of small-scale terrain drag on stable boundary layers over land. J. Appl. Meteor. Climatol. 2008, 47, 2518–2530. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.X.; Gao, S.T.; Ran, L.K.; Liang, L. Proof of the monotonicity of grid size and its application in grid-size selection for mesoscale models. Adv. Atmos. Sci. 2015, 32, 1005–1015. [Google Scholar] [CrossRef]
- Pielke, R.A. Mesoscale Meteorological Modeling; Academic Press: San Diego, CA, USA, 1984; p. 599. [Google Scholar]
- Pielke, R.A.; Kennedy, E. Mesoscale Terrain Features. Report UVA-ENV SCI-MESO-1980-1; University of Virginia: Charlottesville, VA, USA, 1980; p. 19. [Google Scholar]
- Young, G.S.; Pielke, R.A. Application of terrain height variance spectra to mesoscale modeling. J. Atmos. Sci. 1983, 40, 2555–2560. [Google Scholar] [CrossRef] [Green Version]
- Young, G.S.; Pielke, R.A.; Kessler, R.C. A comparison of the terrain height variance spectra of the Front Range with that of a hypothetical mountain. J. Atmos. Sci. 1984, 41, 1249–1252. [Google Scholar] [CrossRef]
- Ramanathan, N.; Srinivasan, K. An estimation of optimum grid size for Kashmir Valley by spectral method. J. Appl. Meteor. 1995, 34, 2783–2786. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.T.; Wang, Y. A spectral analysis of satellite topographic profile: A coincident pattern between latitudinal topographic and westerly perturbation on the lee side of Qinghai-Tibet Plateau. J. Nanjing Univ. 2004, 40, 304–317. (In Chinese) [Google Scholar]
- Wang, C.X.; Gao, S.T.; Ran, L.K.; Liang, L.; Chen, Y.L. Effect of topographic perturbation on the precipitation distribution in Sichuan. J. Appl. Meteor. Sci. 2019, 30, 586–597. (In Chinese) [Google Scholar]
- Salvador, R.; Calbo, J.; Millan, M.M. Horizontal grid size selection and its influence on mesoscale model simulations. J. Appl. Meteor. 1999, 38, 1311–1329. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, K.; Ramanathan, N. Terrain variance spectra for Indian Western Ghats. Proc. Indian Natn. Sci. Acad. 1994, 60, 133–138. [Google Scholar]
- Xu, X.J.; He, B.H.; Hu, H.; Xiong, M.B.; Yang, W.B.; Li, Z.L. Effect on Soil Infiltration of Water and Soil Loss Made by Earthquake in Wenchuan Area. Sci. Agric. Sinica 2012, 45, 2520–2529. (In Chinese) [Google Scholar]
- Song, G.H.; Cui, P.; Guo, X.J. Infiltration Characteristics Experiment in Wenchuan Earthquake Zone. Bulletion Soil Water Conserv. 2013, 33, 248–252. (In Chinese) [Google Scholar]
- Gan, F.L.; He, B.H.; Wang, T. Study on the characteristics of rainfall infiltration runoff using artificial simulation experiment in Wenchuan Earthquake Area. J. Hydraul. Eng. 2016, 47, 780–788. (In Chinese) [Google Scholar]
- Li, T.Y.; He, B.H.; Chen, Z.P.; Zhang, Y.; Liang, C.; Wang, R.X. Effects of gravel on infiltration, runoff, and sediment yield in landslide deposit slope in Wenchuan earthquake area, China. Environ. Sci. Pollut. Res. 2016, 23, 12075–12084. [Google Scholar] [CrossRef]
- Jiang, X.W.; Li, Y.Q. The Statistical Analysis of Earthquake and Precipitation in Sichuan Province. Plateau Mt. Meteorol. Res. 2008, 28, 33–36. (In Chinese) [Google Scholar]
- Yin, Y.P.; Wang, F.W.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Fang, H.; Cui, P.; Pei, L.Z.; Zhou, X.J. Model testing on rainfall-induced landslide of loose soil in Wenchuan earthquake region. Nat. Hazards Earth Syst. Sci. 2012, 12, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Li, C.R.; Wang, M.; Liu, K.; Xie, J. Topographic changes and their driving factors after 2008 Wenchuan earthquake. Geomorphology 2018, 311, 27–36. [Google Scholar] [CrossRef]
- Liu, L.; Ran, L.K.; Gao, S.T. Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event. Adv. Atmos. Sci. 2018, 35, 604–620. [Google Scholar] [CrossRef]
- Xie, J.; Wang, M.; Liu, K.; Coulthard, T.J. Modeling sediment movement and channel response to rainfall variability after a major earthquake. Geomorphology 2018, 320, 18–32. [Google Scholar] [CrossRef]
- Steyn, D.G.; Ayotte, K.W. Application of two-dimensional terrain height spectra to mesoscale modeling. J. Atmos. Sci. 1985, 42, 2884–2887. [Google Scholar] [CrossRef] [Green Version]
- Mulla, D.J. Using geostatistics and spectral analysis to study spatial patterns in the topography of southeastern Washington State, U.S.A. Earth Surf. Proc. Land. 1988, 13, 389–405. [Google Scholar] [CrossRef]
- Ouchi, S.; Matsushita, M. Measurement of self-affinity on surfaces as a trial application of fractal geometry to landform analysis. Geomorphology 1992, 5, 115–130. [Google Scholar] [CrossRef]
- Xu, T.B.; Moore, I.D.; Gallant, J.C. Fractals, fractal dimensions and landscapes—A review. Geomorphology 1993, 8, 245–262. [Google Scholar] [CrossRef]
- Gallant, J.C.; Moore, I.D.; Hutchinson, M.F.; Gessler, P. Estimating fractal dimension of profiles: A comparison of methods. Math. Geol. 1994, 26, 455–481. [Google Scholar] [CrossRef]
- Wilson, T.H.; Dominic, J. Fractal interrelationships between topography and structure. Earth Surf. Proc. Land. 1998, 23, 509–525. [Google Scholar] [CrossRef]
- Perron, J.T.; Kirchner, J.W.; Dietrich, W.E. Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes. J. Geophys. Res. 2008, 113, F04003. [Google Scholar] [CrossRef] [Green Version]
Data Set | a | b |
---|---|---|
30.52° N | 158.9 | 2.91 |
30.72° N | 466.7 | 1.80 |
30.92° N | 212.0 | 2.78 |
31.12° N | 721.7 | 2.16 |
31.32° N | 376.2 | 3.01 |
31.52° N | 537.9 | 2.69 |
31.72° N | 469.8 | 2.81 |
102.86° E | 705.4 | 2.30 |
103.06° E | 461.2 | 2.83 |
103.26° E | 607.4 | 2.49 |
103.46° E | 389.5 | 2.7 |
103.66° E | 398.2 | 2.32 |
103.86° E | 861.3 | 2.00 |
104.06° E | 131.2 | 2.80 |
The Zonal Δx (km) | Ratio of Unresolved/Resolved Topography (r) | Percentages of Resolved Terrain Height Variance |
---|---|---|
9.6 | 0.25 | 80% |
7.2 | 0.18 | 85% |
4.7 | 0.11 | 90% |
2.5 | 0.05 | 95% |
The Zonal Δx (km) | Ratio of Unresolved/Resolved Topography (r) | Percentages of Resolved Terrain Height Variance |
---|---|---|
9.2 | 0.25 | 80% |
6.6 | 0.18 | 85% |
4.1 | 0.11 | 90% |
1.9 | 0.05 | 95% |
The Meridional Δx (km) | Ratio of Unresolved/Resolved Topography (r) | Percentages of Resolved Terrain Height Variance |
---|---|---|
14.1 | 0.25 | 80% |
11.0 | 0.18 | 85% |
7.5 | 0.11 | 90% |
4.1 | 0.05 | 95% |
The Meridional Δx (km) | Ratio of Unresolved/Resolved Topography | Percentages of Resolved Terrain Height Variance |
---|---|---|
15.3 | 0.25 | 80% |
11.9 | 0.18 | 85% |
8.0 | 0.11 | 90% |
4.2 | 0.05 | 95% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Liang, L.; Zhang, W.; Gao, S.; Yang, S. The Impact of Improved Topographic Resolution on the Distribution of Terrain Spectra and Grid-Size Selection for Mesoscale Models. Atmosphere 2022, 13, 708. https://doi.org/10.3390/atmos13050708
Wang C, Liang L, Zhang W, Gao S, Yang S. The Impact of Improved Topographic Resolution on the Distribution of Terrain Spectra and Grid-Size Selection for Mesoscale Models. Atmosphere. 2022; 13(5):708. https://doi.org/10.3390/atmos13050708
Chicago/Turabian StyleWang, Chengxin, Li Liang, Wancheng Zhang, Shouting Gao, and Shuai Yang. 2022. "The Impact of Improved Topographic Resolution on the Distribution of Terrain Spectra and Grid-Size Selection for Mesoscale Models" Atmosphere 13, no. 5: 708. https://doi.org/10.3390/atmos13050708
APA StyleWang, C., Liang, L., Zhang, W., Gao, S., & Yang, S. (2022). The Impact of Improved Topographic Resolution on the Distribution of Terrain Spectra and Grid-Size Selection for Mesoscale Models. Atmosphere, 13(5), 708. https://doi.org/10.3390/atmos13050708