Improving the Estimation of Throughfall Amounts in Primeval Forests along an Elevation Gradient on Mountain Gongga, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Data Processing and Exploration
2.4. Statistical Analyses
3. Results
3.1. Rainfall Characteristics
3.1.1. Rain Events Delineation
3.1.2. Classification of Rainfall Events
3.2. Throughfall in Relation to Rainfall Parameters and LAI
3.3. Estimation of Throughfall
3.4. Relationships between Rainfall Amount Threshold and LAI
4. Discussion
4.1. Differences in Throughfall among Three Study Forests
4.2. Factors Affecting Throughfall
4.3. Improving the Estimation and Monitoring of Throughfall
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujieda, M.; Kudoh, T.; de Cicco, V.; de Calvarcho, J. L Hydrological processes at two subtropical forest catchments the Serra do Mar Sao Paulo Brazil. J. Hydrol. 1997, 196, 26–46. [Google Scholar] [CrossRef]
- Crockford, R.H.; Richardson, D.P. Partitioning of rainfall into throughfall stemflow and interception effect of forest type ground cover and climate. Hydrol. Processes 2000, 14, 2903–2920. [Google Scholar] [CrossRef]
- Levia, D.F.; Frost, E.E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J. Hydrol. 2003, 274, 1–29. [Google Scholar] [CrossRef]
- Swaffer, B.A.; Holland, K.L.; Doody, T.M.; Hutson, J. Rainfall partitioning, tree form and measurement scale: A comparison of two co-occurring, morphologically distinct tree species in a semi-arid environment. Ecohydrology 2014, 7, 1331–1344. [Google Scholar] [CrossRef]
- Dunkerley, D. Measuring interception loss and canopy storage in dryland vegetation: A brief review and evaluation of available research strategies. Hydrol. Process. 2000, 14, 669–678. [Google Scholar] [CrossRef]
- Llorensr, P.; Domingo, F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J. Hydrol. 2007, 335, 37–54. [Google Scholar] [CrossRef]
- Tobón, C.; Sevink, J.; Verstraten, J.M. Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia. Biogeochemistry 2004, 70, 1–25. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Wang, X.-P.; Hu, R.; Pan, Y.-X.; Zhang, H. Stemflow in two xerophytic shrubs and its significance to soil water and nutrient enrichment. Ecol. Res. 2013, 28, 567–579. [Google Scholar] [CrossRef]
- Liang, W.-L.; Kosugi, K.I.; Mizuyama, T. Soil water dynamics around a tree on a hillslope with or without rainwater supplied by stemflow. Water Resour. Res. 2011, 47, 1–16. [Google Scholar] [CrossRef]
- Wang, X.-P.; Wang, Z.-N.; Berndtsson, R.; Zhang, Y.-F.; Pan, Y.-X. Desert shrub stemflow and its significance in soil moisture replenishment. Hydrol. Earth Syst. Sci. 2011, 15, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Buttle, J.M.; Toye, H.J.; Greenwood, W.J.; Bialkowski, R. Stemflow and soil water recharge during rainfall in a red pine chronosequence on the Oak Ridges Moraine, southern Ontario, Canada. J. Hydrol. 2014, 517, 777–790. [Google Scholar] [CrossRef]
- Pérez-Suárez, M.; Arredondo-Moreno, J.T.; Huber-Sannwald, E.; Serna-Pérez, A. Forest structure, species traits and rain characteristics influences on horizontal and vertical rainfall partitioning in a semiarid pine-oak forest from Central Mexico. Ecohydrology 2014, 7, 532–543. [Google Scholar] [CrossRef]
- Serrato, F.B.; Diaz, A.R. A simple technique for measuring rainfall interception by small shrub- “interception flow collection box”. Hydrol. Processes 1998, 12, 471–481. [Google Scholar] [CrossRef]
- Ford, E.D.; Deans, J.D. The Effects of Canopy Structure on Stemflow, Throughfall and Interception Loss in a Young Sitka Spruce Plantation. J. Appl. Ecol. 1978, 15, 905. [Google Scholar] [CrossRef]
- Aston, A. Rainfall interception by eight small trees. J. Hydrol. 1979, 42, 383–396. [Google Scholar] [CrossRef]
- Yuan, C.; Gao, G.; Fu, B. Stemflow of a xerophytic shrub (Salix psammophila) in northern China: Implication for beneficial branch architecture to produce stemflow. J. Hydrol. 2016, 539, 577–588. [Google Scholar] [CrossRef]
- Klaassen, W.; Bosveld, F.; de Water, E. Water storage and evaporation as constituents of rainfall interception. J. Hydrol. 1998, 212, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.; Domingo, F.; Gash, J. A review of rainfall interception modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Estringana, P.; Alonso-Blázquez, N.; Alegre, J. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J. Hydrol. 2010, 389, 363–372. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.-P.; Hu, R.; Pan, Y.-X.; Paradeloc, M. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. J. Hydrol. 2015, 527, 1084–1095. [Google Scholar] [CrossRef]
- Návar, J.; Francisco, C.; Enrique, J. Spatial variations of interception loss components by Tamaulipan thornscrub in northeastern Mexico. For. Ecol. Manag. 1999, 124, 231–239. [Google Scholar] [CrossRef]
- van Dijk, A.; Bruijnzeel, L. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system. J. Hydrol. 2001, 247, 239–262. [Google Scholar] [CrossRef]
- Ghimire, C.P.; Bruijnzeel, L.A.; Lubczynski, M.W.; Bonell, M. Rainfall interception by natural and planted forests in the Middle Mountains of Central Nepal. J. Hydrol. 2012, 475, 270–280. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.; Luo, Y.; Shao, M.; Jia, X. The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China. J. Hydrol. 2019, 577, 123849. [Google Scholar] [CrossRef]
- Herwitz, S.R. Interception storage capasities of tropical rainforest canopy trees. J. Hydrol. 1985, 77, 237–252. [Google Scholar] [CrossRef]
- Bellot, J.; Escarre, A. Stemflow and throughfall determination in a resprouted Mediterranean holm-oak forest. Ann. Sci. For. 1998, 55, 847–865. [Google Scholar] [CrossRef] [Green Version]
- Granier, A.; Biron, P.; Lemoine, D. Water balance, transpiration and canopy conductance in two beech stands. Agric. For. Meteorol. 2000, 100, 291–308. [Google Scholar] [CrossRef]
- Owens, M.K.; Lyons, R.K.; Alejandro, C.L. Rainfall partitioning within semiarid juniper communities: Effects of event size and canopy cover. Hydrol. Process. 2006, 20, 3179–3189. [Google Scholar] [CrossRef]
- Staelens, J.; De Schrijver, A.; Verheyen, K.; Verhoest, N. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: Influence of foliation, rain event characteristics, and meteorology. Hydrol. Process. 2008, 22, 33–45. [Google Scholar] [CrossRef]
- Mużyło, A.; Llorens, P.; Domingo, F. Rainfall partitioning in a deciduous forest plot in leafed and leafless periods. Ecohydrology 2012, 5, 759–767. [Google Scholar] [CrossRef]
- Shou, W.; Musa, A.; Liu, Z.; Qian, J.; Niu, C.; Guo, Y. Rainfall partitioning characteristics of three typical sand-fixing shrubs in Horqin Sand Land, north-eastern China. Water Policy 2017, 48, 571–583. [Google Scholar] [CrossRef]
- Levia, D.F.; Frost, E.E. Variability of throughfall volume and solute inputs in wooded ecosystems. Prog. Phys. Geogr. Earth Environ. 2006, 30, 605–632. [Google Scholar] [CrossRef]
- Llorens, P.; Poch, R.; Latron, J.; Gallart, F. Rainfall interception by a Pinus sylvestris forest patch overgrown in a Megiterranean mountainous abandoned area I. Monitoring design and results down to the event scale. J. Hydrol. 1997, 199, 331–345. [Google Scholar] [CrossRef]
- Whelan, M.; Anderson, J. Modelling spatial patterns of throughfall and interception loss in a Norway spruce (Picea abies) plantation at the plot scale. J. Hydrol. 1996, 186, 335–354. [Google Scholar] [CrossRef]
- Guo, L.; Fan, B.; Zhang, J.; Lin, H. Occurrence of subsurface lateral flow in the Shale Hills Catchment indicated by a soil water mass balance method. Eur. J. Soil Sci. 2018, 69, 771–786. [Google Scholar] [CrossRef]
- Link, T.E.; Unsworth, M.; Marks, D. The dynamics of rainfall interception by a seasonal temperate rainforest. Agric. For. Meteorol. 2004, 124, 171–191. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Wang, G.; Sun, X.; Zhu, M.; Song, C.; Huang, K.; Chen, X. Spatial-Temporal Patterns of Evapotranspiration Along an Elevation Gradient on Mount Gongga, Southwest China. Water Resour. Res. 2018, 54, 4180–4192. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, G.; Sun, X. Precipitation and air temperature control the variations of dissolved organic matter along an altitudinal forest gradient, Gongga Mountains, China. Environ. Sci. Pollut. Res. 2017, 24, 230–10400. [Google Scholar] [CrossRef]
- Sun, X.Y.; Wang, G.X.; Li, W.; Liu, G.S.; Lin, Y. Measurements and modeling of canapy inteception in the Gongga Mountain subalpine succession forest. Adv. Water Sci. 2011, 22, 23–29. (In Chinese) [Google Scholar]
- Wu, Y.-H.; Li, W.; Zhou, J.; Cao, Y. Temperature and precipitation variations at two meteorological stations on eastern slope of Gongga Mountain, SW China in the past two decades. J. Mt. Sci. 2013, 10, 370–377. [Google Scholar] [CrossRef]
- Lin, Y. The effect of vegetation spatial heterogeneity in alpine forest ecosysterm on evaporation process. In Institute of Mountain Hazards and Environment; Chinese Academy of Sciences: Beijing, China, 2010. [Google Scholar]
- Yang, P.; Chen, Z.; Zhou, Q.; Zha, Y.; Wu, W.; Shibasaki, R. Comparisons of MODIS LAI products and LAI estimates derived from Landsat TM. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, USA, 31 July 2006. [Google Scholar]
- Jin, Z.; Guo, L.; Lin, H.; Wang, Y.; Yu, Y.; Chu, G.; Zhang, J. Soil moisture response to rainfall on the Chinese Loess Plateau after a long-term vegetation rehabilitation. Hydrol. Process. 2018, 32, 1738–1754. [Google Scholar] [CrossRef]
- Magliano, P.N.; Whitworth-Hulse, J.I.; Baldi, G. Interception, throughfall and stemflow partition in drylands: Global synthesis and meta-analysis. J. Hydrol. 2019, 568, 638–645. [Google Scholar] [CrossRef]
- Marin, C.T.; Bouten, W.; Sevink, J. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. J. Hydrol. 2000, 237, 40–57. [Google Scholar] [CrossRef]
- Price, A.; Carlyle-Moses, D. Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada. Agric. For. Meteorol. 2003, 119, 69–85. [Google Scholar] [CrossRef]
- Keim, R.; Skaugset, A.; Weiler, M. Storage of water on vegetation under simulated rainfall of varying intensity. Adv. Water Resour. 2006, 29, 974–986. [Google Scholar] [CrossRef]
- Yu, F. The Research on Characteristics of Throughfall in Subtropical Secondary Forests and the Relationship with Soil Moisture; Central South University of Forestry and Technology: Changsha, China, 2017. [Google Scholar]
- Návar, J. Stemflow variation in Mexico’s northeastern forest communities: Its contribution to soil moisture content and aquifer recharge. J. Hydrol. 2011, 408, 35–42. [Google Scholar] [CrossRef]
- Fan, J.; Oestergaard, K.T.; Guyot, A.; Jensen, D.G.; Lockington, D.A. Spatial variability of throughfall and stemflow in an exotic pine plantation of subtropical coastal Australia. Hydrol. Process. 2015, 29, 793–804. [Google Scholar] [CrossRef]
- Keim, R.F.; Skaugset, A.E. A linear system model of dynamic throughfall rates beneath forest canopies. Water Resour. Res. 2004, 40, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gash, J.H.C. An analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 1979, 105, 43–55. [Google Scholar] [CrossRef]
- Park, A.; Cameron, J.L. The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation. For. Ecol. Manag. 2008, 255, 1915–1925. [Google Scholar] [CrossRef]
- Wang, X.-P.; Zhang, Y.-F.; Hu, R.; Pan, Y.-X.; Berndtsson, R. Canopy storage capacity of xerophytic shrubs in Northwestern China. J. Hydrol. 2012, 454, 152–159. [Google Scholar] [CrossRef]
- Rutter, A.J.; Kershaw, K.A.; Robins, P.C.; Morton, A.J. A predictive model of rainfall interception in forests, 1. Derivation of the model from observation in a plantation of Corsican pine. Agric. Meteorol. 1971, 9, 367–384. [Google Scholar] [CrossRef]
- Kume, T.; Manfroi, O.J.; Kuraji, K.; Tanaka, N.; Horiuchi, T.; Suzuki, M.; Kumagai, T. Estimation of canopy water storage capacity from sap flow measurements in a Bornean tropical rainforest. J. Hydrol. 2008, 352, 288–295. [Google Scholar] [CrossRef]
- Lloyd, C.R.; Gash, J.H.C.; Shuttleworth, W.J. The measurement and modelling of rainfall interception by Amazonian rain forest. Agric. For. Meteorol. 1988, 43, 277–294. [Google Scholar] [CrossRef]
- Rodrigo, A.; Àvila, A. Influence of sampling size in the estimation of mean throughfall in two Mediterranean holm oak forests. J. Hydrol. 2001, 243, 216–227. [Google Scholar] [CrossRef]
Vegetation Types | Group | Mean Rainfall (mm) | Mean Duration (h) | Mean Peak Intensity (mm/h) | Mean of Average Intensity (mm/h) | Mean Throughfall (mm) | Mean Penetration Proportion (%) | No. of Events | Event Proportion (%) | Rainfall Proportion (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
CF | Group I | Low-intensity | 2.29 | 6.96 | 0.88 | 0.47 | 1.17 | 39 | 23 | 56 | 11 |
High-intensity | 19.65 | 13.33 | 6.34 | 2.16 | 15.14 | 74 | 6 | 15 | 24 | ||
Group II | Low-intensity | 16.90 | 44.00 | 2.39 | 0.56 | 10.74 | 63 | 4 | 10 | 14 | |
High-intensity | 32.82 | 30.83 | 6.99 | 1.61 | 27.72 | 85 | 6 | 15 | 40 | ||
Group III | Low-intensity | 30.17 | 70.50 | 5.28 | 0.78 | 20.24 | 68 | 2 | 5 | 12 | |
MF | Group I | Low-intensity | 4.18 | 7.48 | 1.18 | 0.65 | 2.70 | 50 | 31 | 51 | 20 |
High-intensity | 9.05 | 7.93 | 3.11 | 1.48 | 5.27 | 48 | 15 | 25 | 21 | ||
Group II | Low-intensity | 18.07 | 38.71 | 2.10 | 0.73 | 13.64 | 70 | 7 | 11 | 19 | |
High-intensity | 32.89 | 36.86 | 4.64 | 1.47 | 24.48 | 75 | 7 | 11 | 35 | ||
Group III | Low-intensity | 28.70 | 70.00 | 5.40 | 0.80 | 13.49 | 47 | 1 | 2 | 4 | |
BF | Group I | Low-intensity | 3.35 | 6.47 | 1.01 | 0.60 | 2.09 | 53 | 47 | 58 | 23 |
High-intensity | 9.95 | 8.68 | 3.57 | 1.55 | 7.26 | 62 | 19 | 23 | 28 | ||
Group II | Low-intensity | 14.16 | 31.00 | 1.94 | 0.74 | 10.69 | 74 | 7 | 9 | 15 | |
High-intensity | 29.13 | 30.13 | 6.14 | 1.90 | 23.24 | 80 | 8 | 10 | 34 |
Rainfall (mm) | Duration (h) | Peak Intensity (mm/h) | Average Intensity (mm/h) | LAI | Time Lag (h) | ||
---|---|---|---|---|---|---|---|
CF | Throughfall amount (mm) | 0.9788 ** | 0.5826 ** | 0.8003 ** | 0.7463 ** | 0.3287 ** | −0.1169 |
Penetration proportion (%) | 0.6106 ** | 0.4497 ** | 0.5417 ** | 0.5231 ** | 0.2198 | −0.0003 | |
MF | Throughfall amount (mm) | 0.9651 ** | 0.7928 ** | 0.6203 ** | 0.3963 ** | 0.2141 | −0.0239 |
Penetration proportion (%) | 0.3179 ** | 0.2939 ** | 0.1004 | 0.0714 | −0.0658 | −0.1927 | |
BF | Throughfall amount (mm) | 0.9883 ** | 0.7508 ** | 0.7764 ** | 0.6652 ** | 0.3817 ** | −0.0892 |
Penetration proportion (%) | 0.5602 ** | 0.5288 * | 0.4513 ** | 0.3759 ** | 0.0467 | −0.1016 |
Vegetation Types | All Rain Events | Low Intensity Rain Events in Group I | ||||
---|---|---|---|---|---|---|
Model | R2 | p | Model | R2 | p | |
Coniferous forest | TfCon. = 0.88PG − 0.04Dur − 0.46Inpeak + 0.53In + 1.97LAI − 2.42 | 0.97 | <0.01 | TfCon. = 0.80PG − 0.68Inpeak + 0.59In + 0.61LAI − 1.05 | 0.93 | <0.01 |
TfCon. = 0.80PG − 0.70 | 0.96 | <0.01 | TfCon. = 0.66PG − 0.35 | 0.91 | <0.01 | |
Coniferous-broadleaved mixed forest | TfMix. = 0.90PG − 0.03Dur − 1.24Inpeak + 0.83In + 1.02LAI − 1.23 | 0.95 | <0.01 | TfMix. = 1.51PG − 0.34Dur − 0.96Inpeak − 1.02In + 0.24LAI − 0.33 | 0.90 | <0.01 |
TfMix. = 0.75PG − 0.92 | 0.93 | <0.01 | TfMix. = 0.87PG − 1.08 | 0.83 | <0.01 | |
Broadleaved forest | TfBro. = 0.81PG − 0.02Dur + 0.46Inpeak − 0.79In + 1.26LAI − 0.50 | 0.98 | <0.01 | TfBro. = 1.20PG − 0.18Dur + 0.23Inpeak − 3.57In + 0.19LAI − 1.0 | 0.95 | <0.01 |
TfBro. = 0.83PG − 0.80 | 0.98 | <0.01 | TfBro. = 0.82PG − 0.64 | 0.90 | <0.01 |
Reference | Location | Stand Species | PG (mm) | Tf (%) | S (mm) | Data Use |
---|---|---|---|---|---|---|
Bellot and Escarre (1998) | NE Spain | Quercus ilex, Arbutus unedo and Phyllirea media | 1296.26 | 75 | 1.58 | 39 events |
Granier et al., (2000) | France | Young beech stand | 927 | 26 | - | 57 events |
Carlyle-Moses (2004) | NE of Mexico | White oak, Ash, and Cedar | 394.8 | 83.37 | 0.239 | 25 events |
Owens et al., (2006) | USA | Ashe juniper | 1176 | 60.8 | - | 158 events |
Muzylo and Domingo (2011) | NE Spain | Downy oaks | 558.2 | 88 | 0.6 | 65 events |
Swaffer et al., (2014) | Australia | E. diversifolia and A. verticillata | 502 | 66.4–65.9 | - | - |
Zhang et al., (2015) | Tengger Desert | C. korshinskii and A. ordosica | 461.5 | 74.31 and 74.83 | 0.52 and 1.22 | 102 events |
Shou et al., (2017) | NW of China | Caragana microphylla, Hedysarum fruticosum, and Salix gordejevii | 246.2 | 64.2 | - | 25 events |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Wang, G.; Cui, J.; Guo, L.; Wang, F.; Tang, X. Improving the Estimation of Throughfall Amounts in Primeval Forests along an Elevation Gradient on Mountain Gongga, Southwest China. Atmosphere 2022, 13, 639. https://doi.org/10.3390/atmos13040639
Yang R, Wang G, Cui J, Guo L, Wang F, Tang X. Improving the Estimation of Throughfall Amounts in Primeval Forests along an Elevation Gradient on Mountain Gongga, Southwest China. Atmosphere. 2022; 13(4):639. https://doi.org/10.3390/atmos13040639
Chicago/Turabian StyleYang, Ruxin, Genxu Wang, Junfang Cui, Li Guo, Fei Wang, and Xiangyu Tang. 2022. "Improving the Estimation of Throughfall Amounts in Primeval Forests along an Elevation Gradient on Mountain Gongga, Southwest China" Atmosphere 13, no. 4: 639. https://doi.org/10.3390/atmos13040639
APA StyleYang, R., Wang, G., Cui, J., Guo, L., Wang, F., & Tang, X. (2022). Improving the Estimation of Throughfall Amounts in Primeval Forests along an Elevation Gradient on Mountain Gongga, Southwest China. Atmosphere, 13(4), 639. https://doi.org/10.3390/atmos13040639