Characteristics of Lightning Electromagnetic Fields Produced by Antarctica Storms
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Analysis
3.1. Occurrence of CG Flashes
3.2. Temporal Characteristics of CG Flashes
3.2.1. Return Stroke Parameters
3.2.2. CG Flash Return Strokes
3.2.3. Flash Multiplicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Description | First Stroke | Subsequent Stroke | All | Description | First Stroke | Subsequent Stroke | All |
---|---|---|---|---|---|---|---|
(a) Slow front duration (µs) | (b) 10–90% Fast transition duration (µs) | ||||||
Sample size, N | 47 | 6 | 53 | Sample size, N | 47 | 6 | 53 |
Min | 0.61 | 1.22 | 0.61 | Min | 0.32 | 0.33 | 0.32 |
Max | 9.81 | 3.41 | 9.81 | Max | 1.64 | 1.73 | 1.73 |
AM | 3.83 | 2.49 | 3.67 | AM | 0.60 | 0.68 | 0.61 |
GM | 3.34 | 2.31 | 3.20 | GM | 0.53 | 0.53 | 0.53 |
S. D | 1.99 | 0.95 | 1.95 | S. D | 0.34 | 0.58 | 0.37 |
(c) 10–90% rise time (µs) | (d) Zero crossing time (µs) | ||||||
Sample size, N | 51 | 6 | 57 | Sample size, N | 51 | 6 | 57 |
Min | 0.83 | 2.09 | 0.83 | Min | 4.81 | 5.73 | 4.81 |
Max | 8.84 | 3.06 | 8.84 | Max | 37.91 | 13.35 | 37.91 |
AM | 3.65 | 2.65 | 3.54 | AM | 14.94 | 10.85 | 14.51 |
GM | 3.29 | 2.63 | 3.21 | GM | 13.47 | 10.47 | 13.12 |
S. D | 1.68 | 0.34 | 1.62 | S. D | 6.88 | 2.75 | 6.67 |
(e) Pulse duration (µs) | (f) Initial electric field peak normalized to 100 km (V/m) | ||||||
Sample size, N | 51 | 6 | 57 | Sample size, N | 41 | 6 | 47 |
Min | 30.03 | 32.93 | 30.03 | Min | 0.13 | 0.17 | 0.13 |
Max | 128.80 | 90.93 | 128.80 | Max | 4.78 | 1.82 | 4.78 |
AM | 72.95 | 57.31 | 71.31 | AM | 1.24 | 0.56 | 1.15 |
GM | 68.91 | 53.48 | 67.09 | GM | 0.89 | 0.39 | 0.80 |
S. D | 22.87 | 23.12 | 23.20 | S. D | 1.07 | 0.63 | 1.04 |
(g) Peak current all return stroke (kA) (Imin / Imax) | |||||||
First-stroke | Subsequent stroke | All | |||||
Sample size, N | 41 | 6 | 47 | ||||
Min | 0.54 | 0.34 | 0.69 | 0.44 | 0.54 | 0.34 | |
Max | 19.93 | 12.59 | 7.58 | 4.79 | 19.93 | 12.59 | |
AM | 5.15 | 3.26 | 2.35 | 1.48 | 4.79 | 3.03 | |
GM | 3.71 | 2.34 | 1.64 | 1.04 | 3.34 | 2.11 | |
S. D | 4.44 | 2.81 | 2.61 | 1.65 | 4.33 | 2.74 |
Description | First stroke | Subsequent Stroke | All | Description | First Stroke | Subsequent Stroke | All |
---|---|---|---|---|---|---|---|
(a) Slow front duration (µs) | (b) 10–90% Fast transition duration (µs) | ||||||
Sample size, N | 29 | 3 | 32 | Sample size, N | 29 | 3 | 32 |
Min | 2.08 | 2.65 | 2.08 | Min | 0.32 | 0.33 | 0.32 |
Max | 8.48 | 8.97 | 8.97 | Max | 1.67 | 1.03 | 1.67 |
AM | 4.02 | 5.53 | 4.16 | AM | 0.63 | 0.67 | 0.64 |
GM | 3.81 | 4.91 | 3.90 | GM | 0.57 | 0.61 | 0.57 |
S. D | 1.38 | 3.19 | 1.61 | S. D | 0.31 | 0.35 | 0.31 |
(c) 10–90% rise time (µs) | (d) Zero crossing time (µs) | ||||||
Sample size, N | 103 | 8 | 111 | Sample size, N | 103 | 8 | 111 |
Min | 1.97 | 2.55 | 1.97 | Min | 8.07 | 11.13 | 8.07 |
Max | 9.00 | 7.51 | 9 | Max | 40.73 | 23.07 | 40.73 |
AM | 3.88 | 4.17 | 3.78 | AM | 22.45 | 16.45 | 22.02 |
GM | 3.69 | 3.94 | 3.72 | GM | 21.18 | 15.89 | 20.75 |
S. D | 1.29 | 1.58 | 1.31 | S. D | 7.78 | 4.66 | 7.74 |
(e) Pulse duration (µs) | (f) Initial electric field peak normalized to 100 km (V/m) | ||||||
Sample size, N | 103 | 8 | 111 | Sample size, N | 103 | 8 | 111 |
Min | 33.72 | 35.94 | 33.72 | Min | 0.11 | 0.11 | 0.11 |
Max | 121.70 | 119.70 | 121.70 | Max | 12.23 | 0.63 | 12.23 |
AM | 72.13 | 68.96 | 71.89 | AM | 0.92 | 0.30 | 0.88 |
GM | 70.20 | 65.64 | 69.86 | GM | 0.55 | 0.26 | 0.52 |
S. D | 15.83 | 23.95 | 16.41 | S. D | 1.69 | 0.17 | 1.64 |
(g) Peak current all return stroke (kA) (Imin / Imax) | |||||||
First stroke | Subsequent stroke | All | |||||
Sample size, N | 103 | 8 | 111 | ||||
Min | 0.44 | 0.28 | 0.45 | 0.29 | 0.44 | 0.28 | |
Max | 51.02 | 32.22 | 2.63 | 1.66 | 51.02 | 32.22 | |
AM | 3.85 | 2.43 | 1.25 | 0.79 | 3.66 | 2.31 | |
GM | 2.30 | 1.45 | 1.08 | 0.68 | 2.18 | 1.38 | |
S. D | 7.07 | 4.47 | 0.73 | 0.46 | 6.85 | 4.33 |
Researcher | Location | Measurement Period | Sample Size, N | Number of Strokes in Flash | Average Multiplicity | |||
---|---|---|---|---|---|---|---|---|
Single- Stroke | Two Strokes | Three Strokes | Four Strokes | |||||
This study (2020) | Antarctica Peninsula | January 2020 | 51 | 46 (90%) | 4 (8%) | 0 (0%) | 1 (2%) | 1.14 |
[21] | Uppsala, Sweden | Summer 2014 | 51 | 45 (88%) | 4 (8%) | 1 (2%) | 1 (2%) | 1.2 |
[22] | Uppsala, Sweden | Summer 2010 and 2011 | 107 | 67 (63%) | 30 (28%) | 7 (6%) | 3 (3%) | 1.5 |
[23] | Munich, Germany | 1984 to 1993 | 44 | 33 (75%) | 8 (18%) | 2 (5%) | 1 (2%) | 1.3 |
[24] | Florida, US | April–October and November–February 2007 to 2008 | 52 | 42 (81%) | 9 (17%) | 1 (1%) | - | 1.2 |
[25] | Brazil, US, and Austria | February 2003 to September 2009 | 103 | 83 (81%) | 19 (18%) | 1 (1%) | - | 1.04 |
[26] | US, Central Great Plains | 1995 to 1997 | 204 (+CG) 103 (−CG) | 195 (96%) 41 (40%) | 9 (4%) 62 (60%) | - | - | 1.13 3.14 |
[27] | Munich, Germany | 1995 to 1997 | 32 | 28 (87.5%) | 4 (12.5%) | - | - | 1.13 |
Researcher | Location | Sample Size, N | Average Multiplicity |
---|---|---|---|
This study −CG (2020) | Antarctica Peninsula | 5 | 1.11 |
[25] | Brazil | 233 | 3.8 |
[28] | Indonesia | 100 | 5.2 |
[29] | Malaysia | 100 | 4 |
[30] | Florida | 478 | 4.6 |
[31] | Israel | 18611 | 1.4 |
Researcher | Location | Measurement Period | Sample Size, N | Inter-Stroke Interval (ms) | |||
---|---|---|---|---|---|---|---|
Min | Max | AM | GM | ||||
This study +CG (2020) | Antarctica Peninsula | January 2020 | 14 | 5.59 | 55.15 | 25.57 | 20.66 |
This study −CG (2020) | Antarctica Peninsula | January 2020 | 8 | 10.4 | 681.6 | 134.58 | 51.72 |
[21] +CG | Uppsala, Sweden | Summer 2014 | 9 | 25 | 124 | 71 | 60 |
[22] +CG | Uppsala, Sweden | Summer 2010 and 2011 | 53 | 2.9 | 518 | 116 | 70 |
[23] +CG | Florida, US | April–October and November–February 2007 to 2008 | 8 | 8.5 | 201 | 77 | 54 |
[24] +CG | Brazil, US, and Austria | February 2003 to September 2009 | 21 | 14 | 406 | 143 | 94 |
[25] +CG | US, Central Great Plains | July 2005 | 9 | - | - | 50 | 27 |
[26] +CG | Munich, Germany | 1984 to 1993 | 16 | - | - | 120 | 101 |
[27] | Munich, Germany | 1995 to 1997 | 4 | 51 | - | 102 | - |
[32] +CG | Fukui, Japan | December 2995 to February 1996 November 1996 to January 1997 | 17 | - | - | 78 | - |
[33] +CG | Uppsala, Sweden | Summer 1992 to 1993 | 29 | 6.8 | 290 | 92 | 64 |
Parameter | Researcher | Location | Measurement Period | Sample Size | Distance of Flash (km) | Min | Max | AM | GM |
---|---|---|---|---|---|---|---|---|---|
Slow front duration (µs) | This study 2020 | Antarctica | Summer January 2020 | 47 | 36–530 | 0.61 | 9.81 | 3.67 | 3.2 |
[21] | Sweden | Summer 2014 | 60 | 6–150 | 0.65 | 18 | 8.5 | 7.8 | |
[35] | Florida | Summer and winter 2007–2008 | 51 | 7.8–157 | 0.77 | 19 | 6.1 | 5.1 | |
[36] | Denmark | Summer | 23 | - | 4 | 16 | 8.4 | - | |
[37] | Sweden | Summer of 1979–1981 | 63 | 100–300 | 3 | 23 | 10 | - | |
[38] | Sweden | 1986 | 20 | 25–100 | 3 | 11 | 8.2 | - | |
[39] | Japan | - | - | 15–50 | - | - | 19.3 | - | |
10 to 90% fast rising duration (µs) | This study | Antarctica | January 2020 | 47 | 36–530 | 0.32 | 1.73 | 0.61 | 0.53 |
[21] | Sweden | Summer 2014 | 60 | 6–150 | 0.27 | 5.1 | 1.6 | 1.3 | |
[35] | Florida | Summer and winter 2007–2008 | 51 | 7.8–157 | 0.28 | 4.6 | 1.2 | 1.0 | |
[36] | Denmark | Summer | 23 | - | 1 | 6 | 2.5 | - | |
[38] | Sweden | 20 | 25–100 | 4 | 8 | 5.6 | - | ||
10–90% rise time (µs) | This study | Antarctica | January 2020 | 57 | 36–530 | 0.83 | 8.84 | 3.54 | 3.21 |
[21] | Sweden | Summer 2014 | 60 | 6–150 | 0.85 | 13 | 5.9 | 5.2 | |
[35] | Florida | Summer and winter 2007–2008 | 51 | 7.8–157 | 2.3 | 19 | 7.9 | 7.1 | |
[40] | Japan | Summer | 32 | <150 | 6 | 22 | 13.2 | - | |
Winter | 123 | 8 | 44 | 21.2 | - | ||||
[39] | Japan | Winter | 15–50 | - | - | 22.3 | - | ||
[36] | Sweden | 20 | 25–100 | 4 | 12 | 8.9 | - | ||
[37] | Sweden | 64 52 | 100–300 | 5 5 | 25 25 | 13 12 | - - | ||
[41] | USA | 15 | - | 4.5 | 24.3 | 11.5 | - | ||
Zero crossing time (µs) | This study | Antarctica | January 2020 | 57 | 36–530 | 4.81 | 37.91 | 14.51 | 13.12 |
[21] | Sweden | Summer 2014 | 36 | 6–150 | 2.7 | 100 | 30 | 25 | |
[35] | Florida | Summer and winter 2007–2008 | 33 | 7.8–157 | 14 | 452 | 77 | 49 | |
[40] | Japan | Summer | 34 | <150 | 80 | 280 | 151 | - | |
Winter | 89 | 30 | 160 | 93 | - | ||||
Initial electric field peak normalized to 100 km (V/m) | This study | Antarctica | January 2020 | 47 | 36–530 | 0.13 | 4.78 | 1.15 | 0.8 |
[21] | Sweden | Summer 2014 | 55 | 6–150 | 1.2 | 51 | 14 | 12 | |
[35] | Florida | Summer and winter 2007–2008 | 24 | 7.8–157 | 3.2 | 26 | 11 | 9.6 | |
[36] | Denmark | Summer | 22 | - | 10 | 42 | 22 | - | |
Peak current (kA) | This study | Antarctica | January 2020 | 47 | 38–530 | 0.34 | 19.93 | 4.13 | 2.96 |
[48] | Malaysia | 2013–2015 | 9159 | ≤70 | 10 | 86.7 | - | 14.2 | |
[49] | Japan | Winter 2014 | 33 | ≤20 | 10 | 208 | 62.45 | 40.34 | |
[21] | Sweden | Summer 2014 | 52 | 6–150 | 8.8 | 236 | 56 | 42 |
Parameter | Researcher | Location | Measurement Period | Sample Size | Distance of Flash (km) | Min | Max | AM | GM |
---|---|---|---|---|---|---|---|---|---|
Slow front duration (µs) | This study | Antarctica | January 2020 | 32 | 32–568 | 2.08 | 8.97 | 4.16 | 3.9 |
[44] | Florida | 2007–2008 | 4 | 0.5 (near) 50 (far) | 2.7 2.3 | 10.2 9.7 | 6 5.6 | 5.4 5.0 | |
[45] | Florida | 1979 | 105 | >50 | - | - | 2.9 | - | |
[37] | Sweden | 1979–1981 | 82 | >100 | - | - | 5.0 | - | |
[46] | Florida | 1975 and 1976 | 62 | 10–30 | - | - | 4.0 | - | |
90 | - | - | 4.1 | - | |||||
10–90% fast rising duration (µs) | This study | Antarctica | January 2020 | 32 | 32–568 | 0.32 | 1.67 | 0.64 | 0.57 |
[44] | Florida | 2007–2008 | 4 | 0.5 (near) 50 (far) | 0.4 0.7 | 1.8 1.5 | 0.9 1.1 | 0.8 1.0 | |
[45] | Florida | 1979 | 105 | >50 | - | - | 0.97 | - | |
[46] | Florida | 1975 and 1976 | 38 | 10–3 | - | - | 0.2 | - | |
[47] | Florida | 125 | 10–50 | - | - | 0.9 | - | ||
10–90% rise time (µs) | This study | Antarctica | January 2020 | 111 | 32–568 | 1.97 | 9.0 | 3.78 | 3.72 |
[44] | Florida | 2007–2008 | 4 | 0.5 (near) 50 (far) | 2.8 2.4 | 8.0 7.0 | 4.9 4.0 | 4.0 3.6 | |
[45] | Florida | 1979 | 105 | >5 | - | - | 4.4 | - | |
[37] | Sweden | 1979–1981 | 140 | >100 | - | - | 7.0 | - | |
[42] | Florida | 51 29 | 50–200 | - - | - - | 2.4 2.7 | - - | ||
Zero crossing time (µs) | This study | Antarctica | January 2020 | 111 | 32–568 | 8.07 | 40.7 | 22.0 | 20.7 |
[37] | Sweden Sri Lanka | 102 91 | 100–200 | - - | - - | 49 89 | - - | ||
[42] | Florida | 1974–1976 | 46 | 50–200 | - | - | 54 | - | |
Initial electric field peak normalized to 100 km (V/m) | This study | Antarctica | January 2020 | 111 | 32–568 | 0.11 | 12.2 | 0.88 | 0.52 |
[43] | 63 | - | - | 39 | - | ||||
Peak current (kA) | This study | Antarctica | January 2020 | 111 | 38–530 | 0.28 | 51.0 | 3.14 | 1.88 |
[48] | Malaysia | 2013–2015 | 563,123 | ≤70 | 139.6 | - | 13.6 | ||
[50] | China | 5425 | 13–466 | 4.8 | 196.8 | 24.9 | 19.7 | ||
[51] | Brazil | 29 | - | 2 | - | - | 45 | ||
[52] | Switzerland | 101 | - | - | - | - | 30 |
References
- Holzworth, R.H.; Brundell, J.B.; McCarthy, M.P.; Jacobson, A.R.; Rodger, C.J.; Anderson, T.S. Lightning in the Arctic. Geophys. Res. Lett. 2021, 48, e2020GL091366. [Google Scholar] [CrossRef]
- Yusop, N.; Ahmad, M.R.; Abdullah, M.; Mohd Esa, M.R.; Mohammad, S.A.; Suparta, W.; Gulisano, A.M.; Cooray, V. Seasonal Analysis of Cloud-To-Ground Lightning Flash Activity in the Western Antarctica. Atmosphere 2019, 10, 744. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.R.; Esa, M.R.M.; Cooray, V.; Baharudin, Z.A.; Hettiarachchi, P. Latitude dependence of narrow bipolar pulse emissions. J. Atmos. Sol. Terr. Phys. 2015, 128, 40–45. [Google Scholar] [CrossRef]
- Chai, J.; Sun, J. Characteristics of cloud-to-ground lightning activity over Hubei province, China. Weather Clim. Extrem. 2019, 24, 100207. [Google Scholar] [CrossRef]
- Rust, W.D.; MacGorman, D.R.; Bruning, E.C.; Weiss, S.A.; Krehbiel, P.R.; Thomas, R.J.; Rison, W.; Hamlin, T.; Harlin, J. Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res. 2005, 76, 247–271. [Google Scholar] [CrossRef]
- Carey, L.D.; Rutledge, S.A.; Petersen, W.A. The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous United States from 1989 to 1998. Mon. Weather Rev. 2003, 131, 1211–1228. [Google Scholar] [CrossRef]
- Wiens, K.C.; Rutledge, S.A.; Tessendorf, S.A. The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci. 2005, 62, 4151–4177. [Google Scholar] [CrossRef]
- Takeuti, T.; Nakano, M.; Yamamoto, Y. Remarkable characteristics of cloud-to-ground discharges observed in winter thunderstorms in Hokuriku area, Japan. J. Meteorol. Soc. Jpn. 1976, 54, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Brook, M.; Nakano, M.; Krehbiel, P.; Takeuti, T. The electrical structure of the Hokuriku winter thunderstorms. J. Geophys. Res. Ocean. 1982, 87, 1207–1215. [Google Scholar] [CrossRef]
- Suzuki, T.; Morita, T. Long term observation of winter lightning on Japan Sea coast. J. Atmos. Electr. 1992, 12, 53–56. [Google Scholar] [CrossRef]
- Adhikari, L.; Wang, Z.; Deng, M. Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites. J. Geophys. Res. Atmos. 2012, 117, D04202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lu, G.; Qie, X.; Jiang, R.; Fan, Y.; Tian, Y.; Sun, Z.; Liu, M.; Wang, Z.; Liu, D.; et al. Locating narrow bipolar events with single-station measurement of low-frequency magnetic fields. J. Atmos. Sol. Terr. Phys. 2016, 143, 88–101. [Google Scholar] [CrossRef]
- Smith, D.A.; Shao, X.M.; Holden, D.N.; Rhodes, C.T.; Brook, M.; Krehbiel, P.R.; Stanley, M.; Rison, W.; Thomas, R.J. A distinct class of isolated intracloud lightning discharges and their associated radio emissions. J. Geophys. Res. Atmos. 1999, 104, 4189–4212. [Google Scholar] [CrossRef]
- Nag, A.; Rakov, V.A.; Tsalikis, D.; Cramer, J.A. On phenomenology of compact intracloud lightning discharges. J. Geophys. Res. Atmos. 2010, 115, D14. [Google Scholar] [CrossRef] [Green Version]
- Galvan, A.; Fernando, M. Operative Characteristics of a Parallel-Plate Antenna to Measure Vertical Electric Fields from Lightning Flashes. 2000. Available online: https://www.semanticscholar.org/paper/Operative-characteristics-of-a-parallel-plate-to-Galv%C3%A1n-Fernando/8da8652ec3cb6c56f44c4f546311be303d299f1d (accessed on 1 February 2022).
- Mohammad, S.A.; Ahmad, M.R.; Abdullah, M.; Baharin, S.A.S.; Park, S.J.; Cooray, V. Azimuth and elevation factors correction for single station lightning electromagnetic field sensor. Geogr. Malays. J. Soc. Space 2021, 17, 378–392. [Google Scholar] [CrossRef]
- Sabri, M.H.M.; Ahmad, M.R.; Esa, M.R.M.; Periannan, D.; Lu, G.; Zhang, H.; Cooray, V.; Williams, E.; Aziz, M.Z.A.A.; Abdul-Malek, Z.; et al. Initial electric field changes of lightning flashes in tropical thunderstorms and their relationship to the lightning initiation mechanism. Atmos. Res. 2019, 226, 138–151. [Google Scholar] [CrossRef]
- Cooray, V. An Introduction to Lightning; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2015; pp. 152–153. [Google Scholar]
- Rachidi, F.; Bermudez, J.L.; Rubinstein, M.; Rakov, V.A. On the estimation of lightning peak currents from measured fields using lightning location systems. J. Electrost. 2004, 60, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Rakov, V.A.; Uman, M.A. Long continuing current in negative lightning ground flashes. J. Geophys. Res. Atmos. 1990, 95, 5455–5470. [Google Scholar] [CrossRef]
- Johari, D.; Cooray, V.; Rahman, M.; Hettiarachchi, P.; Ismail, M.M. Features of the first and the subsequent return strokes in positive ground flashes based on electric field measurements. Electr. Power Syst. Res. 2017, 150, 55–62. [Google Scholar] [CrossRef]
- Baharudin, Z.A.; Cooray, V.; Rahman, M.; Hettiarachchi, P.; Ahmad, N.A. On the characteristics of positive lightning ground flashes in Sweden. J. Atmos. Sol. Terr. Phys. 2016, 138, 106–111. [Google Scholar] [CrossRef]
- Nag, A.; Rakov, V.A. Positive lightning: An overview, new observations, and inferences. J. Geophys. Res. Atmos. 2012, 117, D08109. [Google Scholar] [CrossRef]
- Saba, M.M.; Schulz, W.; Warner, T.A.; Campos, L.Z.; Schumann, C.; Krider, E.P.; Cummins, K.L.; Orville, R.E. High-speed video observations of positive lightning flashes to ground. J. Geophys. Res. Atmos. 2010, 115, D24201. [Google Scholar] [CrossRef] [Green Version]
- Fleenor, S.A.; Biagi, C.J.; Cummins, K.L.; Krider, E.P.; Shao, X.M. Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Central Great Plains. Atmos. Res. 2009, 91, 333–352. [Google Scholar] [CrossRef]
- Heidler, F.; Hopf, C. Measurement results of the electric fields in cloud-to-ground lightning in nearby Munich, Germany. IEEE Trans. Electromagn. Compat. 1998, 40, 436–443. [Google Scholar] [CrossRef]
- Heidler, F.; Drumm, F.; Hopf, C. Electric fields of positive earth flashes in near thunderstorms. In Proceedings of the 24th International Conference on Lightning Protection, Birminghan, UK, 14–18 September 1998; pp. 42–47. [Google Scholar]
- Hazmi, A.; Emeraldi, P.; Hamid, M.I.; Takagi, N. Some characteristics of multiple stroke negative cloud to ground lightning flashes in Padang. Int. J. Electr. Eng. Inform. 2016, 8, 438–450. [Google Scholar] [CrossRef]
- Baharudin, Z.A.; Ahmad, N.A.; Mäkelä, J.S.; Fernando, M.; Cooray, V. Negative cloud-to-ground lightning flashes in Malaysia. J. Atmos. Sol. Terr. Phys. 2014, 108, 61–67. [Google Scholar] [CrossRef]
- Zhu, Y.; Rakov, V.A.; Mallick, S.; Tran, M.D. Characterization of negative cloud-to-ground lightning in Florida. J. Atmos. Sol. Terr. Phys. 2015, 136, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Yair, Y.; Shalev, S.; Erlich, Z.; Agrachov, A.; Katz, E.; Saaroni, H.; Price, C.; Ziv, B. Lightning flash multiplicity in eastern Mediterranean thunderstorms. Nat. Hazards Earth Syst. Sci. 2014, 14, 165–173. [Google Scholar] [CrossRef]
- Ishii, M.; Shimizu, K.; Hojo, J.; Shinjo, K. Termination of Multiple-Stroke Flashes Observed by Electromagnetic Field. In Proceedings of the 24th International Conference on Lightning Protection, Birminghan, UK, 14–18 September 1998. [Google Scholar]
- Cooray, V.; Pérez, H. Some features of lightning flashes observed in Sweden. J. Geophys. Res. Atmos. 1994, 99, 10683–10688. [Google Scholar] [CrossRef]
- Nicolas, J.P.; Bromwich, D.H. Climate of West Antarctica and influence of marine air intrusions. J. Clim. 2011, 24, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Nag, A.; Rakov, V.A. Parameters of electric field waveforms produced by positive lightning return strokes. IEEE Trans. Electromagn. Compat. 2014, 56, 932–939. [Google Scholar] [CrossRef]
- Cooray, V.; Fernando, M.; Gomes, C.; Sorensen, T.; Scuka, V.; Pedersen, A. The fine structure of positive return stroke radiation fields: A collaborative study between researchers from Sweden and Denmark. In Proceedings of the 24th International Conference on Lightning Protection, Birminghan, UK, 14–18 September 1998; pp. 78–82. [Google Scholar]
- Cooray, V.; Lundquist, S. On the characteristics of some radiation fields from lightning and their possible origin in positive ground flashes. J. Geophys. Res. Ocean. 1982, 87, 11203–11214. [Google Scholar] [CrossRef]
- Cooray, V. A novel method to identify the radiation fields produced by positive return strokes and their submicrosecond structure. J. Geophys. Res. Atmos. 1986, 91, 7907–7911. [Google Scholar] [CrossRef]
- Hojo, J.; Ishii, M.; Kawamura, T.; Suzuki, F.; Funayama, R. The fine structure in the field change produced by positive ground strokes. J. Geophys. Res. Atmos. 1985, 90, 6139–6143. [Google Scholar] [CrossRef]
- Hojo, J.; Ishii, M.; Kawamura, T.; Suzuki, F.; Komuro, H.; Shiogama, M. Seasonal variation of cloud-to-ground lightning flash characteristics in the coastal area of the Sea of Japan. J. Geophys. Res. Atmos. 1989, 94, 13207–13212. [Google Scholar] [CrossRef]
- Rust, W.D.; MacGorman, D.R.; Arnold, R.T. Positive cloud-to-ground lightning flashes in severe storms. Geophys. Res. Lett. 1981, 8, 791–794. [Google Scholar] [CrossRef]
- Lin, Y.T.; Uman, M.A.; Tiller, J.A.; Brantley, R.D.; Beasley, W.H.; Krider, E.P.; Weidman, C.D. Characterization of lightning return stroke electric and magnetic fields from simultaneous two-station measurements. J. Geophys. Res. Ocean. 1979, 84, 6307–6314. [Google Scholar] [CrossRef]
- Krider, E.P.; Leteinturier, C.; Willett, J.C. Submicrosecond fields radiated during the onset of first return strokes in cloud-to-ground lightning. J. Geophys. Res. Atmos. 1996, 101, 1589–1597. [Google Scholar] [CrossRef]
- Nag, A.; Tsalikis, D.; Rakov, V.A.; Howard, J.; Biagi, C.J.; Hill, D.; Uman, M.A.; Jordan, D.M. Fine structure of electric field waveforms recorded at near and far distances from the lightning channel. In Proceedings of the 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing, China, 12–16 April 2010; pp. 1231–1234. [Google Scholar]
- Master, M.J.; Uman, M.A.; Beasley, W.; Darveniza, M. Lightning induced voltages on power lines: Experiment. IEEE Trans. Power Appar. Syst. 1984, 9, 2519–2529. [Google Scholar] [CrossRef]
- Weidman, C.D.; Krider, E.P. The fine structure of lightning return stroke wave forms. J. Geophys. Res. Ocean. 1978, 83, 6239–6247. [Google Scholar] [CrossRef]
- Weidman, C.D. The Submicrosecond Structure of Lightning Radiation Fields. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 1982. [Google Scholar]
- Johari, D.; Amir, M.F.; Hashim, N.; Baharom, R.; Haris, F.A. Positive Cloud-to-Ground Lightning Observed in Shah Alam, Malaysia based on SAFIR 3000 Lightning Location System. In Proceedings of the 2021 IEEE International Conference in Power Engineering Application (ICPEA), Shah Alam, Malaysia, 8–9 March 2021; pp. 178–182. [Google Scholar]
- Wang, D.; Zheng, D.; Wu, T.; Takagi, N. Winter Positive Cloud-to-Ground Lightning Flashes Observed by LMA in Japan. IEEJ Trans. Electr. Electron. Eng. 2021, 16, 402–411. [Google Scholar] [CrossRef]
- Li, J.; Cai, L.; Hu, Q.; Zhou, M.; Li, Q.; Wang, J. Electric Field Parameters of Natural Negative Cloud-to-Ground Lightning in China. IEEE Trans. Electromagn. Compat. 2021, 63, 2007–2014. [Google Scholar] [CrossRef]
- Pinto, O., Jr.; Pinto, I.R.; Saba, M.M.; Solorzano, N.N.; Guedes, D. Return stroke peak current observations of negative natural and triggered lightning in Brazil. Atmos. Res. 2005, 76, 493–502. [Google Scholar] [CrossRef]
- Berger, K. Parameters of lightning flashes. Electra 1975, 41, 23–37. [Google Scholar]
- Nag, A.; Cummins, K.L. Negative first stroke leader characteristics in cloud-to-ground lightning over land and ocean. Geophys. Res. Lett. 2017, 44, 1973–1980. [Google Scholar] [CrossRef] [Green Version]
- Asfur, M.; Price, C.; Silverman, J.; Wishkerman, A. Why is lightning more intense over the oceans? J. Atmos. Sol. Terr. Phys. 2020, 202, 105259. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad, S.A.; Ahmad, M.R.; Abdullah, M.; Sangjong, P.; Shamsul Baharin, S.A.; Yusop, N.; Lu, G.; Cooray, V. Characteristics of Lightning Electromagnetic Fields Produced by Antarctica Storms. Atmosphere 2022, 13, 588. https://doi.org/10.3390/atmos13040588
Mohammad SA, Ahmad MR, Abdullah M, Sangjong P, Shamsul Baharin SA, Yusop N, Lu G, Cooray V. Characteristics of Lightning Electromagnetic Fields Produced by Antarctica Storms. Atmosphere. 2022; 13(4):588. https://doi.org/10.3390/atmos13040588
Chicago/Turabian StyleMohammad, Sulaiman Ali, Mohd Riduan Ahmad, Mardina Abdullah, Park Sangjong, Shamsul Ammar Shamsul Baharin, Norbayah Yusop, Gaopeng Lu, and Vernon Cooray. 2022. "Characteristics of Lightning Electromagnetic Fields Produced by Antarctica Storms" Atmosphere 13, no. 4: 588. https://doi.org/10.3390/atmos13040588
APA StyleMohammad, S. A., Ahmad, M. R., Abdullah, M., Sangjong, P., Shamsul Baharin, S. A., Yusop, N., Lu, G., & Cooray, V. (2022). Characteristics of Lightning Electromagnetic Fields Produced by Antarctica Storms. Atmosphere, 13(4), 588. https://doi.org/10.3390/atmos13040588