Influence of Anomalies on the Models for Nitrogen Oxides and Ozone Series
Abstract
:1. Introduction
- Only a few studies have been devoted to studying the existence of outliers in a pollutant series, with none of them using data collected in Romania.
- Only a few articles have used hybrid approaches to model pollutant series, with most of them being based on atmospheric circulation models, not on the Box–Jenkins artificial neural network approach.
- Very few studies have attempted to improve the quality of models after the removal of aberrant values from the time series.
2. Materials and Methods
2.1. Data
2.2. Methodology
2.2.1. Statistical Analysis
- Building and training the isolation trees.
- Assigning anomaly scores to data points based on PL by computing the tree height length as binary search trees.
- 3.
- Using the anomaly scores, the following decision is made:
- (a)
- If instances have an s value that is much smaller than 0.5, then they are considered normal instances;
- (b)
- If all the instances have s ≈ 0.5, then the entire sample does not have any distinct anomaly;
- (c)
- Instances with an s value larger than 0.5 are marked as anomalies [63].
- Analyze the existence of periodicity in the data series;
- Divide the series into non-overlapping intervals Iw;
- For each interval:
- ○
- Determine the seasonal compound (if it exists);
- ○
- Compute the median;
- ○
- Extract the residual, as the difference between the values of the series, the median, and the seasonal component;
- ○
- Run the ESD algorithm (with the median and mean absolute error in the computation of the test statistics) [69].
- Return the outliers obtained from the previous stage.
2.2.2. Modeling
- ;
- and is invariant in time (M denotes the expectation);
- (i.e., the covariance of and depends only on the lag h).
3. Results and Discussion
3.1. Results of the Statistical Analysis and the Anomaly Detection
- For NO: the change point is the 98th value, mean 1 = 12.611, mean 2 = 5.659;
- For NO2: the change point is the 92nd value, mean 1 = 19.454, mean 2 = 10.544;
- For NOX: the change point is the 87th value, mean 1 = 40.426, mean 2 = 23.348;
- For O3: the change point is the 55th value, mean 1 = 25.554, mean 2 = 51.182.
- [−7.5305, 20.65750] and [−18.101, 31.228] for NO;
- [−10.1676, 39.0445] and [−28.622, 57.499] for NO2;
- [−3.825, 57.975] and [−27, 81.15] for NO3;
- [−14.195, 97.205] and [−55.97, 148.98] for O3.
- 4, 5, and 9 February; 23–29 March; and 21 May for NO;
- 11 and 25 February; 7–11 and 23, 28, and 29 March; and 27, 29, and 30 May for NO2;
- 1, 9–13, 16, 17, and 19–22 March; and 7 May for NOx;
- 6, 7, 13, and 29 January; 5 February; 5 and 28 March; 1, 2, 6, 8, 12, 14, 15, 18, 21, and 22 April; and 7 June for O3.
- 1–10, 17, 18, and 22 January; 2, 3, 11, 25, 28, and 29 February; 7–11 and 23, 28, and 29 March; 27 April; 19 and 27–30 May; and 1, 3, and 6–8 June for NO;
- 11 and 25 February; 23 March; 27, 29, and 30 May; and 1, 6, and 9 June for NO2;
- 1–5, 9, 13, 17, 22, and 29 January; 4–6, and 29 February; 1, 9–13, and 16–22 March; 7 and 19 May; and 4–8 June for NOx;
- 1–7, 9, 13, 17, 18, 28, and 29 January; 1, 5–7, 13, 15, and 23 February; 5, 6, 22, and 28 March; 1, 2, 6, 15, 18, 21, 22, and 28 April; 4, 30, and 31 May; and 1–8 June for O3.
3.2. Models for the NO2 Series
- An ARIMA(2,1,1), with:
- ○
- The autoregressive and moving average coefficients (and standard deviations) AR1 = 0.3584 (0.0834), AR2 = 0.1811 (0.0826), and MA1 = −0.9677 (0.0294);
- ○
- MSE = 81.4417, MAE = 5.6679, the first-order residual autocorrelation = 0.97973;
- ○
- AIC = 1161;
- ○
- MAPE could not be computed (there is a value equal to 0);
- The GRNN model for the residual, with a lagged 1 variable as the regressor, and:
- ○
- On the training set: R2 = 99.635%, rap = 0.998178, MSE = 0.2562, MAE = 0.1112, MAPE = 27.4644.
- ○
- On the test set: R2 = 0.0635%, rap = 0.0578, MSE = 1222.97, MAE = 5.239, MAPE = 84.36.
3.3. Models for the O3 Series
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azid, A.; Juahir, H.; Toriman, M.E.; Kamarudin, M.K.A.; Saudi, A.S.M.; Hasnam, C.N.C.; Aziz, N.A.A.; Azaman, F.; Latif, M.T.; Zainuddin, S.F.M.; et al. Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: A case study in Malaysia. Water Air Soil Pollut. 2014, 225, 2063. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bărbulescu, A. Applications in Environmental Sciences; Studies on Time Series; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. 2016, 21, 65. [Google Scholar] [CrossRef] [PubMed]
- Al-Taani, A.; Nazzal, Y.; Howari, F.; Iqbal, J.; Bou-Orm, N.; Xavier, C.M.; Bărbulescu, A.; Sharma, M.; Dumitriu, C.S. Contamination assessment of heavy metals in agricultural soil, in the Liwa area (UAE). Toxics 2021, 9, 53. [Google Scholar] [CrossRef]
- Arnaudo, E.; Farasin, A.; Rossi, C. A comparative analysis for air quality estimation from traffic and meteorological data. Appl. Sci. 2020, 10, 4587. [Google Scholar] [CrossRef]
- Dominick, D.; Latif, M.T.; Juahir, H.; Aris, A.Z.; Zain, S.M. An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia. Sustain. Environ. Res. 2012, 22, 305–315. [Google Scholar]
- Leelőssy, Á.; Molnár, F.; Izsák, F.; Havasi, Á.; Lagzi, I. Mészáros R. Dispersion modeling of air pollutants in the atmosphere: A review. Cent. Eur. J. Geosci. 2014, 6, 257–278. [Google Scholar] [CrossRef]
- EPA. Nitrogen Oxides (NOx), Why and How They Are Controlled. Technical Bulletin. 1999. Available online: https://www3.epa.gov/ttn/catc/dir1/fnoxdoc.pdf (accessed on 25 March 2021).
- Thurston, G.D. Outdoor Air Pollution: Sources, Atmospheric Transport, and Human Health Effects. In International Encyclopedia of Public Health; Heggenhougen, H.K., Ed.; Academic Press: Cambridge, MA, USA, 2008; pp. 700–712. [Google Scholar] [CrossRef]
- Millán, M.M.; Sanz, J.; Salvador, R.; Mantilla, E. Atmospheric dynamics and ozone cycles related to nitrogen deposition in the western Mediterranean. Environ. Poll. 2002, 118, 167–186. [Google Scholar] [CrossRef]
- Leonardo da Vinci Programme, Pilot Project no RO/02/B/F/PP–141004. Training Module for Environmental Pollution Control. pp. 14–15, 18–19. Available online: http://leonardo.unibuc.ro/products/textbook.html (accessed on 2 March 2022).
- Addison, C.C. Nitrogen Oxides, AccessScience; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- EEA. Assessing the Risks to Health from Air Pollution. 2021. Available online: https://www.eea.europa.eu/publications/assessing-the-risks-to-health (accessed on 15 April 2021).
- NAWMN2021. Available online: https://www.calitateaer.ro/public/description-page/general-info-page/?locale=en (accessed on 15 April 2021).
- Hajek, P.; Olej, V. Predicting common air quality index—The case of Czech microregions. Aerosol Air Qual. Res. 2015, 15, 544–555. [Google Scholar] [CrossRef] [Green Version]
- Gocheva-Ilieva, S.G.; Ivanov, A.V.; Voynikova, D.S.; Boyadzhiev, D.T. Time series analysis and forecasting for air pollution in small urban area: An SARIMA and factor analysis approach. Stoch. Env. Res. Risk. Assess. 2014, 28, 1045–1060. [Google Scholar] [CrossRef]
- Burden, F.R.; Forstner, U.; McKelvie, I.D.; Guenther, A. Time-Series Analysis. In Environmental Monitoring Handbook; McGraw-Hill Professional: New York, NY, USA, 2002; Available online: https://www.accessengineeringlibrary.com/content/book/9780071351768/back-matter/appendix1 (accessed on 15 February 2021).
- Bontempi, G.; Ben Taieb, S.; Le Borgne, Y.A. Machine learning strategies for time series forecasting. In Business Intelligence; Aufaure, M.A., Zimányi, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 138, pp. 59–73. [Google Scholar] [CrossRef]
- CALPUFF Modeling System. Available online: www.scr.com (accessed on 10 April 2021).
- Fallah-Shorshani, M.; Shekarrizfard, M.; Hatzopoulou, M. Evaluation of regional and local atmospheric dispersion models for the analysis of traffic-related air pollution in urban areas. Atmos. Environ. 2017, 167, 270–282. [Google Scholar] [CrossRef]
- Shekarrizfard, M.; Faghih-Imani, A.; Tétreault, L.F.; Yasmin, S.; Reynaud, F.; Morency, P.; Plante, C.; Drouin, L.; Smargiassi, A.; Eluru, N.; et al. Regional assessment of exposure to traffic-related air pollution: Impacts of individual mobility and transit investment scenarios. Sustain. Cities Soc. 2017, 29, 68–76. [Google Scholar] [CrossRef]
- Soulhac, L.; Nguyen, C.V.; Volta, P.; Salizzoni, P. The model SIRANE for atmospheric urban pollutant dispersion. PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration. Atmos. Environ. 2017, 167, 377–388. [Google Scholar] [CrossRef]
- Bai, L.; Wang, J.; Ma, X.; Lu, H. Air pollution forecasts: An overview. Int. J. Environ. Res. Public Health 2018, 15, 780. [Google Scholar] [CrossRef] [Green Version]
- Kumar, U.; Jain, V.K. ARIMA Forecasting of Ambient Air Pollutants (O3, NO, NO2 and CO). Stoch. Environ. Res. Risk Assess. 2010, 4, 751–760. [Google Scholar] [CrossRef]
- Zhu, J. Comparison of ARIMA model and exponential smoothing model on 2014 air quality index in Yanqing county, Beijing, China. Appl. Comput. Math. 2015, 4, 456. [Google Scholar] [CrossRef] [Green Version]
- Munir, S.; Mayfield, M. Application of density plots and time series modelling to the analysis of nitrogen dioxides measured by low-cost and reference sensors in urban areas. Nitrogen 2021, 2, 167–195. [Google Scholar] [CrossRef]
- Hajmohammadi, H.; Heydecker, B. Multivariate time series modelling for urban air quality. Urban Clim. 2021, 37, 100834. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Neural network modeling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos. Environ. 1999, 33, 709–719. [Google Scholar] [CrossRef]
- Rahimi, A. Short-term prediction of NO2 and NOx concentrations using multilayer perceptron neural network: A case study of Tabriz, Iran. Ecol Process 2017, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, C.M.; Voiculescu, M.; Constantin, D.-E.; Georgescu, L.P. Prediction of the NO2 concentration data in an urban area using multiple regression and neuronal networks. AIP Conf. Proc. 2015, 1694, 040003. [Google Scholar] [CrossRef] [Green Version]
- Baawain, M.S.; Al-Serihi, A.S. Systematic Approach for the Prediction of Ground-Level Air Pollution (around an Industrial Port) Using an Artificial Neural Network. Aerosol Air Qual. Res. 2014, 14, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Zhang, Y.; Hu, X.; Zeng, Y.; Tan, J.; Shao, D. Progress in Developing an ANN Model for Air Pollution Index Forecast. Atmos. Environ. 2004, 38, 7055–7064. [Google Scholar] [CrossRef]
- Hrust, L.; Klaić, Z.B.; Križan, J.; Antonić, O.; Hercog, P. Neural Network Forecasting of Air Pollutants Hourly Concentrations Using Optimised Temporal Averages of Meteorological Variables and Pollutant Concentrations. Atmos. Environ. 2009, 43, 5588–5596. [Google Scholar] [CrossRef]
- Moustris, K.P.; Ziomas, I.C.; Paliatsos, A.G. 3- Day-ahead Forecasting of Regional Pollution Index for the Pollutants NO2, CO, SO2, and O3 Using Artificial Neural Networks in Athens, Greece. Water Air Soil Pollut. 2010, 209, 29–43. [Google Scholar] [CrossRef]
- Agirre-Basurko, E.; Ibarra-Berastegi, G.; Madariaga, I. Regression and Multilayer Perceptron-based Models to Forecast Hourly O3 and NO2 Levels in the Bilbao Area. Environ. Modell. Softw. 2006, 21, 430–446. [Google Scholar] [CrossRef]
- Kukkonen, J.; Partanen, L.; Karppinen, A.; Ruuskanen, J.; Junninen, H.; Kolehmainen, M.; Niska, H.; Dorling, S.; Chatterton, T.; Foxall, R.; et al. Extensive Evaluation of Neural Network Models for the Prediction of NO2 and PM10 Concentrations, Compared with a Deterministic Modelling System and Measurements in Central Helsinki. Atmos. Environ. 2003, 37, 4539–4550. [Google Scholar] [CrossRef]
- Wang, W.; Men, C.; Lu, W. Online Prediction Model Based on Support Vector Machine. Neurocomputing 2008, 71, 550–558. [Google Scholar] [CrossRef]
- Osowski, S.; Garanty, K. Forecasting of the Daily Meteorological Pollution using Wavelets and Support Vector Machine. Eng. Appl. Artif. Intell. 2007, 20, 745–755. [Google Scholar] [CrossRef]
- Hajek, P.; Olej, V. Ozone Prediction on the Basis of Neural Networks, Support Vector Regression and Methods with Uncertainty. Ecol. Inf. 2012, 12, 31–42. [Google Scholar] [CrossRef]
- Lin, K.P.; Pai, P.F.; Yang, S.L. Forecasting Concentrations of Air Pollutants by Logarithm Support Vector Regression with Immune Algorithms. Appl. Math. Comput. 2011, 217, 5318–5327. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Kumar, A.; Shukla, S.P. Linear and Nonlinear Modeling Approaches for Urban Air Quality Prediction. Sci. Total Environ. 2012, 426, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, L.; Wang, Q.; Chen, J. A novel method for regional NO2 concentration Prediction using discrete Wavelet transform and an LSTM network. Comput. Intel. Neurosc. 2021, 2021, 6631614. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, W.; Wang, Y.; Yang, G. A hybrid NOx emission prediction model based on CEEMDAN and AM-LSTM. Fuel 2022, 310C, 122486. [Google Scholar] [CrossRef]
- Shekarrizfard, M.; Faghih-Imani, A.; Hatzopoulou, M. An examination of population exposure to traffic-related air pollution: Comparing spatially and temporally resolved estimates against long-term average exposures at the home location. Environ. Res. 2016, 147, 435–444. [Google Scholar] [CrossRef]
- ECA 2018. Available online: https://op.europa.eu/webpub/eca/special-reports/air-quality-23-2018/en/ (accessed on 15 April 2021).
- Law 24/15 June 2011 on Ambient Air Quality. Available online: https://www.calitateaer.ro/export/sites/default/.galleries/Legislation/national/Lege-nr.-104_2011-calitatea-aerului-inconjurator.pdf_2063068895.pdf (accessed on 15 March 2022). (In Romanian).
- Quality Indices. Available online: https://www.calitateaer.ro/public/monitoring-page/quality-indices-page/?__locale=ro (accessed on 22 March 2022).
- Iorga, G. Air pollution monitoring: A case study from Romania. In Air Quality—Measurement and Modeling; Sallis, P., Ed.; InTech: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Bărbulescu, A.; Barbeş, L. Mathematical modeling of sulfur dioxide concentration in the western part of Romania. J. Environ. Manag. 2017, 204, 825–830. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Barbeş, L. Modeling the carbon monoxide dissipation in Timisoara, Romania. J. Environ. Manag. 2017, 204, 831–838. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Barbeş, L. Statistical assessment and modeling of benzene level in atmosphere in Timiş County, Romania. Int. J. Environ. Sci. Tech. 2022, 19, 817–828. [Google Scholar] [CrossRef]
- Levei, L.; Hoaghia, M.A.; Roman, M.; Marmureanu, L.; Moisa, C.; Levei, E.A.; Ozunu, A.; Cadar, O. Temporal trend of PM10 and associated human health risk over the past decade in Cluj-Napoca city, Romania. Appl. Sci. 2020, 10, 5331. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Barbeş, L.; Nazzal, Y. New model for inorganic pollutants dissipation on the northern part of the Romanian Black Sea coast. Rom. J. Phys. 2018, 63, 806. [Google Scholar]
- Bărbulescu, A.; Barbeş, L. Models for pollutants’ correlation in the Romanian littoral. Rom. Rep. Phys. 2014, 66, 1189–1199. [Google Scholar]
- Torres, J.M.; Nieto, P.J.G.; Alejano, L.; Reyes, A.N. Detection of outliers in gas emissions from urban areas using functional data analysis. J. Hazard. Mater. 2011, 186, 144–149. [Google Scholar] [CrossRef]
- Shaadan, N.; Jemain, A.A.; Latif, M.T.; Deni, S.M. Anomaly detection and assessment of PM10 functional data at several locations in the Klang Valley, Malaysia. Atmos. Poll. Res. 2015, 6, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Hakins, S.J.; Gibbs, P.E.; Pope, N.D.; Burt, G.R.; Chesman, B.S.; Bray, S.; Proud, S.V.; Spence, S.K.; Southward, A.J.; Southward, G.A.; et al. Recovery of polluted ecosystems: The case for long-term studies. Marine Environ. Resear 2002, 54, 215–222. [Google Scholar] [CrossRef]
- Martínez, J.; Saavedra, Á.; García-Nieto, P.J.; Piñeiro, J.I.; Iglesias, C.; Taboada, J.; Sancho, J.; Pastor, J. Air quality parameters outliers detection using functional data analysis in the Langreo urban area (Northern Spain). Appl. Math Comput. 2014, 241, 1–10. [Google Scholar] [CrossRef]
- van Zoest, V.M.; Stein, A.; Hoek, G. Outlier Detection in Urban Air Quality Sensor Networks. Water Air Soil Pollut. 2018, 229, 111. [Google Scholar] [CrossRef] [Green Version]
- Fox, A.J. Outliers in Time Series. J. Royal Stat. Soc. Ser. B 1972, 34, 350–363. [Google Scholar] [CrossRef]
- Blázquez-García, A.; Conde, A.; Mori, U.; Lozano, J.A. A Review on outlier/Anomaly Detection in Time Series Data. ACM Comput. Surv. 2021, 54, 1–33. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation-based anomaly detection. ACM T. Knowl. Discov. D. 2012, 6, 3. [Google Scholar] [CrossRef]
- Cheng, Z.; Zou, C.; Dong, J. Outlier detection using isolation forest and local outlier factor. In Proceedings of the RACS ‘19: Proceedings of the Conference on Research in Adaptive and Convergent Systems, Chongqing, China, 24–27 September 2019; pp. 161–168. [Google Scholar] [CrossRef]
- Souiden, I.; Brahmi, Z.; Toumi, H. A Survey on Outlier Detection in the Context of Stream Mining: Review of Existing Approaches and Recommadations. In Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing; Madureira, A., Abraham, A., Gamboa, D., Novais, P., Eds.; Springer: Cham, Switzerland, 2017; Volume 557, pp. 372–383. [Google Scholar]
- Alghushairy, O.; Alsini, R.; Soule, T.; Ma, X. A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams. Big Data Cogn. Comput. 2021, 5, 1. [Google Scholar] [CrossRef]
- Vallis, O.; Hochenbaum, J.; Kejariwal, A. A Novel Technique for Long-Term Anomaly Detection in the Cloud. In Proceedings of the 6th USENIX Workshop on Hot Topics in Cloud Computing, Philadelphia, PA, USA, 17–18 June 2014; Available online: https://www.usenix.org/system/files/conference/hotcloud14/hotcloud14-vallis.pdf (accessed on 4 December 2021).
- Rosner, B. Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics 1983, 25, 165–172. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: New York, NY, USA, 2002. [Google Scholar]
- Specht, D.F. A General Regression Neural Network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaknich, A. Neural Networks for Intelligent Signal Processing; World Scientific: Hackensack, NJ, USA, 2003. [Google Scholar]
- Hipel, K.W.; McLeod, A.I. Time Series Modelling of Water Resources and Environmental Systems; Elsevier Science: New York, NY, USA, 1994. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
Statistics | NOx | NO | NO2 | O3 |
---|---|---|---|---|
min (µg/m3) | 0.00 | 1.60 | 0.00 | 12.04 |
max (µg/m3) | 179.34 | 150.12 | 67.86 | 91.28 |
mean (µg/m3) | 32.63 | 9.87 | 15.67 | 42.72 |
stdev (µg/m3) | 24.81 | 16.27 | 10.53 | 18.71 |
cv | 0.76 | 1.64 | 0.67 | 0.44 |
skew | 3.00 | 5.28 | 1.78 | 0.33 |
kurt | 10.82 | 37.00 | 4.64 | −0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărbulescu, A.; Dumitriu, C.S.; Ilie, I.; Barbeş, S.-B. Influence of Anomalies on the Models for Nitrogen Oxides and Ozone Series. Atmosphere 2022, 13, 558. https://doi.org/10.3390/atmos13040558
Bărbulescu A, Dumitriu CS, Ilie I, Barbeş S-B. Influence of Anomalies on the Models for Nitrogen Oxides and Ozone Series. Atmosphere. 2022; 13(4):558. https://doi.org/10.3390/atmos13040558
Chicago/Turabian StyleBărbulescu, Alina, Cristian Stefan Dumitriu, Iulia Ilie, and Sebastian-Barbu Barbeş. 2022. "Influence of Anomalies on the Models for Nitrogen Oxides and Ozone Series" Atmosphere 13, no. 4: 558. https://doi.org/10.3390/atmos13040558
APA StyleBărbulescu, A., Dumitriu, C. S., Ilie, I., & Barbeş, S. -B. (2022). Influence of Anomalies on the Models for Nitrogen Oxides and Ozone Series. Atmosphere, 13(4), 558. https://doi.org/10.3390/atmos13040558