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Abstract: Nowadays, observing, recording, and modeling the dynamics of atmospheric pollu-
tants represent actual study areas given the effects of pollution on the population and ecosys-
tems. The existence of aberrant values may influence reports on air quality when they are based
on average values over a period. This may also influence the quality of models, which are fur-
ther used in forecasting. Therefore, correct data collection and analysis is necessary before model-
ing. This study aimed to detect aberrant values in a nitrogen oxide concentration series recorded
in the interval 1 January–8 June 2016 in Timisoara, Romania, and retrieved from the official re-
ports of the National Network for Monitoring the Air Quality, Romania. Four methods were uti-
lized, including the interquartile range (IQR), isolation forest, local outlier factor (LOF) methods,
and the generalized extreme studentized deviate (GESD) test. Autoregressive integrated mov-
ing average (ARIMA), Generalized Regression Neural Networks (GRNN), and hybrid ARIMA-
GRNN models were built for the series before and after the removal of aberrant values. The
results show that the first approach provided a good model (from a statistical viewpoint) for
the series after the anomalies removal. The best model was obtained by the hybrid ARIMA-
GRNN. For example, for the raw NO2 series, the ARIMA model was not statistically validated,
whereas, for the series without outliers, the ARIMA(1,1,1) was validated. The GRNN model for
the raw series was able to learn the data well: R2 = 76.135%, the correlation between the actual
and predicted values (rap) was 0.8778, the mean standard errors (MSE) = 0.177, the mean absolute
error MAE = 0.2839, and the mean absolute percentage error MAPE = 9.9786. Still, on the test set,
the results were worse: MSE = 1.5101, MAE = 0.8175, rap = 0.4482. For the series without outliers,
the model was able to learn the data in the training set better than for the raw series (R2 = 0.996),
whereas, on the test set, the results were not very good (R2 = 0.473). The performances of the hybrid
ARIMA–GRNN on the initial series were not satisfactory on the test (the pattern of the computed
values was almost linear) but were very good on the series without outliers (the correlation between the
predicted values on the test set was very close to 1). The same was true for the models built for O3.

Keywords: aberrant values; nitrogen oxides; ARIMA; GRNN; ARIMA–GRNN; isolation forest; LOF

1. Introduction

Nowadays, ambient air pollution levels and trends have become a topic of interest
worldwide because primary atmospheric pollutants (APPs) constitute a risk factor for the
population and ecosystems [1–4]. Therefore, monitoring air quality, especially in urban or
crowded areas, is essential for controlling pollution [5] and protecting human health.

Pollutants’ dispersion into the atmosphere is a hazardous phenomenon, which is
difficult to assess and sometimes unpredictable. Their diffusion depends on meteorological
factors, such as the relative speed and wind direction, ambient temperature, atmospheric
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turbulence, and buoyant force [6,7]. The distinct mechanisms responsible for pollutant dis-
persion are molecular diffusion, turbulent diffusion, and transport due to wind. Generally,
wind speed influences pollutants’ distribution. High concentrations of pollutants reach the
atmospheric layer and remain there if the wind speed is low and uniform. Atmospheric calm
creates favorable conditions for the accumulation of pollutants in the source’s vicinity [8].

Nitrogen oxides (NOx) are gases containing various amounts of nitrogen and oxygen
with high reactivity. NOx represents a family of seven chemical compounds (N2O, NO,
N2O2, N2O3, NO2, N2O4, N2O5) [9] Nitrogen monoxide and dioxide (NO and NO2) are the
main NOx found in the atmosphere, resulting from combustion processes (from electricity
generation, industrial activities, and engine exhaust). They contribute to the apparition
of acid rains and favor the accumulation of nitrates in the soil, leading to ecological dise-
quilibrium [10]. Nitrogen oxides contribute to the greenhouse effect and smog formation,
reducing the visibility in urban areas and the deterioration of water quality.

Nitrogen oxide (NO) is a colorless gas and a free radical. It is important that it is
monitored s it is a precursor of tropospheric ozone, nitric acid, and particulate nitrate.
Although NO does not directly affect acid deposition or the climate, nitric acid and ozone and
particulate nitrate do. Natural NO reduces ozone in the upper stratosphere. NO emissions
from jets that fly in the stratosphere also reduce stratospheric ozone. In urban zones, NO
mixing ratios reach 0.1 ppmv in the early morning but may decrease to zero by midmorning
due to the reaction with ozone. Outdoor levels of NO are not regulated in any country [11].

Nitrogen dioxide (NO2) is a brown gas with a strong odor. NO2 is an intermediary
between NO emission and ozone (O3) formation. It is also a precursor to nitric acid, a
component of acid deposition. Natural NO2, such as natural NO, reduces O3 in the upper
stratosphere. The primary source of NO2 is NO oxidation. Minor sources are fossil fuel
combustion and biomass burning. During combustion or burning, NO2 emissions are about
5% to 15% of those of NO. In urban regions, NO2 mixing ratios range from 0.1 to 0.25 ppmv.
Outdoors, NO2 is more relevant during the early morning than during midday or afternoon
because sunlight breaks down most NO2 past midmorning, which is usually the opposite
to ozone [12].

NO’s toxicity is four times lower than that of NO2. Children are the most affected by
exposure to nitrogen dioxide. NO2 is very toxic for the population and animals [10,13].
Exposure to low concentrations of NO2 affects lung tissue, and high pollutant concentra-
tions may be fatal. The population exposed to low concentrations of nitrogen oxides may
experience respiratory issues for a long time [2,4].

Therefore, outdoor levels of NO2 are now regulated in many countries, including
Romania [12,14,15]. Ozone is a relatively colorless gas at typical mixing ratios. O3 exhibits
an odor when its mixing ratio exceeds 0.02 ppmv. In urban smog, it is considered an
air pollutant because of its harmful effects on humans, animals, plants, and materials.
In the stratosphere, ozone’s absorption of UV radiation provides a protective shield for
terrestrial life. O3 is not emitted. Its only source in the air is chemical reaction. O3 is a
pollutant produced in the atmosphere, and therefore it is not necessarily related to urban
or industrial areas and may be seen in suburban or rural areas, in downwind zones from
where the precursors are emitted. In urban air, ozone mixing ratios range from less than
0.01 ppmv at night to 0.5 ppmv (during the afternoon, downwind from the most polluted
cities worldwide), with typical values of 0.15 ppmv during moderately polluted afternoons.
It has a typical daily cycle characteristic of the positions with respect to the topography
and the location where the precursors are emitted. Peak ozone mixing ratios are around
10 ppmv in the stratosphere [11].

In the last decade, special attention has been paid to mathematical modeling, the study
of the pollutants diffusion from the atmosphere, developing new control systems, and
reducing environmental pollution [16,17]. The diversity of actual models has imposed
extraordinary rigor on their understanding and expanded their types for correct application
depending on local or regional air pollution particularities. The transport and dispersion
of pollutants in the atmosphere are complex phenomena that are not easy to translate
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into mathematical calculation systems, so many algorithms are accepted by simplifying
hypotheses [18]. Under these conditions, the results of the estimates are more or less close
to reality. Each model has its limits. The volume, type of input data, and mathematical
complexity largely depend on the researchers’ abilities because the data quality, accuracy,
and discretization affect the integrity of the simulation results [19].

Modeling of the dissipation of NOx from different sources has been achieved using
different models, such as, for example, CALPUFF [20] (dispersion of traffic emissions
in urban zones). Fallah-Shorshani et al. [21] used two air quality models to simulate
local atmospheric dissipation of NOx and its transformation to NO2 using the Gaussian
puff (CALPUFF) and street-canyon model (SIRANE). The SIRANE model is based on
transformations involving NO, NO2, and O3 (in the Leighton cycle). Shekarrizfard et al. [22]
reported CALMET-CALPUFF for the assessment of the effects of a regional transit policy
on air quality and population exposure. Soulhac et al. [23] utilized the SIRANE dispersion
model to assess the transfer of pollutants within and out of an urban canopy.

Stochastic models are statistical or semi-empirical techniques for estimating trends,
periodicity, and the interrelationship between air quality and atmospheric measurements,
and forecasting air pollution episodes. These models are instrumental in real-time forecast-
ing or relatively short periods, where available information from measurements is relevant
(immediate estimates) [24]. The most well-known model is the Box–Jenkins approach (for
example, ARIMA and SARIMA).

Gocheva-Ilieva et al. [17] examined the concentrations of NO, NO2, NOx, and ground-
level O3 in a town in Bulgaria for one year using hourly data. The obtained SARIMA
models demonstrated a very good fitting performance and short-term predictions for the
next 72 h.

Kumar and Jain [25] used ARIMA, after a suitable variance stabilizing transformation
of the concentration time series (O3, CO, NO, and NO2), to model data collected at a traffic
station in Delhi (India). Zhu [26] compared the ARIMA and exponential smoothing models
on 2014 concentrations of NO2 and O3 in the Yanqing county, Beijing, China. Munir and
Mayfield [27] used auto-regressive integrated moving average with exogenous variables
(ARIMAX) to model the distributions and temporal variability of NO2 concentrations in
Sheffield, UK, from August 2019 to September 2020. Using cross-validation ARIMAX,
the authors found a strong correlation between the predicted values and the measured
concentrations (the correlation coefficient was 0.84 and RMSE was 9.90). Hajmohammadi
and Heydecker [28] developed a vector autoregressive moving average model to assess
the air quality in London in 2017. The authors cross-validated the model using kriging
to achieve spatial interpolation of NO, NO2, and NOx, respectively. Moreover, seasonal
ARMA models of the air quality across London for 30 individual stations were validated.
This study established that the VARMA model is appropriate for evaluating interventions,
such as the Ultra-Low Emissions Zone.

Artificial neural networks (ANNs) have been widely used for modeling processes that
present high variability and nonlinearities, such as those related to air pollution. Gardner
and Dorling [29] employed a multilayer perceptron (MLP) artificial network to model NO
and NO2 concentrations in London and showed that the variation in emissions could be
modeled using the time of day and day of the week as input variables.

Based on the literature findings, and\ given the superior performances of deterministic
methods, Rahimi [30] utilized ANN to develop a model that provided accurate short-term
(hourly) predictions of NOx and NO2 series in Tabriz, Iran. Dragomir et al. [31] presented
an evaluation of the efficiency of artificial neural networks (ANNs) and the multiple linear
regression (MLR) model for NO2 prediction in 3 scenarios (by randomly eliminating (1) 25%,
(2) 50%, or (3) 75% of the observed NO2 data) in Brăila city, Romania, from 2009–2013. The
analysis results demonstrated that the NO2 values estimated using MLR and ANNs were
similar to the measured NO2 concentrations (the corresponding coefficients were (1) 0.580,
0.604; (2) 0.589, 0.565; and (3) 0.474, 0.483). The best outcomes were achieved for the ANN
values in all scenarios.
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Multilayer perceptron is a type of neural network used in the studies of Baawain
and Al-Serihi [32], Jiang et al. [33], and Hrsut et al. [34] to model NO, NO2, NOX, O3 [32],
NO2 [33], NOx, and O3 [34] in an industrial port, Shanghai, and a site in an urban residential
area in Zagreb, Croatia, respectively. Moustris et al. [35] provided a 3-day forecast for the
NO2 and O3 series in Athens using an MLP network. Agirre-Basurko et al. [36] compared
the performances of MLP and linear regression approaches on O3 and NO2 series and
Kukkonen et al. [37] on NO2 series.

Another approach that has provided good results in predicting NOx and NO2 series is
based on support vector regression and was utilized by Wang et al. [38] and Osowski and
Garanty [39]. The last two authors also proposed a discrete wavelet decomposition for the
data series.

Different scientists have searched for the best model for series forecasting. For ex-
ample, Hajek and Olej [40] used SVR, TSFIS, and MLP for NO2, NOX, and O3 prediction.
Lin et al. [41] compared the ability of GRNN, SVR, MLP, and SARIMA to forecast NO2
and NOx concentrations. Singh et al. [42] utilized linear regression, MLP, GRNN, and RBF
neural networks for NO2 prediction in an urban area.

With the same idea, Liu et al. [43] presented a combined prediction model of the
NO2 concentration in Tianjin, China. The authors reported the results obtained using the
discrete wavelet decomposition and neural network method. They concluded that when
utilizing a series of pollutant concentrations with different frequencies, it is possible to
describe the data characteristics better. A high-dimensional nonlinear learning algorithm
was produced when the prediction model was built using an LSTM neural network, but the
overall prediction accuracy was the highest. The best forecast of the NO2 concentrations
was obtained using the DWT-LSTM neural network method. Wang et al. [44] presented a
hybrid approach consisting of the NOx emission prediction model based on CEEMDAN
and AM-LSTM.

In a study examining population exposure to traffic-related NOx air pollution,
Shekarrizfard et al. [45] showed that improving the estimation of pollutant exposure is
essential for estimating the effects of pollution.

Regardless of the chosen model type, it can only be used when the pollutant concen-
trations are known. Otherwise, an emissions inventory is helpful.

The National Inventory of Greenhouse Gas Emissions under the United Nations
Framework Convention on Climate Change presents the levels of emissions/sequestration
of greenhouse gases. They are structured according to the categories of activities and pollu-
tants. The emissions represent aggregate annual values of the contribution of a particular
type of source of a specific contaminant. The National Inventory of Air Pollutant Emissions
reported to the Convention on Long-Range Transboundary Air Pollution Secretariat rear-
ranges the data by national environmental principles. Finally, the conversion of data from
national emission inventories is performed based on the national classification of economic
activities, creating a relationship between environmental variables (emission level) and
economic variables (value-added, turnover, etc.) according to the National Institute of
Statistics methodology on account of air pollutant emissions (MAAPE-Air) [46].

In Romania, the National Air Quality Monitoring Network (NAQMN) [15] has
41 centers where data is collected from recording stations. After preliminary validation,
data is transmitted for certification to the Air Quality Assessment Center of the National
Agency for Environmental Protection. In Romania, Law no. 104/2011 [47] regulates the
rules that ensure ambient air quality. Based on the air quality assessment, the number, type,
and location of the fixed measurement points and assessed pollutants are determined. The
agglomerations are classified into three classes (A, B, or C) based on the results of the na-
tional air quality assessment using measurements at fixed locations taken at the measuring
stations of the Network of the National Air Quality Monitoring Authority, and the results
obtained from the mathematical modeling of the dispersion of pollutants emitted into the
air. The pollutants taken into account are sulfur dioxide, nitrogen dioxide, nitrogen oxides,
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particulate matter, lead, benzene, carbon monoxide, ozone, arsenic, cadmium, mercury,
nickel, and benzo [15].

The specific air quality index, in short, “specific index”, is a system used for cod-
ing the recorded concentrations for each of the monitored pollutants (SO2, NO2, O3,
PM2.5, and PM10) and is established for each of the automatic stations within the Na-
tional Air Quality Monitoring Network as being the highest of the specific indices cor-
responding to the monitored pollutants. The general index and specific indices are
represented by integers between 1 and 6, with each number corresponding to a color
(1—good—turquoise, 2—acceptable—green, 3—moderate—yellow, 4—bad—red, 5—very
bad—burgundy, 6—extremely bad—violet). The specific indices and the general index of
the station are updated hourly [48]. For example, Figure 1 shows a recent map of the air
quality in Romania.

Atmosphere 2022, 13, x FOR PEER REVIEW 5 of 26 
 

 

at the measuring stations of the Network of the National Air Quality Monitoring 

Authority, and the results obtained from the mathematical modeling of the dispersion of 

pollutants emitted into the air. The pollutants taken into account are sulfur dioxide, 

nitrogen dioxide, nitrogen oxides, particulate matter, lead, benzene, carbon monoxide, 

ozone, arsenic, cadmium, mercury, nickel, and benzo [15]. 

The specific air quality index, in short, “specific index”, is a system used for coding 

the recorded concentrations for each of the monitored pollutants (SO2, NO2, O3, PM2.5, 

and PM10) and is established for each of the automatic stations within the National Air 

Quality Monitoring Network as being the highest of the specific indices corresponding to 

the monitored pollutants. The general index and specific indices are represented by 

integers between 1 and 6, with each number corresponding to a color (1—good—

turquoise, 2—acceptable—green, 3—moderate—yellow, 4—bad—red, 5—very bad—

burgundy, 6—extremely bad—violet). The specific indices and the general index of the 

station are updated hourly [48]. For example, Figure 1 shows a recent map of the air 

quality in Romania. 

 

Figure 1. Map of the air quality in Romania (updated 22 March 8:20:00) (retrieved from 

https://www.calitateaer.ro/public/home-page/?__locale=ro (accessed on 10 March 2022). 

The critical concentration levels established by Romanian law [47] for NOX/NO2 is as 

follows: 400 µg/m3—alert threshold; 200 µg/m3 NO2—hourly limit value for human health 

protection; 40 µg/m3 NO2—the annual limit value for the protection of human health; and 

30 µg/m3 NOx—annual critical level for vegetation protection. 

The results of studies have shown that the average number of days on which there is 

good air quality in big cities in Romania (Bucharest [49], Timisoara [50–52], Cluj-Napoca 

[53], Constanta, and the surrounding area [54,55], etc.) has decreased year by year. 

Since NO2 pollution in different European cities remains high (>40 µg/m3 is the 

maximum accepted annual mean concentration) and given its harmful effects on 

population health [14,46], continuous monitoring is required. 

Understanding the existence of anomalies existence is becoming an important topic 

in the investigation of air quality. Anomalies are values in a data series that are unusual 

or dissimilar from the remaining data. They may be irregular items resulting from unusual 

or unexpected events, indicating abnormal behavior [56,57]. The analysis of anomalies is 

Figure 1. Map of the air quality in Romania (updated 22 March 8:20:00) (retrieved from
https://www.calitateaer.ro/public/home-page/?__locale=ro (accessed on 10 March 2022).

The critical concentration levels established by Romanian law [47] for NOX/NO2 is
as follows: 400 µg/m3—alert threshold; 200 µg/m3 NO2—hourly limit value for human
health protection; 40 µg/m3 NO2—the annual limit value for the protection of human
health; and 30 µg/m3 NOx—annual critical level for vegetation protection.

The results of studies have shown that the average number of days on which there is
good air quality in big cities in Romania (Bucharest [49], Timisoara [50–52], Cluj-Napoca [53],
Constanta, and the surrounding area [54,55], etc.) has decreased year by year.

Since NO2 pollution in different European cities remains high (>40 µg/m3 is the
maximum accepted annual mean concentration) and given its harmful effects on population
health [14,46], continuous monitoring is required.

Understanding the existence of anomalies existence is becoming an important topic in
the investigation of air quality. Anomalies are values in a data series that are unusual or
dissimilar from the remaining data. They may be irregular items resulting from unusual
or unexpected events, indicating abnormal behavior [56,57]. The analysis of anomalies is
necessary for the detection of the source of their occurrence [57]. Hawkins et al. [58] stated
that the values of series collected in polluted areas can behave as anomalies (outliers).

https://www.calitateaer.ro/public/home-page/?__locale=ro
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Despite the importance of the detection of outliers in atmospheric sciences, only a
few articles, especially in the last years, have investigated this aspect and proposed new
approaches for the better selection of such values [56–60].

In the above context, this study aimed to identify the anomalies in a nitrogen oxide
series in Timisoara, one of Romania’s most prosperous industrial cities. The motivations
for this study are as follows:

1. Only a few studies have been devoted to studying the existence of outliers in a
pollutant series, with none of them using data collected in Romania.

2. Only a few articles have used hybrid approaches to model pollutant series, with
most of them being based on atmospheric circulation models, not on the Box–Jenkins
artificial neural network approach.

3. Very few studies have attempted to improve the quality of models after the removal
of aberrant values from the time series.

Therefore, three models are proposed for a raw series including nitrogen oxides and
ozone, and the series after the removal of outliers. Their performances are compared to
determine the influence of the aberrant values on the models’ quality.

2. Materials and Methods
2.1. Data

The geographical area of this study is Timiş county, located in the southwest Romania
plain (Figure 2). The most important city in this county is Timis, oara, situated at 45◦44′

northern latitude and 21◦13′ eastern longitude. It is one of the most prosperous economic
and university cities. After 1990, transport, especially by cars, recorded an accelerated
increase (reaching 1 car for every 2.66 inhabitants in 2017).

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 26 
 

 

necessary for the detection of the source of their occurrence [57]. Hawkins et al. [58] stated 

that the values of series collected in polluted areas can behave as anomalies (outliers). 

Despite the importance of the detection of outliers in atmospheric sciences, only a 

few articles, especially in the last years, have investigated this aspect and proposed new 

approaches for the better selection of such values [56–60]. 

In the above context, this study aimed to identify the anomalies in a nitrogen oxide 

series in Timisoara, one of Romania’s most prosperous industrial cities. The motivations 

for this study are as follows: 

1. Only a few studies have been devoted to studying the existence of outliers in a 

pollutant series, with none of them using data collected in Romania. 

2. Only a few articles have used hybrid approaches to model pollutant series, with most 

of them being based on atmospheric circulation models, not on the Box–Jenkins 

artificial neural network approach. 

3. Very few studies have attempted to improve the quality of models after the removal 

of aberrant values from the time series. 

Therefore, three models are proposed for a raw series including nitrogen oxides and 

ozone, and the series after the removal of outliers. Their performances are compared to 

determine the influence of the aberrant values on the models’ quality. 

2. Materials and Methods 

2.1. Data 

The geographical area of this study is Timiş county, located in the southwest 

Romania plain (Figure 2). The most important city in this county is Timișoara, situated at 

45°44′ northern latitude and 21°13′ eastern longitude. It is one of the most prosperous 

economic and university cities. After 1990, transport, especially by cars, recorded an 

accelerated increase (reaching 1 car for every 2.66 inhabitants in 2017). 

 

Figure 2. (a) Timișoara city (with the air monitoring stations, TM-1, TM-2, TM-4, and TM-5); (b) Map 

of Romania (http://www.destination360.com/europe/romania/map (accessed on 20 March 2022)) 

Therefore, the pollution produced by this sector has proportionally increased. 

The climate is moderate continental, with winds blowing from west and north-west, 

and an annual precipitation of 650 L/m2. The atmospheric circulation favors the 

accumulation of pollutants emitted in industrial zones and car exhaust above the city. 

Figure 2. (a) Timis, oara city (with the air monitoring stations, TM-1, TM-2, TM-4, and TM-5); (b) Map
of Romania (http://www.destination360.com/europe/romania/map (accessed on 20 March 2022)).

Therefore, the pollution produced by this sector has proportionally increased.
The climate is moderate continental, with winds blowing from west and north-west,

and an annual precipitation of 650 L/m2. The atmospheric circulation favors the accumula-
tion of pollutants emitted in industrial zones and car exhaust above the city.

Data (NO, NO2, and NOx and O3 concentrations) recorded at the monitoring station
TM2 (C. D. Loga Blvd.—45◦45′16.88′′ N; 21◦14′05.91′′ E, 92 m altitude) were downloaded

http://www.destination360.com/europe/romania/map
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daily from the NAQMN website [15] during the period 1 January–8 June 2016. They formed
complete sets (Figure 3) without gaps. It is noted that the highest values were recorded
for the NOx series during the period March-April 2016 and for NO in the second half of
May. The NO series exhibited the lowest variability. The existence of periods when the
NOx concentrations were much higher than the sum of the NO and NO2 concentration
is also noted, given that apart from NO and NO2, NOx incorporates other nitrogen oxide
species that can accumulate in the atmosphere in periods of calm before participating in
chemical reactions.
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An example of the hourly air quality at the studied station during the period 1–21
March 2021 is presented in Figure 4a and the average annual concentration of NO2 in
Timisoara during the period 2000–2019 is presented in Figure 4b.

2.2. Methodology
2.2.1. Statistical Analysis

The hourly data were processed to build the average data series, which was studied.
The statistical analysis consisted of normality, homoskedasticity, autocorrelation, and sta-
tionarity tests, using the Shapiro–Wilk and Fligner–Killeen test, Levene test, autocorrelation
function, and KPSS test, respectively. The Pettitt test was used to address the existence of a
change point (in mean) [3].

Anomaly (aberrant) detection is used in many domains, such as manufacturing error
detection, attack detection in cybersecurity, stroke recognition in EEG measurement, etc.

Anomalies are observations that deviate significantly from the expected behavior
and cannot be categorized as noise or measurement error, and thus cannot be easily
discarded [61]. In the case of anomalies, the unexpected event might be the study object.

Fox et al. [61] define two types of anomalies: type I, affecting a single instance; and
type II, where the anomalous behavior extends in time.

Anomaly detection can be studied in both the univariate and multivariate time do-
mains, with the latter possibly implying multiple dimensions that display anomalies
simultaneously or even waterfall effects. Here, we focused on the univariate case.

Most techniques used for anomaly detection in time series consider the time aspect, ei-
ther in the vicinity or globally, using the entire data series to mark the anomalies. Four such
methods were applied in this study [62]. One of the most popular, called the IQR method,
considers values outside the interval (Q1 − 1.5 IQR, Q3 + 1.5 IQR) as anomalies (Q1 is the
first quartile, Q3 is the third quartile, and IQR is the interquartile range). Sometimes, the
term 1.5 is replaced by 3.
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The second method employed in this study is isolation forest (IF) [63–65]. It relies on
the concept of isolating unusual instances, as opposed to determining the properties of
normal samples and then examining non-matching patterns. It achieves anomaly detection
by building isolation trees (ITs), where anomalies are often represented as existing closer to
the root of the IT, rather than higher at the leaves, where regular data points are found.

To build the trees, IF generates recursive partitioning of the dataset (Figure 5) by
randomly selecting a dimension in the dataset, followed by a recursive split of the specific
dimension anywhere between the minimum and maximum value of the remaining set.
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A path length of a point x, PL(x), is computed as the number of edges x that traverse
an isolation tree from the root node until the traversal is terminated at an external node.

Computing the path length means to count the number of partitioning steps required
to isolate a data point. The lower the path length or tree height value, the higher the
probability of a specific instance being an anomaly.

The average path lengths for instances are then used to evaluate the probabilities of
data points showing anomalous behavior.

The application of IF for anomaly detection has two main steps:

1. Building and training the isolation trees.
2. Assigning anomaly scores to data points based on PL by computing the tree height

length as binary search trees.

The anomaly score s of an instance x is defined as:

s(x, n) = 2−E(L(x))/c(n), (1)

where E(L(x)) is the average of L(x) from a collection of isolation trees, and c(n) is the
average of L(n) given n instances.

3. Using the anomaly scores, the following decision is made:

(a) If instances have an s value that is much smaller than 0.5, then they are considered
normal instances;

(b) If all the instances have s ≈ 0.5, then the entire sample does not have any distinct
anomaly;

(c) Instances with an s value larger than 0.5 are marked as anomalies [63].

While IQR and IF detect global outliers, LOF mainly identifies local outliers [42].
The decision regarding whether an outlier is local is made based on an evaluation of the
associated probability, determined by the k-nearest neighbors (kNN) method [66].

To determine if a point p in a study set is an outlier, the following operations are
performed in LOF [67] for p: (a) computation of the k-distance; (b) computation of the kNN;
(c) calculation of the local reachability density; and (d) detection of the LOF score. Point p
is classified as an outlier by comparing the score with a given threshold.

The last method utilized to detect both types of anomalies—local and global—in the data
series is the generalized extreme studentized deviate test (GESD) [68]. Its stages are as follows:

• Analyze the existence of periodicity in the data series;
• Divide the series into non-overlapping intervals Iw;
• For each interval:

# Determine the seasonal compound (if it exists);
# Compute the median;
# Extract the residual, as the difference between the values of the series, the median,

and the seasonal component;
# Run the ESD algorithm (with the median and mean absolute error in the compu-

tation of the test statistics) [69].

• Return the outliers obtained from the previous stage.

The advantage of this technique is that it can be used even if the timestamps are unknown.
The correlation between the four series and the series anomalies, respectively, is

addressed by computing the correlation coefficients. In the case of low correlations, models
were built only for the individual series.

2.2.2. Modeling

This work emphasizes how aberrant values (anomalies) influence the quality of models
built using raw series and after their removal. ARIMA, GRNN, and hybrid ARIMA-GRNN
models were built for the raw series and the series obtained after removing the aberrant values.
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A time process (Xt, t∈Z) is stationary if it satisfies the following conditions:

• ∀t ∈ Z, M
(
X2

t
)
< +∞;

• ∀t ∈ Z, M(Xt) < +∞ and is invariant in time (M denotes the expectation);
• ∀t, h ∈ Z, Cov(Xt, Xt+h) = γ(h) (i.e., the covariance of Xt and Xt+h depends only on

the lag h).

Let us denote the d-the order difference of Xt by ∆dXt, where B is the backshift operator.
A time process (Xt; t∈Z) is called an autoregressive integrated moving average process

ARIMA(p,d,q) if:
Φ(B)∆dXt = Θ(B)εt, (2)

where Φ and Θ are respectively polynomials of p and q orders with roots higher than 1,
respectively, and (εt, t∈Z) is white noise [70].

Among two valid models, the best one is selected based on the Akaike criteria. The
lower the AIC value, the better the model is [70].

An ARIMA(p, q) process is a particular case of ARIMA, with d = 0.
Generally, a stationary process can be approximated by an ARMA(p, q) model.
The generalized regression neural network belongs to the group probabilistic neural

networks. It is composed of four layers (Figure 6) [71].
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Figure 6. The structure of a GRNN.

The first one—input—contains the series values X = (x1, . . . , xn). The second
one—hidden—is composed of neurons that apply a kernel function to the distances be-
tween the training data and the prediction point. In this process, σ values are employed
to compute the radius of influence. The best σ is determined when the network is trained
to control the distributions of the kernel function. In this study, the Gaussian kernel was
utilized, and the gradient algorithm was employed to estimate the best σ [71].

In this study, the interval 0.0001–10 was used to search for σ values in.
The number of neurons in the hidden layer after training is the same as the number of

training samples involved in the modeling. The unnecessary neurons are removed based
on the error minimization criterion during an optimization process [71,72].

The summation layer is composed of two neurons (D- and S-) that sum up the values
collected from the previous layer. The only difference between them is that the D-summation
neuron computes a weighted sum of the values resulting from the hidden layer [72].

The last layer (output) provides the ratios between the corresponding values from the
D- and S- summation neurons.

To perform the modeling, the series was divided into a ratio training:test = 80:20, with
the first part used for training, and the second part for testing. The number of iterations
was fixed at 5000 (maximum) and 1000 (without improvement). The regressors were
considered as lagged variables, with lags between 1 and 6. The algorithm was run with
different regressors, and the best result was kept. The correlation between the actual and
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predicted values (rap), mean standard error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and R2 were employed.

In the hybrid ARIMA–GRNN procedure, an ARIMA model was first built for the data
series, and then the residual was modeled using GRNN. The same setting that was used in
the GRNN algorithm for the data series was kept when running GRNN for the residuals in
the ARIMA model.

The ability to capture nonlinearities, the use of nonparametric regression, and learn-
ing without backpropagation is recommended regarding GRNN to solve classification,
regression, and forecast problems involving continuous variables [71,72]. These characteristics
improve ARIMA’s capabilities to model processes with phenomena with high linear dynamics.

Figure 7 shows a flowchart of the study.
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3. Results and Discussion
3.1. Results of the Statistical Analysis and the Anomaly Detection

The basic statistics of the average data series are presented in Table 1.

Table 1. Basic statistics of the pollutant series during the study period.

Statistics NOx NO NO2 O3

min (µg/m3) 0.00 1.60 0.00 12.04
max (µg/m3) 179.34 150.12 67.86 91.28

mean (µg/m3) 32.63 9.87 15.67 42.72
stdev (µg/m3) 24.81 16.27 10.53 18.71

cv 0.76 1.64 0.67 0.44
skew 3.00 5.28 1.78 0.33
kurt 10.82 37.00 4.64 −0.66

The NO and NOx series display a very high range while the NO2 and O3 ranges are
more than twofold lower compared to those of the first two series. The lowest average
corresponds to NO. It is very small compared to the maximum, indicating that most
series values are closer to the minimum than to the maximum. NOx showed low average
values compared to the maximum for. All series had moderate standard deviations (stdev)
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and coefficient of variations, indicating a moderate dispersion of the data series around
the average values. The series are right-skewed (skew >0), which is confirmed by the
histograms shown in Figure 8. The kurtosis coefficient indicates leptokurtic distributions
for all but the O3 series (which is platykurtic).
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The normality and randomness hypotheses were rejected at the significance level of
5%. The homoscedasticity hypothesis was rejected for the NOx series only (the p-value
computed in the Levene test is 0.022). Figure 9 shows the presence of at least first-order
autocorrelation for all the data series.
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The KPSS test rejected hypothesis of level-stationarity for NO2 and O3, and trend-
stationarity for NOx and O3.

After applying the change point test, the hypothesis that there is no change point
could not be rejected for all the series. Two subseries were detected for each series. The
change point and the subseries averages are presented as follows, where mean 1 is the
average of the subseries containing the values before the change point, and mean 2 is the
average of the subseries formed by the values after the change point:

• For NO: the change point is the 98th value, mean 1 = 12.611, mean 2 = 5.659;
• For NO2: the change point is the 92nd value, mean 1 = 19.454, mean 2 = 10.544;
• For NOX: the change point is the 87th value, mean 1 = 40.426, mean 2 = 23.348;
• For O3: the change point is the 55th value, mean 1 = 25.554, mean 2 = 51.182.

So, the series presents high variability. The higher the variation is, the more difficult it
is to find a good model.

The IQR method with a factor of 1.5 (and 3) detected the values situated outside the
following intervals as outliers:

• [−7.5305, 20.65750] and [−18.101, 31.228] for NO;
• [−10.1676, 39.0445] and [−28.622, 57.499] for NO2;
• [−3.825, 57.975] and [−27, 81.15] for NO3;
• [−14.195, 97.205] and [−55.97, 148.98] for O3.

This study was performed in the first case because the use of three reduces the domain
of the anomalies. Therefore, based on this criterion, values recorded on the following days
were outliers:

• 4, 5, and 9 February; 23–29 March; and 21 May for NO;
• 11 and 25 February; 7–11 and 23, 28, and 29 March; and 27, 29, and 30 May for NO2;
• 1, 9–13, 16, 17, and 19–22 March; and 7 May for NOx;
• 6, 7, 13, and 29 January; 5 February; 5 and 28 March; 1, 2, 6, 8, 12, 14, 15, 18, 21, and

22 April; and 7 June for O3.

The NO, NO2, and NOx series, with the anomalies determined by IF, are presented in
Figure 10. The aberrant values are mostly very high, especially for NO and NOx.

IF provided more anomalies in comparison to IQR, but most of the aberrant values
detected by the IQR method were also identified by IF. The aberrant values identified by IF
included the values recorded on the following days:

• 1–10, 17, 18, and 22 January; 2, 3, 11, 25, 28, and 29 February; 7–11 and 23, 28, and
29 March; 27 April; 19 and 27–30 May; and 1, 3, and 6–8 June for NO;

• 11 and 25 February; 23 March; 27, 29, and 30 May; and 1, 6, and 9 June for NO2;
• 1–5, 9, 13, 17, 22, and 29 January; 4–6, and 29 February; 1, 9–13, and 16–22 March;

7 and 19 May; and 4–8 June for NOx;
• 1–7, 9, 13, 17, 18, 28, and 29 January; 1, 5–7, 13, 15, and 23 February; 5, 6, 22, and 28 March;

1, 2, 6, 15, 18, 21, 22, and 28 April; 4, 30, and 31 May; and 1–8 June for O3.

Given the common origin of nitrogen oxides and the chemical reactions that occur
when O3 is present, as explained in the introduction, the correlations between the concen-
trations of the studied pollutants were investigated. Figure 11 presents (a) the correlations
between the NO, NO2, NOx, and O3 series and (b) the correlations between the series of
anomalies detected by IF. While no significant correlations between the pollutant series
were detected (the correlation coefficients range from−0.18 to 0.22), the highest correlations
were identified between the O3 anomalies and NOx anomalies (NO2 and NO anomalies,
respectively), with a value of 0.51 (0.43 and 0.33, respectively). Still, these values do not
show a strong correlation between the aberrant series.
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Figure 11c depicts the NOx and O3 series, and their anomalies.
Figure 12 displays the series with the highlighted anomalies determined by LOF.

Notice that the IF approach provided a higher number of anomalies than LOF. This result is
due to the LOF algorithm only considering neighboring values rather than the entire series.
Five common anomalies are provided by IF and LOF for NO, NOx, and O3, and seven for
NO2. The correlation between the series anomalies is close to zero. Figure 13 shows the
anomalies detected by GESD. This algorithm did not find any anomalies in the O3 series,
3 for NO2 (25 February, 29 March, and 29 May), and 11 for NOx (9–13 and 16–22 March).
The outliers detected by this algorithm and IQR for NO are the same. Since no significant
correlation between the data series was found, we did not search for a regression model,
linking different variables. The next section contains the results of modeling the data series
before and after the removal of the anomalies.
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3.2. Models for the NO2 Series

As presented in the previous section, the NO2 series is not Gaussian. Since the
normality of the series was achieved through a Box–Cox transformation with the parameter
λ = 0.130, the series was firstly normalized and then stationarized by taking the first-order
difference. Using the Akaike criterion and the capabilities of R software, the best ARIMA
model for the transformed series (denoted NO2BC) was the ARMA(1,1) type, with an
autoregressive coefficient AR1 = 0.4728, moving average coefficient MA1 = −0.9069, and
corresponding standard errors of the coefficients of 0.0973 and 0.0505. The values of the
goodness of fit indicators for the model are a mean error (ME) = 0.0380, RMSE = 0.6488,
MAE = 0.4543,—mean percentage error (MPE) = 0.268, and MAPE = 15.8283.

Figure 14a shows the NO2BC series and the estimated one, whereas Figure 14b–d
present the residual series, the residual autocorrelation function, and its histogram.
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Figure 14a shows good concordance between the recorded values (blue) and those
estimated by the model (red). Figure 14c reveals no residual autocorrelation. The histogram
(d) shows a mean value of the residuals of about zero and an almost symmetrical distribu-
tion of the residuals. The normality test of the residual series could not reject the normality
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hypothesis while the Levene test rejected the homoskedasticity one. Therefore, the residuals
do not form white noise; so, the model could not be validated from a statistical viewpoint.

Figure 15 presents the chart of the GRNN model for the normalized NO2 BC series
after removing the exponential trend with the following equation:

(NO2 BC)t = 5.8286 − 2.1721 × exp(0.00296t), (3)

where (NO2 BC)t is the concentration of the value of the NO2 BC series at the moment t.
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Figure 15. GRNN model for the NO2BC series.

The model could learn the data well since the model’s total variance on the training set
is 76.135%, the correlation between the actual and predicted values is 0.8778, MSE = 0.177,
MAE = 0.2839, and MAPE = 9.9786. Still, on the test set, the results are worse. For example,
MSE = 1.5101, MAE = 0.8175, and rap = 0.4482.

Given that the ARIMA model could not be validated and the relative inability of GRNN
to apply what was learnt in the training phase in the test, we searched for a hybrid model
that could fit the data better and benefit from the ability of ARIMA to capture the linear
behavior and the ability of GRNN to catch the nonlinear one. The raw series was considered
to fit the ARIMA model, and then the residual series was subjected to GRNN modeling.

The best hybrid approach ARIMA-GRNN obtained for the NO2 series is described as
follows (Figure 16):
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• An ARIMA(2,1,1), with:

# The autoregressive and moving average coefficients (and standard deviations)
AR1 = 0.3584 (0.0834), AR2 = 0.1811 (0.0826), and MA1 = −0.9677 (0.0294);

# MSE = 81.4417, MAE = 5.6679, the first-order residual autocorrelation = 0.97973;
# AIC = 1161;
# MAPE could not be computed (there is a value equal to 0);

• The GRNN model for the residual, with a lagged 1 variable as the regressor, and:

# On the training set: R2 = 99.635%, rap = 0.998178, MSE = 0.2562, MAE = 0.1112,
MAPE = 27.4644.

# On the test set: R2 = 0.0635%, rap = 0.0578, MSE = 1222.97, MAE = 5.239,
MAPE = 84.36.

Therefore, the GRNN model learnt the data well but could not use what it learnt for
forecasting. Still, the new residuals are Gaussian.

Since the global anomalies were of interest, comparisons of the results provided by IQR,
GESD, and IF were made to identify the values that were removed before the modeling. In
the first stage, the common values provided by these methods were selected and removed
from the data series. IQR was applied again to the new series in the second stage. Finally,
the common values provided by IF remained after the first stage, and those from the second
stage were removed. This procedure was chosen considering most anomalies detected.

The ARIMA model for the series without aberrant values (called NO2New) was
an ARIMA(1,1,1) type, with the following autoregressive and moving average coeffi-
cients (with the corresponding standard errors in brackets): AR1 = 0.4671 (0.0955) and
MA1 = −0.9083 (0.0438), MSE = 15.95, MAE = 3.0694, MAPE = 30.76299, and AIC = 770.53.
The residual variance in the ARIMA(1,1,1) model is 15.8890. The residuals’ correlogram
and their histogram (Figure 17) indicate that this series is not correlated and is Gaussian
(confirmed by the Anderson–Darling test, where the p-value is 0.1269). The heteroskedastic-
ity hypothesis was also rejected. Therefore, from a statistical viewpoint, the ARIMA(1,1,1)
model is correct.
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the removal of aberrant values.

The forecast for the next 48 moments based on the above model is shown in Figure 18
(the right-hand side), in blue, together with the confidence intervals at the confidence levels
of 95% and 90% (different nuances of grey). The shape of the forecast series is not similar to
that of the actual one. Its trend becomes almost linear after eight-time moments. Therefore,
the model cannot be utilized in a future forecast, even if it was statistically validated.

The GRNN model for NO2New is presented in Figure 19. The model learnt the data
in the training set well (R2 = 0.996). On the test set, MSE = 25.5047, MAE = 3.1555, and
MAPE = 27.9311, but R2 = 0.473 is not close to 1.

After comparing the GRNN performances on the initial series and that without aber-
rant values on the test set, the results of the last series are better. Still, the model should be
improved because the blue dots—representing the computed values on the test set (valida-
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tion in Figure 19) are not close enough to the recorded values, which were represented by
the black line.

The hybrid ARIMA–GRNN model was built using the above ARIMA(1,1,1), whose
residuals were modeled by GRNN (Figure 20).

The neural network learnt the data well. Indeed, on the left-hand side of Figure 20,
the actual values and the computed ones (called predicted) are practically superposed on
each other (the black and the green lines). It also performed well on the test set. On the
right-hand side of Figure 20, the recorded values (black) and computed values (blue) are
close. To confirm the model’s goodness, Figure 21 displays the actual vs. predicted values
in the residual modeling. The dots built by pairs of actual and predicted values of residuals
are displayed along the diagonal (representing the ideal case of perfect superposition
between the actual and computed values), indicating that the ARIMA-GRNN model
performs very well. Therefore, the best model for the series without aberrant values is the
ARIMA(1,1,1)–GRNN model.

Atmosphere 2022, 13, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 18. The forecast based on the ARIMA(1,1,1) model—the blue line—and the confidence 

intervals at 95% and 90%—different nuances of grey. 

Figure 19. GRNN model for the NO2 series after the removal of anomalies. 

After comparing the GRNN performances on the initial series and that without 

aberrant values on the test set, the results of the last series are better. Still, the model 

should be improved because the blue dots—representing the computed values on the test 

set (validation in Figure 19) are not close enough to the recorded values, which were 

represented by the black line. 

The hybrid ARIMA–GRNN model was built using the above ARIMA(1,1,1), whose 

residuals were modeled by GRNN (Figure 20). 

Figure 18. The forecast based on the ARIMA(1,1,1) model—the blue line—and the confidence
intervals at 95% and 90%—different nuances of grey.

Atmosphere 2022, 13, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 18. The forecast based on the ARIMA(1,1,1) model—the blue line—and the confidence 

intervals at 95% and 90%—different nuances of grey. 

Figure 19. GRNN model for the NO2 series after the removal of anomalies. 

After comparing the GRNN performances on the initial series and that without 

aberrant values on the test set, the results of the last series are better. Still, the model 

should be improved because the blue dots—representing the computed values on the test 

set (validation in Figure 19) are not close enough to the recorded values, which were 

represented by the black line. 

The hybrid ARIMA–GRNN model was built using the above ARIMA(1,1,1), whose 

residuals were modeled by GRNN (Figure 20). 

Figure 19. GRNN model for the NO2 series after the removal of anomalies.



Atmosphere 2022, 13, 558 20 of 25
Atmosphere 2022, 13, x FOR PEER REVIEW 21 of 26 
 

 

Figure 20. GRNN of the residual in the ARIMA(1,1,1) model for the series after the 

removal of anomalies. 

The neural network learnt the data well. Indeed, on the left-hand side of Figure 20, 

the actual values and the computed ones (called predicted) are practically superposed on 

each other (the black and the green lines). It also performed well on the test set. On the 

right-hand side of Figure 20, the recorded values (black) and computed values (blue) are 

close. To confirm the model’s goodness, Figure 21 displays the actual vs. predicted values 

in the residual modeling. The dots built by pairs of actual and predicted values of 

residuals are displayed along the diagonal (representing the ideal case of perfect 

superposition between the actual and computed values), indicating that the ARIMA-

GRNN model performs very well. Therefore, the best model for the series without 

aberrant values is the ARIMA(1,1,1)–GRNN model. 

 

Figure 21. Actual vs. predicted values in the GRNN model of the residual from the ARIMA(1,1,1). 

after the removal of aberrant values. 

Since similar results were obtained for the NO and NOx series, the authors did not 

repeat the entire procedure. 

3.3. Models for the O3 Series 

The same approach was followed to build models for the O3 series. Given that high 

O3 concentrations may negatively impact human health, a good forecast can provide 

information for early warning. The first approach provided an ARIMA(0,1,2) model for 

the raw data series. The series had to be stationarized before modeling (the degree of 

Figure 20. GRNN of the residual in the ARIMA(1,1,1) model for the series after the removal of anomalies.

Atmosphere 2022, 13, x FOR PEER REVIEW 21 of 26 
 

 

Figure 20. GRNN of the residual in the ARIMA(1,1,1) model for the series after the 

removal of anomalies. 

The neural network learnt the data well. Indeed, on the left-hand side of Figure 20, 

the actual values and the computed ones (called predicted) are practically superposed on 

each other (the black and the green lines). It also performed well on the test set. On the 

right-hand side of Figure 20, the recorded values (black) and computed values (blue) are 

close. To confirm the model’s goodness, Figure 21 displays the actual vs. predicted values 

in the residual modeling. The dots built by pairs of actual and predicted values of 

residuals are displayed along the diagonal (representing the ideal case of perfect 

superposition between the actual and computed values), indicating that the ARIMA-

GRNN model performs very well. Therefore, the best model for the series without 

aberrant values is the ARIMA(1,1,1)–GRNN model. 

 

Figure 21. Actual vs. predicted values in the GRNN model of the residual from the ARIMA(1,1,1). 

after the removal of aberrant values. 

Since similar results were obtained for the NO and NOx series, the authors did not 

repeat the entire procedure. 

3.3. Models for the O3 Series 

The same approach was followed to build models for the O3 series. Given that high 

O3 concentrations may negatively impact human health, a good forecast can provide 

information for early warning. The first approach provided an ARIMA(0,1,2) model for 

the raw data series. The series had to be stationarized before modeling (the degree of 
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after the removal of aberrant values.

Since similar results were obtained for the NO and NOx series, the authors did not
repeat the entire procedure.

3.3. Models for the O3 Series

The same approach was followed to build models for the O3 series. Given that high
O3 concentrations may negatively impact human health, a good forecast can provide
information for early warning. The first approach provided an ARIMA(0,1,2) model for
the raw data series. The series had to be stationarized before modeling (the degree of
differentiation being 1). The moving average coefficients (with the standard errors in the
brackets) are MA1 = −0.2971 (0.0789) and MA2 = −0.295(0.0884). The goodness of fit
indicators are MSE = 69.72703, MAE = −5.392056, and MAPE = 21.79388. The MSE value is
high due to the high variation in the errors. Despite their randomness, the residuals in the
ARIMA(0,1,2) did not form white noise because they are not Gaussian (the p-value in the
Anderson–Darling test is 0.0055 < 0.005) or homoskedastic. Figure 22 displays the residuals
in the ARIMA(0,1,2) model for O3, their histogram, and the correlogram. The residuals
chart in Figure 22 confirms the existence of high residual values. Since the model could not
be validated, its improvement was necessary.
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Figure 22. (a) The residual, (b) the histogram, and (c) the correlogram of the residual in the
ARIMA(0,1,2) model for O3.

The neural-network approach provided a GRNN model (Figure 23) that learnt the
data well but did not perform well on the test set. For example, on the training set, the
correlation between the actual and predicted values is 0.8634 while on the test set, it is only
0.5282. On the test set, the computed values (represented by blue circles) do not have the
same pattern as the recorded data (the black line).

Atmosphere 2022, 13, x FOR PEER REVIEW 22 of 26 
 

 

differentiation being 1). The moving average coefficients (with the standard errors in the 

brackets) are MA1 = −0.2971 (0.0789) and MA2 = −0.295(0.0884). The goodness of fit 

indicators are MSE = 69.72703, MAE = −5.392056, and MAPE = 21.79388. The MSE value is 

high due to the high variation in the errors. Despite their randomness, the residuals in the 

ARIMA(0,1,2) did not form white noise because they are not Gaussian (the p-value in the 

Anderson–Darling test is 0.0055 < 0.005) or homoskedastic. Figure 22 displays the 

residuals in the ARIMA(0,1,2) model for O3, their histogram, and the correlogram. The 

residuals chart in Figure 22 confirms the existence of high residual values. Since the model 

could not be validated, its improvement was necessary. 

 

Figure 22. (a)The residual, (b) the histogram, and (c) the correlogram of the residual in the 

ARIMA(0,1,2) model for O3. 

The neural-network approach provided a GRNN model (Figure 23) that learnt the 

data well but did not perform well on the test set. For example, on the training set, the 

correlation between the actual and predicted values is 0.8634 while on the test set, it is 

only 0.5282. On the test set, the computed values (represented by blue circles) do not have 

the same pattern as the recorded data (the black line). 

Figure 23. The GRNN model for the O3 series. 

The hybrid ARIMA-GRNN provided R2 = 99.681%, correlation between actual and 

computed values of 0.9984, MSE = 0.3965, MAE = 0.0606, and MAPE = 38.64744 on the 

training set. Still, the hybrid model did not perform well on the test set, since R2 = 5.898%, 

and the correlation between the actual and computed values = 0.333, so it cannot be used 

for prediction. 

Figure 23. The GRNN model for the O3 series.

The hybrid ARIMA-GRNN provided R2 = 99.681%, correlation between actual and
computed values of 0.9984, MSE = 0.3965, MAE = 0.0606, and MAPE = 38.64744 on the
training set. Still, the hybrid model did not perform well on the test set, since R2 = 5.898%,
and the correlation between the actual and computed values = 0.333, so it cannot be used
for prediction.

After removing the aberrant values from the O3 series, and performing the Mann–
Kendall test [73], the hypothesis that there is no monotonic trend was rejected. Using the
nonparametric method of Sen [74], it was found that the series presents an increasing trend,
with a slope of 0.310673. The KPSS test revealed nonstationarity in the level of this series. It
was found that the best model was ARIMA(0,1,0) with a drift of 0.310673 (the same as the
slope). The goodness of fit indicators showed very low residual values (RMSE = 0.00022,
MAE = 0.00233, MAPE = 0.000844), with no residual correlation. Given the model’s quality,
it is not necessary to improve it.
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From this model, it was found that the O3 series had an increasing trend over the
study period, which must be observed in the future, since the O3 concentration may reach
a level that is dangerous for the population.

4. Conclusions

The detection of aberrant values in time series has been a problem of interest for a long
time, given that their presence may influence the modeling results. Moreover, forecasting
based on derived models may be significantly biased by the existence of aberrant values.
Therefore, this study investigated the influence of the presence of anomalies on a series of
nitrogen oxide concentrations.

Given that some methodologies are used to search for different kinds of anomalies
(local or global), first, the results provided by LOF, IQR, IF, and GESD were compared.
Since the focus was placed on global aberrant values, their selection was made before using
the last three algorithms for modeling.

Three models were built for each NO2 raw series and after the removal of anomalies:
–ARIMA, GRNN, and a hybrid GRNN-ARIMA.

In the case of the NO2 series, the building of three models was necessary to improve
the initial model, even in the absence of anomalies. This was motivated by the following
reasons. An ARIMA model, for example, is not necessarily the best choice, given that
the residual must be white noise (a fact that is not always true). A GRNN model is not
appropriate because the R2 value or the correlation between the actual and predicted values
is not very high on both the training and test sets. The selection of the regressors in the
artificial intelligence-based approaches is not obvious. Their selection and number are
essential for determining the best model. Even in the absence of outliers, improvement of
the model is necessary to obtain a good forecast in the next stage. From this point of view,
the best model is one that provides the best forecast.

It was shown that the removal of anomalies resulted in better models than when they
were present. The ARIMA model for the raw data series could not be statistically validated
whereas, for the series without anomalies, it was correct from a statistical viewpoint. The
hybrid approach was also better than the ARIMA and GRNN on both NO2 series.

The hybrid approach provided the best model for the O3 raw series. After the removal
of aberrant values, the ARMA(0,1,0) with drift provided the best model for the series
evolution. Given that the model was statistically validated and the residual was extremely
low, it was unnecessary to search for another model. It was proved that the O3 series
presents a significant increasing trend (at a significance level of 5%). Given that high
ozone concentrations are harmful to the population’s health, keeping the ozone level under
observation is necessary.

As a future work in the same research direction, dynamical system approaches, such as
phase space reconstruction, will be introduced to analyze the dynamics of atmospheric pollutants.
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55. Bărbulescu, A.; Barbeş, L. Models for pollutants’ correlation in the Romanian littoral. Rom. Rep. Phys. 2014, 66, 1189–1199.
56. Torres, J.M.; Nieto, P.J.G.; Alejano, L.; Reyes, A.N. Detection of outliers in gas emissions from urban areas using functional data

analysis. J. Hazard. Mater. 2011, 186, 144–149. [CrossRef]
57. Shaadan, N.; Jemain, A.A.; Latif, M.T.; Deni, S.M. Anomaly detection and assessment of PM10 functional data at several locations

in the Klang Valley, Malaysia. Atmos. Poll. Res. 2015, 6, 365–375. [CrossRef]

http://doi.org/10.1186/s13717-016-0069-x
http://doi.org/10.1063/1.4937255
http://doi.org/10.4209/aaqr.2013.06.0191
http://doi.org/10.1016/j.atmosenv.2003.10.066
http://doi.org/10.1016/j.atmosenv.2009.07.048
http://doi.org/10.1007/s11270-009-0179-5
http://doi.org/10.1016/j.envsoft.2004.07.008
http://doi.org/10.1016/S1352-2310(03)00583-1
http://doi.org/10.1016/j.neucom.2007.07.020
http://doi.org/10.1016/j.engappai.2006.10.008
http://doi.org/10.1016/j.ecoinf.2012.09.001
http://doi.org/10.1016/j.amc.2010.11.055
http://doi.org/10.1016/j.scitotenv.2012.03.076
http://www.ncbi.nlm.nih.gov/pubmed/22542239
http://doi.org/10.1155/2021/6631614
http://www.ncbi.nlm.nih.gov/pubmed/33927755
http://doi.org/10.1016/j.fuel.2021.122486
http://doi.org/10.1016/j.envres.2016.02.039
https://op.europa.eu/webpub/eca/special-reports/air-quality-23-2018/en/
https://www.calitateaer.ro/export/sites/default/.galleries/Legislation/national/Lege-nr.-104_2011-calitatea-aerului-inconjurator.pdf_2063068895.pdf
https://www.calitateaer.ro/export/sites/default/.galleries/Legislation/national/Lege-nr.-104_2011-calitatea-aerului-inconjurator.pdf_2063068895.pdf
https://www.calitateaer.ro/public/monitoring-page/quality-indices-page/?__locale=ro
http://doi.org/10.5772/64919
http://doi.org/10.1016/j.jenvman.2017.02.052
http://doi.org/10.1016/j.jenvman.2017.02.047
http://doi.org/10.1007/s13762-020-02951-2
http://doi.org/10.3390/app10155331
http://doi.org/10.1016/j.jhazmat.2010.10.091
http://doi.org/10.5094/APR.2015.040


Atmosphere 2022, 13, 558 25 of 25

58. Hakins, S.J.; Gibbs, P.E.; Pope, N.D.; Burt, G.R.; Chesman, B.S.; Bray, S.; Proud, S.V.; Spence, S.K.; Southward, A.J.; Southward,
G.A.; et al. Recovery of polluted ecosystems: The case for long-term studies. Marine Environ. Resear 2002, 54, 215–222. [CrossRef]

59. Martínez, J.; Saavedra, Á.; García-Nieto, P.J.; Piñeiro, J.I.; Iglesias, C.; Taboada, J.; Sancho, J.; Pastor, J. Air quality parameters
outliers detection using functional data analysis in the Langreo urban area (Northern Spain). Appl. Math Comput. 2014, 241, 1–10.
[CrossRef]

60. van Zoest, V.M.; Stein, A.; Hoek, G. Outlier Detection in Urban Air Quality Sensor Networks. Water Air Soil Pollut. 2018, 229, 111.
[CrossRef]

61. Fox, A.J. Outliers in Time Series. J. Royal Stat. Soc. Ser. B 1972, 34, 350–363. [CrossRef]
62. Blázquez-García, A.; Conde, A.; Mori, U.; Lozano, J.A. A Review on outlier/Anomaly Detection in Time Series Data. ACM

Comput. Surv. 2021, 54, 1–33. [CrossRef]
63. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data

Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [CrossRef]
64. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation-based anomaly detection. ACM T. Knowl. Discov. D. 2012, 6, 3. [CrossRef]
65. Cheng, Z.; Zou, C.; Dong, J. Outlier detection using isolation forest and local outlier factor. In Proceedings of the RACS ‘19:

Proceedings of the Conference on Research in Adaptive and Convergent Systems, Chongqing, China, 24–27 September 2019;
pp. 161–168. [CrossRef]

66. Souiden, I.; Brahmi, Z.; Toumi, H. A Survey on Outlier Detection in the Context of Stream Mining: Review of Existing Approaches
and Recommadations. In Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing;
Madureira, A., Abraham, A., Gamboa, D., Novais, P., Eds.; Springer: Cham, Switzerland, 2017; Volume 557, pp. 372–383.

67. Alghushairy, O.; Alsini, R.; Soule, T.; Ma, X. A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data
Streams. Big Data Cogn. Comput. 2021, 5, 1. [CrossRef]

68. Vallis, O.; Hochenbaum, J.; Kejariwal, A. A Novel Technique for Long-Term Anomaly Detection in the Cloud. In Proceedings
of the 6th USENIX Workshop on Hot Topics in Cloud Computing, Philadelphia, PA, USA, 17–18 June 2014; Available online:
https://www.usenix.org/system/files/conference/hotcloud14/hotcloud14-vallis.pdf (accessed on 4 December 2021).

69. Rosner, B. Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics 1983, 25, 165–172. [CrossRef]
70. Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: New York, NY, USA, 2002.
71. Specht, D.F. A General Regression Neural Network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [CrossRef] [PubMed]
72. Zaknich, A. Neural Networks for Intelligent Signal Processing; World Scientific: Hackensack, NJ, USA, 2003.
73. Hipel, K.W.; McLeod, A.I. Time Series Modelling of Water Resources and Environmental Systems; Elsevier Science: New York, NY,

USA, 1994.
74. Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [CrossRef]

http://doi.org/10.1016/S0141-1136(02)00117-4
http://doi.org/10.1016/j.amc.2014.05.004
http://doi.org/10.1007/s11270-018-3756-7
http://doi.org/10.1111/j.2517-6161.1972.tb00912.x
http://doi.org/10.1145/3444690
http://doi.org/10.1109/ICDM.2008.17
http://doi.org/10.1145/2133360.2133363
http://doi.org/10.1145/3338840.3355641
http://doi.org/10.3390/bdcc5010001
https://www.usenix.org/system/files/conference/hotcloud14/hotcloud14-vallis.pdf
http://doi.org/10.1080/00401706.1983.10487848
http://doi.org/10.1109/72.97934
http://www.ncbi.nlm.nih.gov/pubmed/18282872
http://doi.org/10.1080/01621459.1968.10480934

	Introduction 
	Materials and Methods 
	Data 
	Methodology 
	Statistical Analysis 
	Modeling 


	Results and Discussion 
	Results of the Statistical Analysis and the Anomaly Detection 
	Models for the NO2 Series 
	Models for the O3 Series 

	Conclusions 
	References

