No-Tillage Improvement of Nitrogen Absorption and Utilization in a Chinese Mollisol Using 15N-Tracing Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Collection of Plant, Soil and Gas Samples
2.4. Determination Method
2.5. Calculation Method
2.6. Data Analysis
3. Results
3.1. Fertilizer 15N Distribution in Soil N Reservoir
3.2. N uptake, Utilization and Distribution by Crops
3.3. Gas Loss of Fertilizer N
3.4. The Fate of 15N-Labeled Urea N in Farmland
4. Discussion
4.1. The Distribution of Residue-Derived Fertilizer N in the Soil
4.2. The Fate of Fertilizer N in Crops
4.3. N2O Emissions
4.4. Utilization Rate of N Fertilizer in Current Season
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sainju, U.M.; Stevens, W.B.; Evans, R.G.; Iversen, W.M. Irrigation system and tillage effects on soil carbon and nitrogen fractions. Soil Sci. Soc. Am. J. 2013, 77, 1225–1234. [Google Scholar] [CrossRef]
- Karra, R.; Maslouhi, A.; Bamba, Y.O. Modeling of nitrogen transport in variably saturated soils. Appl. Ecol. Environ. Res. 2018, 2, 1427–1444. [Google Scholar] [CrossRef]
- Li, M.J.; Chen, S.; Xin, S.Y.; Tong, B.X.; Wang, S.Q.; Ma, W.Q.; Wei, J. Effects of nitrogen application rate on yield, quality and soil nitrogen balance of winter wheat. J. Hebei Agric. Univ. 2019, 42, 9–15. [Google Scholar]
- Machado, P.V.F.; Farrell, R.E.; Deen, W.; Voroney, R.P.; Congreves, K.A.; Wagner-Riddle, C. Contribution of crop residue, soil, and fertilizer nitrogen to nitrous oxide emissions varies with long-term crop rotation and tillage. Sci. Total Environ. 2021, 767, 145107. [Google Scholar] [CrossRef] [PubMed]
- Villacis, A.H.; Ramsey, A.F.; Delgado, J.A.; Alwang, J.R. Estimating Economically Optimal Levels of Nitrogen Fertilizer in No-Tillage Continuous Corn. J. Agric. Appl. Econ. 2020, 52, 613–623. [Google Scholar] [CrossRef]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Pittman, T. Too much fertilizer? An observational association between inputs at planting and crop yield on a Saskatchewan farming operation. Can. J. Plant Sci. 2020, 100, 435–444. [Google Scholar] [CrossRef]
- Sun, C.; Hao, L.; Wang, D.; Li, C.; Zhang, C.; Chen, X.; Fu, J.; Zhang, Y.L. Nitrogen utilisation and metabolism in maize (Zea mays L.) plants under different rates of biochar addition and nitrogen input conditions. Plant Biol. 2019, 21, 882–890. [Google Scholar] [CrossRef]
- Longhini, V.Z.; Cardoso, A.S.; Bera, A.S.; Carvalho, I.; Ruggieri, A.C. Nitrogen fertilizer increased litter deposition and litter N in warm-climate grasslands. Nutr. Cycl. Agroecosyst. 2021, 119, 247–258. [Google Scholar] [CrossRef]
- Poffenbarger, H.J.; Sawyer, J.E.; Barker, D.W.; Olk, D.C.; Johan, S.; Castellano, M.J. Legacy effects of long-term nitrogen fertilizer application on the fate of nitrogen fertilizer inputs in continuous maize. Agric. Ecosyst. Environ. 2018, 265, 544–555. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.L.; Liu, L.Q.; Wang, W.Y.; Ren, G.X.; Feng, Y.Z.; Yang, G.H. Effects of the Application of Straw Returning and Nitrogen Fertilizer on Crop Yields, Water and Nitrogen Utilization Under Wheat-Maize Multiple Cropping System. Sci. Agric. Sin. 2018. [Google Scholar] [CrossRef]
- Zhou, A. Development Approach of Soil Fertilizer Utilization in Sustainable Agricultural Development. Mod. Agric. Res. 2020, 2, 61–62. [Google Scholar]
- Naeem, M.; Hussain, M.; Farooq, M.; Farooq, S. Weed flora composition of different barley-based cropping systems under conventional and conservation tillage practices. Phytoparasitica 2021, 49, 751–769. [Google Scholar] [CrossRef]
- Qu, Y.; Can, P.; Guo, H. Factors Affecting the Promotion of Conservation Tillage in Black Soil-The Case of Northeast China. Sustainability 2021, 13, 9563. [Google Scholar] [CrossRef]
- Dong, W.X.; Chun-Sheng, H.U.; Chen, S.Y.; Qin, S.P.; Zhang, Y.M. Effect of conservation tillage on ammonia volatilization from nitrogen fertilizer in winter wheat-summer maize cropping system. Sci. Agric. Sin. 2013, 46, 2278–2284. [Google Scholar]
- Ruisi, P.; Giambalvo, D.; Saia, S.; Di Miceli, G.; Frenda, A.S.; Plaia, A. Conservation tillage in a semiarid Mediterranean environment: Results of 20 years of research. Ital. J. Agron. 2014, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.W.; Liang, A.Z.; Jia, S.X.; Zhang, X.P.; Wei, S.C. Impact of tillage on physical characteristics in a Mollisol of Northeast China. Plant Soil Environ. 2014, 60, 309–313. [Google Scholar]
- Dossou-Yovo, E.R.; Brüggemann, N.; Jesse, N.; Huat, J.; Agbossou, E.K. Reducing soil CO2 emission and improving upland rice yield with no-tillage, straw mulch and nitrogen fertilization in northern Benin. Soil Tillage Res. 2016, 156, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Liang, A.Z.; Yang, X.M.; Zhang, X.P.; Chen, X.W.; Mclaughlin, N.B.; Wei, S.C.; Zhang, Y.; Jia, S.X.; Zhang, S.X. Changes in soil organic carbon stocks under 10-year conservation tillage on a Black soil in Northeast China. J. Agric. Sci. 2016, 154, 1425–1436. [Google Scholar] [CrossRef]
- Zhang, S.X.; Chen, X.W.; Jia, S.X.; Liang, A.Z. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of Northeast China. Soil Tillage Res. 2015, 154, 84–90. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, S.; Wang, Z.; Jia, X. Application of 15N Isotope for the Identification of Nitrogen Nutrition Sources of Winter Wheat and Summer Maize in North China Plain. J. Isot. 2019, 32, 299. [Google Scholar]
- Shi, X.H.; Zhang, X.P.; Yang, X.M.; Drury, C.F.; McLaughlin, N.B.; Liang, A.Z.; Fan, R.Q.; Jia, S.X. Correction to contribution of winter soil respiration to annual soil CO2 emission in a mollisol under different tillage practices in northeast china. Glob. Biogeochem. Cycles 2012, 26, 1–11. [Google Scholar] [CrossRef]
- Giacomini, S.J.; Machet, J.M.; Boizard, H.; Recous, S. Dynamics and recovery of fertilizer 15N in soil and winter wheat crop under minimum versus conventional tillage. Soil Tillage Res. 2010, 108, 51–58. [Google Scholar] [CrossRef]
- Bu, R.; Lu, J.; Tao, R.; Liu, B.; Li, X.; Cong, R. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems. PLoS ONE 2015, 10, e0143835. [Google Scholar] [CrossRef] [PubMed]
- Ad Viento-Borbe, M.; Linquist, B. Assessing fertilizer N placement on CH4 and N2O emissions in irrigated rice systems. Geoderma 2016, 266, 40–45. [Google Scholar] [CrossRef]
- Lukas, S.; Potthoff, M.; Dyckmans, J.; Joergensen, R.G. Microbial use of 15N-labelled maize residues affected by winter temperature scenarios. Soil Biol. Biochem. 2013, 65, 22–32. [Google Scholar] [CrossRef]
- Zheng, L.H.; Pei, J.B.; Jin, X.X.; Schaeffer, S.; An, T.T.; Wang, J.K. Impact of plastic film mulching and fertilizers on the distribution of straw-derived nitrogen in a soil-plant system based on 15N-labeling. Geoderma 2018, 317, 15–22. [Google Scholar] [CrossRef]
- Harmsen, K.; Garabet, S. A comparison of the isotope-dilution and the difference method for estimating fertilizer nitrogen recovery fractions in crops. III. Experimental. NJAS-Wagening. J. Life Sci. 2003, 51, 237–261. [Google Scholar] [CrossRef] [Green Version]
- Khajavi-Shojaei, S.; Moezzi, A.; Norouzi, M.; Taghavi, M. Synthesis modified biochar-based slow-release nitrogen fertilizer increases nitrogen use efficiency and corn (Zea mays L.) growth. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Li, H.; Gao, H.; Wu, H.; Li, W.; Wang, X.; He, J. Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Aust. J. Soil Res. 2007, 45, 344. [Google Scholar] [CrossRef]
- Qin, R.; Stamp, P.; Richner, W. Impact of tillage on maize rooting in a Cambisol and Luvisol in Switzerland. Soil Tillage Res. 2006, 85, 50–61. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, M.; Wang, Y.Q.; Zhou, J.S.; Zhang, S.Q.; Wang, J.W.; Peng, Z.P.; Guo, L.G. Effects of Different Tillage and Fertilization Methods on Nitrogen Utilization and Soil Bulk Density of Summer Maize. J. Soil Water Conserv. 2019, 33, 171–176. [Google Scholar]
- Macdonald, A.J.; Poulton, P.R.; Stockdale, E.A.; Jenkinson, D. The fate of residual15N-labelled fertilizer in arable soils: Its availability to subsequent crops and retention in soil. Plant Soil 2002, 246, 123–137. [Google Scholar] [CrossRef]
- Wander, M.; Magdoff, F.; Ray, R.W. Soil Organic Matter Fractions and Their Relevance to Soil Function. In Soil Organic Matter in Sustainable Agriculture; Magdoff, F., Weil, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Sainju, U.M.; Lenssen, A.W.; Caesartonthat, T. Dryland soil nitrogen cycling influenced by tillage, crop rotation, and cultural practice. Nutr. Cycl. Agroecosystems 2012, 93, 309–322. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Beare, M.H.; McKim, U.F.; Skjemstad, J.O. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci. Soc. Am. J. 2006, 70, 975–985. [Google Scholar] [CrossRef]
- Liu, S.; Yan, C.G.; He, W.Q.; Chen, B.Q. Effects of different tillage practices on soil water-stable aggregation and organic carbon distribution in dryland farming in Northern China. Acta Ecol. Sin. 2015, 35, 65–69. [Google Scholar] [CrossRef]
- Ramnarine, R.; Voroney, R.P.; Wagner-Riddle, C.; Dunfield, K.E. Conventional and no-tillage effects on the distribution of crop residues and light fraction organic matter. Soil Sci. Soc. Am. J. 2015, 79, 74–80. [Google Scholar] [CrossRef]
- Wang, J.B. Effect of Different Tillage Practices on Soil Organic Carbon Transformation and Water use in Dryland Winter Wheat. Sci. Agric. Sin. 2014, 2–5. Available online: http://www.secheresse.info/spip.php?article68519 (accessed on 8 March 2022).
- Zuo, H.J.; Bai, Y.L.; Lu, Y.L.; Wang, L.; Wang, H.; Wang, Z.Y. Fate of fertilizer nitrogen applied to winter wheat in North China plain based on high abundance of 15N. Sci. Agric. Sin. 2012, 45, 3093–3099. [Google Scholar]
- Thomas, G.A.; Dalal, R.C.; Standley, J. No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Tillage Res. 2007, 94, 295–304. [Google Scholar] [CrossRef]
- Shen, X.S.; Qu, H.J.; Li, J.C.; Huang, G.; Chen, S.H.; Liu, D.H. Effects of the Maize Straw Returned to the Field and Tillage Patterns on Nutrition Accumulation and Translocation of Winter Wheat. Acta Bot. Boreali-Occident. Sin. 2012, 32, 143–149. [Google Scholar]
- Davidson, E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2009, 2, 659–662. [Google Scholar] [CrossRef]
- Oorts, K.; Merckx, R.; Eric Gréhan, L.J.; Nicolardot, B. Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Tillage Res. 2007, 95, 133–148. [Google Scholar] [CrossRef]
- Flechard, C.R.; Ambus, P.; Skiba, U.; Rees, R.M.; Hensen, A.; Van Amstel, A. Effects of climate and management intensity on nitrous oxideemissions in grassland systems across Europe. Agric. Ecosyst. Environ. 2007, 121, 135–152. [Google Scholar] [CrossRef]
- Chatskikh, D.; Olesen, J.E. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley. Soil Tillage Res. 2007, 97, 5–18. [Google Scholar] [CrossRef]
- Ahmad, S.; Li, C.; Dai, G.; Zhan, M.; Wang, J.; Pan, S.; Cao, C. Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil Tillage Res. 2009, 106, 54–61. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Six, J.; Ogle, S.M.; Breidt, F.J.; Conant, R.T.; Mosier, A.R.; Paustian, K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Change Biol. 2004, 10, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Bertrand, N. Nitrous Oxide Emissions Respond Differently to No-Till in a Loam and a Heavy Clay Soil. Soil Sci. Soc. Am. J. 2008, 72, 1363–1369. [Google Scholar] [CrossRef]
- Chen, S.; Lu, F.; Wang, X.K. Estimation of greenhouse gases emission factors for China’s nitrogen, phosphate, and potash fertilizers. Acta Ecol. Sin. 2015, 35, 6371–6383. [Google Scholar]
- Tang, K.; Wang, M.; Zhou, D. Abatement potential and cost of agricultural greenhouse gases in Australian dryland farming system. Environ. Sci. Pollut. Res. 2021, 28, 21862–21873. [Google Scholar] [CrossRef] [PubMed]
- Venterea, R.T.; Burger, M.; Spokas, K.A. Nitrogen Oxide and Methane Emissions under Varying Tillage and Fertilizer Management. J. Environ. Qual. 2005, 34, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Marquina, S.; Pérez, T.; Giuliante, A.; Rasse, R.; Donoso, L. NO, N2O and CO2 soil emissions from Venezuelan corn fields under tillage and no-tillage agriculture. Nutr. Cycl. Agroecosystems 2015, 101, 123. [Google Scholar] [CrossRef]
- Wang, W.; Hou, Y.; Pan, W.; Vinay, N.; Wen, X. Continuous application of conservation tillage affects in situ N2O emissions and nitrogen cycling gene abundances following nitrogen fertilization. Soil Biol. Biochem. 2021, 157, 108239. [Google Scholar] [CrossRef]
- Liu, X.; Dong, W.Y.; Jia, S.H.; Liu, Q.L.; Li, Y.Z.; Hossain, M.D.; Liu, E.K.; Kuzyakov, Y. Transformations of N derived from straw under long-term conventional and no-tillage soils: A 15Nlabelling study. Sci. Total Environ. 2021, 786, 147428. [Google Scholar] [CrossRef]
- Chen, H.H.; Liu, y.; Lü, L.P.; Yuan, L.; Jia, J.C.; Chen, X.; Ma, J.; Zhao, Z.C.; Liang, C.; Xie, H.T.; et al. Effects of no-tillage and stover mulching on the transformation and utilization of chemical fertilizer N in Northeast China. Soil Tillage Res. 2021, 213, 105131. [Google Scholar] [CrossRef]
- Grandy, A.S.; Loecke, T.D.; Parr, S.; Robertson, G.P. Long-Term Trends in Nitrous Oxide Emissions, Soil Nitrogen, and Crop Yields of Till and No-Till Cropping Systems. J. Environ. Qual. 2006, 35, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Marco, S.; Abalos, D.; Espejo, R.; Vallejo, A.; Mariscal-Sancho, I. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions. Sci. Total Environ. 2016, 566–567, 512–520. [Google Scholar] [CrossRef]
- Strudley, M.W.; Green, T.R.; James, I.I. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Van Kessel, C.; Venterea, R.; Six, J.; Adviento-Borbe, M.A. Climate, duration, and N placement determine N2O emissions in reduced tillage systems. Globle Change Biol. 2013, 19, 33–44. [Google Scholar] [CrossRef]
- Hangs, R.D.; Schoenau, J.J.; Lafond, G.P. The effect of nitrogen fertilization and no-till duration on soil nitrogen supply power and post-spring thaw greenhouse-gas emissions. J. Plant Nutr. Soil Sci. 2013, 176, 227–237. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Akramkhanov, A.; Saggar, S. Nitrous oxide emissions from a New Zealand cropped soil:tillage effects, spatial and seasonal variability. Agric. Ecosyst. Environ. 2002, 93, 33–43. [Google Scholar] [CrossRef]
- Liu, X.J.; Mosier, A.R.; Halvorson, A.D.; Zhang, F.S. Tillage and Nitrogen Application Effects on Nitrous and Nitric Oxide Emissions from Irrigated Corn Fields. Plant Soil 2005, 276, 235–249. [Google Scholar] [CrossRef]
- Afshar, R.K.; Mohammed, Y.A.; Chen, C. Enhanced efficiency nitrogen fertilizer effect on camelina production under conventional and conservation tillage practices. Ind. Crops Prod. 2016, 94, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.X.; Shen, Q.L.; Zhang, L.; Na, L.I.; Sun, X.; Jing, J.Y. No-tillage with straw mulching could increase grain yield, water and nitrogen use efficiencies of summer maize. J. Plant Nutr. Fertil. 2017, 23, 606–614. [Google Scholar]
- Sainju, U. Long-term tillage and cropping sequence effects on dryland residue and soil carbon fractions. Soil Sci. Soc. Am. J. 2007, 71, 1730–1739. [Google Scholar] [CrossRef]
- Xu, X.; Pang, D.W.; Chen, J.; Luo, Y.L.; Zheng, M.J.; Yin, Y.P.; Li, Y.X.; Li, Y.; Wang, Z.L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crops Res. 2018, 221, 71–80. [Google Scholar] [CrossRef]
- Malhi, S.S.; Nyborg, M.; Solberg, E.D. Influence of source, method of placement and simulated rainfall on the recovery of 15N-labelled fertilizers under zero tillage. Can. J. Soil Sci. 1996, 76, 93–100. [Google Scholar] [CrossRef] [Green Version]
Treatment | N uptake | N from fertilizer | N from soil | ||
---|---|---|---|---|---|
(kg.hm−2) | (kg.hm−2) | (%) | (kg.hm−2) | (%) | |
NT | 238.00 a | 60.16 a | 25.27 a | 177.84 a | 74.73 a |
MP | 207.83 b | 54.87 b | 26.51 a | 152.13 b | 73.49 a |
Treatment | N2O (kg N hm−2) | 15N2O (kg N hm−2) |
---|---|---|
NT | 0.78 a | 0.12 a |
MP | 0.87 a | 0.2 a |
Treatment | Utilization Rate (%) | Residual Rate (%) | Loss Rate (%) |
---|---|---|---|
NT | 48.13 a | 27.13 b | 24.74 a |
MP | 43.90 b | 29.44 a | 26.66 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Chen, X.; Zhang, S.; Zhang, Y.; Gao, Y.; Zhang, Y.; Liang, A. No-Tillage Improvement of Nitrogen Absorption and Utilization in a Chinese Mollisol Using 15N-Tracing Method. Atmosphere 2022, 13, 530. https://doi.org/10.3390/atmos13040530
Huang D, Chen X, Zhang S, Zhang Y, Gao Y, Zhang Y, Liang A. No-Tillage Improvement of Nitrogen Absorption and Utilization in a Chinese Mollisol Using 15N-Tracing Method. Atmosphere. 2022; 13(4):530. https://doi.org/10.3390/atmos13040530
Chicago/Turabian StyleHuang, Dandan, Xuewen Chen, Shixiu Zhang, Yan Zhang, Yan Gao, Yang Zhang, and Aizhen Liang. 2022. "No-Tillage Improvement of Nitrogen Absorption and Utilization in a Chinese Mollisol Using 15N-Tracing Method" Atmosphere 13, no. 4: 530. https://doi.org/10.3390/atmos13040530
APA StyleHuang, D., Chen, X., Zhang, S., Zhang, Y., Gao, Y., Zhang, Y., & Liang, A. (2022). No-Tillage Improvement of Nitrogen Absorption and Utilization in a Chinese Mollisol Using 15N-Tracing Method. Atmosphere, 13(4), 530. https://doi.org/10.3390/atmos13040530