Atmospheric Pollution of Agriculture-Dominated Cities
1. Introduction
2. Trends and Factors of Air Emissions from Animal Farms and Facilities
3. Spatial-Temporal Variations of Biomass Burning
4. Potential Hazards of Bioaerosols to Human Health
5. Strategies on the Air Emission Control for Rural Areas
- (1)
- Poultry and livestock production
- (2)
- Residual treatment and biomass burning
- (3)
- Residential combustion
- (4)
- Tillage practice
6. Further Research Needs
- (1)
- The air pollutants emissions from agricultural activities are very complex. More detailed studies on their chemical and physical characteristics as well as their interactions with other gaseous or in different environment are needed for predicting, prevention, and abatement technology selections.
- (2)
- It will be useful to develop specifical methodology and comprehensive observations in primary practices to improve the accuracy of assessments of environmental hazards and human/animal health risks.
- (3)
- It is suggested that future researchers should develop abatement technologies suitable for heating and cooking in rural areas to improve the existing energy systems and promote the development of effective air pollution strategies [28].
- (4)
- The characterization and variations of air pollutants from different agricultural activities in different areas provides the ground work for predicting and control policy making of air emissions. Therefore, more effective measures to monitor and control in high polluted area need to be investigated. In addition, a variety of agricultural activities beyond those mentioned in this Special Issue may release air pollutant to atmosphere [29,30]. It is necessary to establish or upgrade precise inventory of those air emissions from each agricultural practice in rural areas or agriculture-dominated cities.
- (5)
- The knowledge and findings available so far are insufficient to allow a final assessment of the efficiency of control measures, and proposals for mitigation measures are still required.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ge, P.; Chen, M.; Cui, Y.; Nie, D. The research progress of the influence of agricultural activities on atmospheric environment in recent ten years: A review. Atmosphere 2021, 12, 635. [Google Scholar] [CrossRef]
- Xu, J.; Chen, J.; Zhao, N.; Wang, G.; Yu, G.; Li, H.; Huo, J.; Lin, Y.; Fu, Q.; Guo, H.; et al. Importance of gas-particle partitioning of ammonia in haze formation in the rural agricultural environment. Atmos. Chem. Phys. 2020, 20, 7259–7269. [Google Scholar] [CrossRef]
- Milllner, P.D. Bioaerosols associated with animal production operations. Bioresource Technol. 2009, 100, 5379–5385. [Google Scholar] [CrossRef]
- Lyu, Y.; Jaeger, C.; Han, Z.; Liu, L.; Shi, P.; Wang, W.; Yang, S.; Guo, L.; Zhang, G.; Hu, X.; et al. A sever air pollution event from field burning of agricultural residues in Beijing, China. Aerosol Air Qual. Res. 2015, 15, 2525–2536. [Google Scholar] [CrossRef]
- Michiels, A.; Piepers, S.; Ulens, T.; Van Ransbeeck, N.; Del Pozo Sacristán, R.; Sierens, A.; Haesebrouck, F.; Demeyer, P.; Maes, D. Impact of particulate matter and ammonia on average daily weight gain, mortality and lung lesions in pigs. Prev. Vet. Med. 2015, 121, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Domingo, N.G.G.; Hunt, N.D.; Gittlin, M.; Colgan, K.K.; Marshall, J.D.; Robinson, A.L.; Azevedo, I.M.L.; Thakrar, S.K.; Clark, M.A.; et al. The food we eat, the air we breathe: A review of the fine particulate matter-induced air quality health impacts of the global food system. Environ. Res. Lett. 2021, 16, 103004. [Google Scholar] [CrossRef]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Ye, X.; Zhou, M.; Zhao, Y.; Weng, H.; Kong, H.; Li, K.; Gao, M.; Zheng, B.; Lin, J.; et al. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nat. Commun. 2021, 12, 5021. [Google Scholar] [CrossRef]
- Han, W.; Li, Z.; Guo, J.; Su, T.; Chen, T.; Wei, J.; Crib, M. The urban-rural heterogeneity of air pollution in 35 metropolitan regions across China. Remote Sens. 2020, 12, 2320. [Google Scholar] [CrossRef]
- Long, F.; Liu, J.; Zheng, L. The effects of public environmental concern on urban-rural environmental inequality: Evidence from Chinese industrial enterprise. Sustain. Cities Soc. 2022, 80, 103787. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, R.; Xu, Z.; Wang, L.; Wang, P. Temporal and spatial patterns of biomass burning fire counts and carbon emissions in the Beijing–Tianjin–Hebei (BTH) region during 2003–2020 based on GFED4. Atmosphere 2022, 13, 459. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, L.; Jia, L.; Li, J.; Liu, B.; Yuan, Y. Numerical simulation on particulate matter emissions from a layer house during summer in Northeast China. Atmosphere 2022, 13, 435. [Google Scholar] [CrossRef]
- Choi, H.; Sunwoo, Y. Environmental benefits of ammonia reduction in an agriculture-dominated area in South Korea. Atmosphere 2022, 13, 384. [Google Scholar] [CrossRef]
- Jiao, M.; Yan, M.; Liu, Y.; Mawusi, S.K.; Shrestha, P.; Xue, C.; Song, H.; Wang, H.; Liu, Z.; Xu, Y.; et al. Laboratory performance evaluation of novel bituminous coal pellet combustion in an automatic heating stove. Atmosphere 2022, 13, 159. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, B.; Jia, Y.; He, F.; Chen, W. Mitigation strategies of air pollutants for mechanical ventilated livestock and poultry housing—A review. Atmosphere 2022, 13, 452. [Google Scholar] [CrossRef]
- Oh, S.; Kim, S.-G.; Lee, J.B.; Park, J.; Jee, J.-B.; Hong, S.-W.; Kwon, K.-S.; Song, M. Spatial distributions of atmospheric ammonia in a rural area in South Korea and the associated impact on a nearby urban area. Atmosphere 2021, 12, 1411. [Google Scholar] [CrossRef]
- Rzeznik, W.; Mielcarek-Bochenska, P. Odour emissions from livestock buildings. Atmosphere 2022, 13, 254. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, A.; Zhang, Y.; McLaughlin, N.; Zhang, S.; Chen, X.; Zheng, H.; Fan, R. Dynamics of microbial biomass, nitrogen mineralization and crop uptake in response to placement of maize residue returned to Chinese mollisols over the maize growing season. Atmosphere 2021, 12, 1166. [Google Scholar] [CrossRef]
- Huang, D.; Chen, X.; Zhang, S.; Zhang, Y.; Gao, Y.; Zhang, Y.; Liang, A. No-tillage improvement of nitrogen absorption and utilization in a Chinese mollisol using 15N-tracing method. Atmosphere 2022, 13, 530. [Google Scholar] [CrossRef]
- Yan, X.; Ma, J.; Ren, J.; Cui, M.; Chen, X.; Qiu, D.; Lei, M.; Li, T.; Guo, L.; Chen, C.; et al. Concentrations, size distribution, and community structure characteristics of culturable airborne antibiotic-resistant bacteria in Xinxiang, central China. Atmosphere 2021, 12, 1077. [Google Scholar] [CrossRef]
- Rincon-Riveros, J.M.; Rincon-Caro, M.A.; Sullivan, A.P.; Mendez-Espinosa, J.F.; Belalcazar, L.C.; Aguilar, M.Q.; Betancourt, R.M. Long-term brown carbon and smoke tracer observations in Bogota, Colombia: Association with medium-range transport of biomass burning plumes. Atmos. Chem. Phys. 2020, 20, 7459–7472. [Google Scholar] [CrossRef]
- Junpen, A.; Pansuk, J.; Kamnoet, O.; Cheewaphongphan, P.; Garivait, S. Emission of air pollutants from rice residue open burning in Thailand, 2018. Atmosphere 2018, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Dennis, A.; Fraser, M.; Anderson, S.; Allen, D. Air pollutant emissions associated with forest, grassland, and agricultural burning in Texas. Atmos. Environ. 2002, 36, 3779–3792. [Google Scholar] [CrossRef]
- King, M.D.; Lacey, R.E.; Pak, H.; Fearing, A.; Ramos, G.; Baig, T.; Smith, B.; Koustova, A. Assays and enumeration of bioaerosols-traditional approaches to modern practices. Aerosol Sci. Tech. 2020, 54, 611–633. [Google Scholar] [CrossRef]
- Kummer, V.; Thiel, W.R. Bioaerosols-sources and control measures. Int. J. Hyg. Environ. Health 2008, 211, 299–307. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Yao, M. Microbial emission levels and diversities from different land use types. Environ. Int. 2020, 143, 105988. [Google Scholar] [CrossRef]
- Dungan, R.S. Boared-invited review: Fate and transport of bioaerosols associated with livestock operations and manures. J. Anim. Sci. 2010, 88, 3693–3706. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, L.; Yin, S.; Zhang, J.; Wang, K.; Zhang, R. County-level emission inventory for rural residential combustion and emission reduction potential by technology optimization: A case study of Henan, China. Atmos. Environ. 2020, 228, 117436. [Google Scholar] [CrossRef]
- Chen, W.; Tong, D.Q.; Zhang, S.; Zhang, X.; Zhao, H. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China. J. Environ. Sci. 2017, 57, 15–23. [Google Scholar] [CrossRef]
- Maffia, J.; Dinuccio, E.; Amon, B.; Balsari, P. PM emissions from open field crop management: Emission factors, assessment methods and mitigation measures—A review. Atmos. Environ. 2020, 226, 117381. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Chen, W. Atmospheric Pollution of Agriculture-Dominated Cities. Atmosphere 2022, 13, 900. https://doi.org/10.3390/atmos13060900
Guo L, Chen W. Atmospheric Pollution of Agriculture-Dominated Cities. Atmosphere. 2022; 13(6):900. https://doi.org/10.3390/atmos13060900
Chicago/Turabian StyleGuo, Li, and Weiwei Chen. 2022. "Atmospheric Pollution of Agriculture-Dominated Cities" Atmosphere 13, no. 6: 900. https://doi.org/10.3390/atmos13060900
APA StyleGuo, L., & Chen, W. (2022). Atmospheric Pollution of Agriculture-Dominated Cities. Atmosphere, 13(6), 900. https://doi.org/10.3390/atmos13060900