Study on the Characteristics of Aerosol Radiative Forcing under Complex Pollution Conditions in Beijing
Abstract
:1. Introduction
2. Data and Methodology
2.1. Introduction to the Research Region
2.2. Data and Methodology
2.2.1. MODIS
2.2.2. AERONET
2.3. SBDART Radiative Transfer Model
3. Results and Discussions
3.1. Trends in Aerosol Optical Properties
3.2. Annual Trend of ADRF
3.3. Data Validation
3.3.1. Verification of AOD
3.3.2. Verification of ADRF
3.4. Trends in MODIS AOD
3.5. Distribution of AOD in Beijing
3.6. The Results of ADRF in Beijing
3.7. Correlation Verification of Influencing Factors
3.7.1. Relative Humidity
3.7.2. Lower Troposphere Stability
3.7.3. Wind Speed
4. Conclusions
- (1)
- Beijing has different degrees of pollution throughout the year, especially in winter, but due to the vigorous control measures in recent years, the air quality has gradually improved. The results show that the average annual AOD ranged from 0.757 in 2015 to 0.497 in 2020, and ASY showed a slight upward trend year by year, from 0.694 to 0.748, while SSA remained within a stable range.
- (2)
- The distribution of ADRF at the ATM in Beijing was similar to that of AOD, which is due to the strong correlation between the aerosol radiative effect and AOD.
- (3)
- The regional distribution of ADRF at the ATM under different degrees of pollution was calculated. From clear weather to severe pollution, ADRF at the ATM ranged from 24.2 to 92.3 W/m2, from −37.8 to −184.5 W/m2 at the BOA and from −13.6 to −92.2 W/m2 at the TOA. With increasing severity of pollution, the absolute value of ADRF increased, and the aerosol radiative effect became more obvious.
- (4)
- The aerosol radiative effect showed a strong positive correlation with RH and LHS, but a negative correlation with WS. As pollution increases, the aerosol radiative effect warms the atmosphere and cools the surface, inhibiting the upward diffusion of aerosol particles and the transmission of water vapor, resulting in an increase in RH and LHS and a decrease in WS. This continuous feedback effect exacerbates air pollution, while dry, clean and strong wind breaks this feedback, ending the pollution event.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, S.K.; Ma, Y.Y.; Fan, R.; Wang, L.C.; Gong, W. Haze events at different levels in winters: A comprehensive study of meteorological factors, Aerosol characteristics and direct radiative forcing in megacities of north and central China. Atmos. Environ. 2021, 245, 118056. [Google Scholar]
- Savijärvi, Y.Z. The effect of aerosols on long wave radiation and global warming. Atmos. Res. 2014, 1, 102–111. [Google Scholar]
- Zhang, X.; Wang, H.; Che, H.Z.; Tan, S.C.; Yao, X.P.; Peng, Y. Radiative forcing of the aerosol-cloud interaction in seriously polluted East China and East China Sea. Atmos. Res. 2021, 252, 105405. [Google Scholar] [CrossRef]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, B.L.; Wang, T.J.; Deng, J.J.; Xie, M.; Yin, C.Q. Direct radiative forcing and climate effects of anthropogenic aerosols with different mixing states over China. Atmos. Environ. 2013, 79, 349–361. [Google Scholar] [CrossRef]
- Wang, L.L.; Wang, Y.S.; Wang, Y.H.; Sun, Y.; Ji, D.S. Relationship between different synoptic weather patterns and concentrations of atmospheric pollutants in Beijing during summer and autumn. China Environ. Sci. 2010, 30, 924–930. [Google Scholar]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth’s Atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Shi, J.; Xie, Y. Dust Aerosol Characteristics and Shortwave Radiative Impact at a Gobi Desert of Northwest China during the Spring of 2012. J. Meteorol. Soc. Jpn. 2014, 92, 33–56. [Google Scholar] [CrossRef] [Green Version]
- Esteve, A.R.; Estellés, V.; Utrillas, M.P. Analysis of the aerosol radiative forcing over a Mediterranean urban coastal site. Atmos. Res. 2014, 137, 195–204. [Google Scholar] [CrossRef]
- Osgouei, P.E.; Roberts, G.; Kaya, S.; Bilal, M.; Dash, J.; Sertel, E. Evaluation and comparison of MODIS and VIIRS aerosol optical depth (AOD) products over regions in the Eastern Mediterranean and the Black Sea. Atmos. Environ. 2022, 268, 118784. [Google Scholar] [CrossRef]
- Cai, H.; Yang, Y.; Luo, W. City-level variations in aerosol optical properties and aerosol type identification derived from long-term MODIS/Aqua observations in the Sichuan Basin, China. Urban Clim. 2021, 38, 100886. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Chishtie, F. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos. Environ. 2015, 111, 113–126. [Google Scholar] [CrossRef]
- Bright, J.M.; Gueymard, C.A. Climate-specific and global validation of MODIS Aqua and Terra aerosol optical depth at 452 AERONET stations. Sol. Energy 2019, 183, 594–605. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Chen, C.; Zheng, Y.; Dubovik, O.; Derimian, Y.; Lopatin, A.; Gui, K.; Wang, Y.; Zhao, H.; et al. Extensive characterization of aerosol optical properties and chemical component concentrations: Application of the GRASP/Component approach to long-term AERONET measurements. Sci. Total Environ. 2022, 812, 152553. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Sun, X.B.; Huang, H.L. The primary aerosol models and distribution characteristics over China based on the AERONET data. J. Quant. Spectrosc. Radiat. Transf. 2021, 275, 107888. [Google Scholar] [CrossRef]
- Mao, Q.J.; Zhang, H.X.; Chen, Q.X.; Huang, C.L. Satellite-based assessment of direct aerosol radiative forcing using a look-up table established through AERONET observations. Infrared Phys. Technol. 2019, 102, 103017. [Google Scholar] [CrossRef]
- Mao, Q.J.; Huang, C.L.; Zhang, H.X.; Chen, Q.X.; Yuan, Y. Aerosol optical properties and radiative effect under different weather conditions in Harbin, China. Infrared Phys. Technol. 2018, 89, 304–314. [Google Scholar] [CrossRef]
- Rui, L.; Yu, X.; Jia, H. Aerosol optical properties and direct radiative forcing at Taihu. Appl. Optic. 2017, 56, 7002–7012. [Google Scholar]
- Almazroui, M. A comparison study between AOD data from MODIS deep blue collections 51 and 06 and from AERONET over Saudi Arabia. Atmos. Res. 2019, 225, 88–95. [Google Scholar] [CrossRef]
- Loria-Salazar, S.M.; Holmes, H.A.; Arnott, W.P. Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A. during the summer of 2012. Atmos. Environ. 2016, 144, 345–360. [Google Scholar] [CrossRef]
- Jia, H.; Ma, X.; Yu, F. Significant underestimation of radiative forcing by aerosol–cloud interactions derived from satellite-based methods. Nat. Commun. 2021, 12, 3649. [Google Scholar] [CrossRef] [PubMed]
- Kinne, S.; North, P.; Pearson, K.; Popp, T. Aerosol radiative effects with dual view AOD retrievals. Atmos. Chem. Phys. 2021, 25, 954. [Google Scholar]
- Jia, H.L.; Quaas, J.; Gryspeerdt, E.; Böhm, C.; Sourdeval, O. Addressing the difficulties in quantifying the Twomey effect for marine warm clouds from multi-sensor satellite observations and reanalysis. Atmos. Chem. Phys. Discuss. 2022, 7, 999. [Google Scholar]
- Xu, X.T.; Liu, C.; Wang, J.D. Long-term multi-dataset direct aerosol radiative forcing and its efficiencies: Intercomparisons and uncertainties. Atmos. Res. 2021, 267, 105964. [Google Scholar] [CrossRef]
- Zhang, J.; Reid, J.S. MODIS aerosol product analysis for data assimilation: Assessment of over-ocean level 2 aerosol optical thickness retrievals. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Mao, Q.J.; Huang, C.L.; Zhang, H.X.; Chen, Q.X.; Yuan, Y. Performance of MODIS aerosol products at various timescales and in different pollution conditions over eastern Asia. Sci. China Technol. Sci. 2021, 64, 774–784. [Google Scholar] [CrossRef]
- Su, Y.; Shi, G.Y.; Lin, C. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Deep Blue Aerosol Products Using Ground-Based Measurements over Beijing. Sci. Online Lett. Atmos. 2011, 7, 133–136. [Google Scholar]
- Misra, A.; Jayaraman, A.; Ganguly, D. Validation of Version 5.1 MODIS Aerosol Optical Depth (Deep Blue Algorithm and Dark Target Approach) over a Semi-Arid Location in Western India. Aerosol Air Qual. Res. 2015, 15, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Che, Y.H.; Xue, Y.; Guang, J.; She, L. Evaluation of the AVHRR Deep Blue aerosol optical depth dataset over mainland China. ISPRS J. Photogramm. Remote Sens. 2018, 146, 74–90. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, Z.; Zhan, X. Evaluation of MODIS and two reanalysis aerosol optical depth products over AERONET sites. Atmos. Res. 2019, 220, 75–80. [Google Scholar] [CrossRef]
- García, J.P.; Diaz, F.J.; Exposito, A.M. Díaz, Shortwave radiative forcing and efficiency of key aerosol types using AERONET data. Atmos. Chem. Phys. 2012, 12, 5129–5145. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Radiative Transfer; The Clarendon Press: Reading, UK, 1950. [Google Scholar]
- Zhang, W.; Huiyun, M.A.; Zou, Z. Automatic detection of night time radiation fog based on SBDART radiative transfer model and the analysis of time series. Remote Sens. Land Resour. 2014, 26, 14. [Google Scholar]
- Fu, Y.; Zhu, J.; Yang, Y. Grid-cell aerosol direct shortwave radiative forcing calculated using the SBDART model with MODIS and AERONET observations: An application in winter and summer in eastern China. Adv. Atmos. Sci. 2017, 34, 952–964. [Google Scholar] [CrossRef]
- Valenzuela, A.; Arola, A.; Anton, M. Black carbon radiative forcing derived from AERONET measurements and models over an urban location in the southeastern Iberian Peninsula. Atmos. Res. 2017, 191, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, A.; Olmo, F.J.; Lyamani, H. Aerosol radiative forcing during African desert dust events (2005–2010) over Southeastern Spain. Atmos. Chem. Phys. 2012, 12, 10331–10351. [Google Scholar] [CrossRef] [Green Version]
- Tian, P.F.; Zhang, L.; Cao, X.J.; Sun, N.X. Enhanced Bottom-of-the-Atmosphere Cooling and Atmosphere Heating Efficiency by Mixed-Type Aerosols: A Classification Based on Aerosol Nonsphericity. J. Atmos. Sci. 2018, 75, 113–124. [Google Scholar] [CrossRef]
- Goel, R.K.; Varshneya, N.C.; Verma, T.S. Effect of relative humidity on the scattering properties of urban aerosol particles. Proc. Indian Acad. Sci.-Earth Planet. Sci. 1984, 93, 17. [Google Scholar] [CrossRef]
- Tian, S.L.; Pan, Y.P.; Liu, Z.R.; Wen, T.X.; Wang, Y.S. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. J. Hazard. Mater. 2014, 279, 452–460. [Google Scholar] [CrossRef]
- Zhang, W.J.; Zhang, X.Y.; Zhong, J.T.; Wang, Y.Q.; Wang, J.Z.; Zhao, Y.F. The effects of the “two-way feedback mechanism” on the maintenance of persistent heavy aerosol pollution over regions with relatively light aerosol pollution in northwest China. Sci. Total Environ. 2019, 688, 642–652. [Google Scholar] [CrossRef]
- Hu, T.T.; Yoshieb, R. Effect of atmospheric stability on air pollutant concentration and its generalization for real and idealized urban block models based on field observation data and wind tunnel experiments. J. Wind Eng. Ind. Aerodyn. 2020, 207, 104380. [Google Scholar] [CrossRef]
- Zhao, D.D.; Xin, J.Y.; Gong, C.S.; Quan, J.N.; Liu, G.J. The formation mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol radiative forcing and the atmospheric boundary layer stability. Sci. Total Environ. 2019, 692, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.; Basha, G.; Ratnam, M.V. Is the atmospheric boundary layer altitude or the strong thermal inversions that control the vertical extent of aerosols? Sci. Total Environ. 2022, 802, 149758. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Huang, J.; Tao, X.; Deng, L.; Fang, X.; Liu, Y.; Luo, L.; Zhang, Z.; Xiao, H.W.; Xiao, H.Y. An observational study of the boundary-layer entrainment and impact of aerosol radiative effect under aerosol-polluted conditions. Atmos. Res. 2021, 250, 105348. [Google Scholar] [CrossRef]
- Lu, Q.; Chao, L.; Zhao, D.L.; Zeng, C.; Li, J.; Lu, C.S. Atmospheric heating rate due to black carbon aerosols: Uncertainties and impact factors. Atmos. Res. 2020, 240, 104891. [Google Scholar] [CrossRef]
Input Parameters | Data Sources |
---|---|
AOD | MODIS |
SSA | |
ASY | |
surface reflectivity | |
water vapor content | European Centre for Medium-Range Weather Forecasts (ECMWF) |
ozone content | |
data verification | AERONET |
Average Value | AOD (550 nm) | SSA (550 nm) | ASY (550 nm) | ATM (W/m2) | TOA (W/m2) | BOA (W/m2) |
---|---|---|---|---|---|---|
No pollution | 0.08 | 0.954 | 0.751 | 24.2 | −13.6 | −37.8 |
Slight pollution | 0.29 | 0.931 | 0.743 | 45.4 | −25.6 | −71.0 |
Moderate pollution | 0.52 | 0.915 | 0.732 | 61.9 | −64.4 | −126.3 |
Severe pollution | 0.79 | 0.872 | 0.714 | 92.3 | −92.2 | −184.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Q.; Wan, H. Study on the Characteristics of Aerosol Radiative Forcing under Complex Pollution Conditions in Beijing. Atmosphere 2022, 13, 501. https://doi.org/10.3390/atmos13030501
Mao Q, Wan H. Study on the Characteristics of Aerosol Radiative Forcing under Complex Pollution Conditions in Beijing. Atmosphere. 2022; 13(3):501. https://doi.org/10.3390/atmos13030501
Chicago/Turabian StyleMao, Qianjun, and Hui Wan. 2022. "Study on the Characteristics of Aerosol Radiative Forcing under Complex Pollution Conditions in Beijing" Atmosphere 13, no. 3: 501. https://doi.org/10.3390/atmos13030501
APA StyleMao, Q., & Wan, H. (2022). Study on the Characteristics of Aerosol Radiative Forcing under Complex Pollution Conditions in Beijing. Atmosphere, 13(3), 501. https://doi.org/10.3390/atmos13030501