Temporal and Spatial Evolution of Climate Comfort and Population Exposure in Guangdong Province in the Last Half Century
Abstract
:1. Introduction
2. Data and Methodology
2.1. Research Area and Data Sources
2.2. Research Methods and Evaluation Indicators
- (1)
- THI: A combination of temperature and humidity reflecting the heat flow between the human body and the surrounding environment [41]. This is a classic index to evaluate thermal discomfort, expressed as:
- (2)
- WEI: The law of human body heat loss under the constraints of wind speed and temperature, an important indicator originating from the cold environment evaluation [42]. WEI specifically indicates the heat exchange amount per unit area of the body surface at a skin temperature of 33 °C, expressed as:
- (3)
- ICL: Cloth loading recommendations are based on a variety of factors, including air temperature, solar radiation, human metabolism, and wind speed. Different choices of cloth loading can effectively improve or exacerbate climate discomfort [39]:
- (4)
- CCI: A comprehensive representation of regional Climate Comfort Index, which is generated based on the weighted average of THI, WEI, and ICL is:
2.3. Statistical Analysis
2.4. Analysis of Population Exposure
3. Results
3.1. Temporal Evaluation of the Comfortable Indexes
3.2. CCI Variations along Time
3.3. Population Exposure to Climate Discomfort in Summer
4. Discussion
5. Conclusions
- (1)
- The comfortability of climate was on a decreasing trend in Guangdong Province over the last 50 years, due to the growing tendency of the heat and humidity. Hot and relatively hot days showed significant growth, with a rate of 0.73 day/10 year and 0.64 day/10 year, respectively. Temperature–humidity index (THI), wind effect index (WEI), and climate comfortable index (CCI) prominently increased, while the index of clothes loading (ICL) constantly decreased.
- (2)
- Summer was the most uncomfortable season, with only four comfortable days and 47% of days rated at the uncomfortable level. The comfortability in autumn was lower than that of spring, while winter was the most comfortable season.
- (3)
- The high population exposure to summer discomfort was mainly concentrated in the Pearl River Delta and Eastern Guangdong, with significant expansion in exposure area and population. Specifically, the core city of Guangdong-Hongkong-Macao Great Area, like Shenzhen, Dongguan, and Foshan, presented an exposure growth rate exceeding one million people/10 year.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, L.; Liu, Y.; Feng, Z.; Yang, S. Analysing the Spatiotemporal Characteristics of Climate Comfort in China Based on 2005–2018 MODIS Data. Theor. Appl. Climatol. 2021, 143, 1235–1249. [Google Scholar] [CrossRef]
- Fischer, E.M.; Sippel, S.; Knutti, R. Increasing Probability of Record-Shattering Climate Extremes. Nat. Clim. Chang. 2021, 11, 689–695. [Google Scholar] [CrossRef]
- Thiery, W.; Lange, S.; Rogelj, J.; Schleussner, C.-F.; Gudmundsson, L.; Seneviratne, S.I.; Andrijevic, M.; Frieler, K.; Emanuel, K.; Geiger, T.; et al. Intergenerational Inequities in Exposure to Climate Extremes. Science 2021, 374, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Batibeniz, F.; Ashfaq, M.; Diffenbaugh, N.S.; Key, K.; Evans, K.J.; Turuncoglu, U.U.; Önol, B. Doubling of U.S. Population Exposure to Climate Extremes by 2050. Earth Future 2020, 8, e2019EF001421. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Bianchi, A.; Silva, F.B.E.; Marin Herrera, M.A.; Leblois, A.; Lavalle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating Impacts of Climate Extremes on Critical Infrastructures in Europe. Glob. Environ. Chang. 2018, 48, 97–107. [Google Scholar] [CrossRef]
- Hong, C.; Zhang, Q.; Zhang, Y.; Davis, S.J.; Tong, D.; Zheng, Y.; Liu, Z.; Guan, D.; He, K.; Schellnhuber, H.J. Impacts of Climate Change on Future Air Quality and Human Health in China. Proc. Natl. Acad. Sci. USA 2019, 116, 17193–17200. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.-Q.; Huang, W.; Zhu, Y.; Li, M.; Zhou, B.-T. Climate Comfort Distribution, Change and Projection in Yunnan Province. Adv. Clim. Chang. Res. 2018, 14, 144. [Google Scholar] [CrossRef]
- Odnoletkova, N.; Patzek, T.W. Data-Driven Analysis of Climate Change in Saudi Arabia: Trends in Temperature Extremes and Human Comfort Indicators. J. Appl. Meteorol. Climatol. 2021, 60, 1055–1070. [Google Scholar] [CrossRef]
- Aminipouri, M.; Rayner, D.; Lindberg, F.; Thorsson, S.; Knudby, A.J.; Zickfeld, K.; Middel, A.; Krayenhoff, E.S. Urban Tree Planting to Maintain Outdoor Thermal Comfort under Climate Change: The Case of Vancouver’s Local Climate Zones. Build. Environ. 2019, 158, 226–236. [Google Scholar] [CrossRef]
- Dino, I.G.; Meral Akgül, C. Impact of Climate Change on the Existing Residential Building Stock in Turkey: An Analysis on Energy Use, Greenhouse Gas Emissions and Occupant Comfort. Renew. Energy 2019, 141, 828–846. [Google Scholar] [CrossRef]
- Summa, S.; Tarabelli, L.; Ulpiani, G.; Di Perna, C. Impact of Climate Change on the Energy and Comfort Performance of NZEB: A Case Study in Italy. Climate 2020, 8, 125. [Google Scholar] [CrossRef]
- Cheung, C.S.C.; Hart, M.A. Climate Change and Thermal Comfort in Hong Kong. Int. J. Biometeorol. 2014, 58, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to Selected Thermal Indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Sun, G. Evaluation of climate comfort index for tourism hot-spot cities in west China. Arid. Land Geogr. 2009, 32, 791–797. [Google Scholar]
- Barbosa, R.; Vicente, R.; Santos, R. Climate Change and Thermal Comfort in Southern Europe Housing: A Case Study from Lisbon. Build. Environ. 2015, 92, 440–451. [Google Scholar] [CrossRef]
- Kramer, R.; van Schijndel, J.; Schellen, H. Dynamic Setpoint Control for Museum Indoor Climate Conditioning Integrating Collection and Comfort Requirements: Development and Energy Impact for Europe. Build. Environ. 2017, 118, 14–31. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.P.; Matzarakis, A. Outdoor Human Thermal Perception in Various Climates: A Comprehensive Review of Approaches, Methods and Quantification. Sci. Total Environ. 2018, 631, 390–406. [Google Scholar] [CrossRef]
- Sun, M.S.; Li, S. Empirical Indices Evaluating Climate Comfortableness: Review and Prospect. Tour. Trib. 2015, 30, 19–34. [Google Scholar] [CrossRef]
- Malchaire, J. Human thermal environments: The effects of hot, moderate and cold environments on human health—Comfort and performance: The principles and the practice. Saf. Sci. 2003, 18, 67–68. [Google Scholar] [CrossRef]
- Houghten, F.C.; Yaglou, C.P. Determining Lines of Equal Comfort. ASHVE Trans. 1923, 29, 163–176. [Google Scholar]
- Yaglou, C.P. Control of heat casualties at military training centers. AMA Arch. Ind. Health 1957, 16, 302–316. [Google Scholar] [PubMed]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–60. [Google Scholar] [CrossRef]
- Thom, H. A New Concept for Cooling Degree Days. Air Cond. Heat. Vent. 1957, 54, 73–80. [Google Scholar]
- Siple, P. Measurement of Dry Atmospheric Cooling in Subfreezing Temperatures. Proc. Am. Philos. Soc. 1945, 89, 177–199. [Google Scholar] [CrossRef]
- Yan, Y.C.; Yue, S.P.; Liu, X.H.; Wang, D.D.; Chen, H. Advances in Assessment of Bioclimatic Comfort Conditions at Home and Abroad. Adv. Earth Sci. 2013, 28, 1119. [Google Scholar] [CrossRef]
- Terjung, W.H. Physiologic Climates of the Conterminous United States: A Bioclimatic Classification Based on Man. Ann. Assoc. Am. Geogr. 2015, 56, 141–179. [Google Scholar] [CrossRef]
- Tout, D.G. The Discomfort Index, Mortality and the London Summers of 1976 and 1978. Int. J. Biometeorol. 1980, 24, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Kyle, W.J. The Human Bioclimatic of Hong Kong. Contemp. Climatol. 1994, 345–350. [Google Scholar]
- Ma, L.J.; Sun, G.N.; Li, F.L.; Wang, B.Z. Evaluation of Tourism Climate Comfortableness in Shaanxi Province. Resour. Sci. 2007, 29, 40–44. [Google Scholar] [CrossRef]
- Gonzalez, R.R.; Nishi, Y.; Gagge, A.P. Experimental Evaluation of Standard Effective Temperature a New Biometeorological Index of Man’s Thermal Discomfort. Int. J. Biometeorol. 1974, 18, 1–15. [Google Scholar] [CrossRef]
- Steadman, R.G. Indices of Windchill of Clothed Persons. J. Appl. Meteorol. 2010, 10, 674–683. [Google Scholar] [CrossRef]
- Auliciems, A.; Freitas, C. Cold Stress in Canada. A Human Climatic Classification. Int. J. Biometeorol. 1976, 20, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.J.; Sun, G.N.; Ma, Y.R.; Cai, X.F.; Hou, K. Variation of Tourism Climate Comfort Degree in Beijing in the Last 50 Years. J. Arid. Land Resour. Environ. 2011, 25, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.H.; Wang, S.X. Evaluation of Climate Suitability for Urban Human Settlement in Beijing-Tianjin-Hebei Region. J. Glaciol. Geocryol. 2017, 39, 8. [Google Scholar] [CrossRef]
- Yu, C.; Sun, Y.L.; Wu, M.X. Spatial and Temporal Characteristics of the Periods of Climate Comfon in the Beijing-Tianjin-Hebei Region from 1966 to 2015. Acta Ecol. Sin. 2019, 39, 16. [Google Scholar] [CrossRef]
- Yu, X.R.; Wang, N.A. Analysis of the Changes in Tourism Climate Comfort in Gansu Province from 1955 to 2015. J. Lanzhou Univ. Nat. Sci. 2021, 57, 8. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Lai, C.; Lin, G. Quantitative Assessment of the Relative Impacts of Climate Change and Human Activity on Flood Susceptibility Based on a Cloud Model. J. Hydrol. 2020, 588, 125051. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, C.; Sun, J.; Zhou, M. Spatio-Temporal Variation and Influencing Factors of Thermal Comfort at Different Elevations. J. Appl. Ecol. 2018, 29, 2808–2818. [Google Scholar]
- Zhao, J.; Wang, S. Spatio-Temporal Evolution and Prediction of Tourism Comprehensive Climate Comfort in Henan Province, China. Atmosphere 2021, 12, 823. [Google Scholar] [CrossRef]
- Ma, L.; Sun, G.N.; Wang, J.J. Evaluation of Tourism Climate Comfortableness of Coastal Cities in the Eastern China. Prog. Geogr. 2009, 28, 713–722. [Google Scholar] [CrossRef]
- De Freitas, C.R. Human Climates of Northern China. Atmos. Environ. 1979, 13, 71–77. [Google Scholar] [CrossRef]
- Wilson, O. Objective Evaluation of Wind Chill Index by Records of Frostbite in the Antarctica. Int. J. Biometeorol. 1967, 11, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Y.; Zhai, Z.H.; Zhang, Y. Analysis of Climate Change in Guangdong-Hong Kong-Macao Greater Bay Area from 1961 to 2018. Torrential Rain Disasters 2019, 38, 303–310. [Google Scholar] [CrossRef]
- Ding, L.J.; Wang, C.L.; Ling, L.X. Spatial-Temporal Variation Characteristics of Average Temperature in Guangdong. Chin. J. Agrometeorol. 2011, 32, 7. [Google Scholar] [CrossRef]
- Li, S.; Sun, M.S.; Zhang, W.J.; Tan, L.; Zun, N.L.; Wang, W.F. Spatial Patterns and Evolving Characteristics of Climate Comfortable Period in the Mainland of China: 1961–2010. Geogr. Res. 2016, 35, 2053–2070. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, S.; Wang, S.; Shang, K. The Tendency of Spatial-Temporal Changes of Wind Effect Index in Main Capital Cities in China from 1951 to 2008. J. Arid. Land Resour. Environ. 2012, 26, 64–70. [Google Scholar]
- Jin, A.; Zhang, A.; Zhao, X. Estimation of Climate Comfort in Eastern China in the Context of Climate. Acta Sci. Nat. Univ. Pekin. 2019, 55, 165–174. [Google Scholar]
- Deng, L.; Bao, J. Spatial Distribution of Summer Comfortable Climate and Winter Comfortable Climate in China and Their Differences. Geograhpical Res. 2020, 39, 41–52. [Google Scholar]
- Hayes, K.; Blashki, G.; Wiseman, J.; Burke, S.; Reifels, L. Climate Change and Mental Health: Risks, Impacts and Priority Actions. Int. J. Ment. Health Syst. 2018, 12, 28. [Google Scholar] [CrossRef]
- Stechemesser, A.; Wenz, L.; Kotz, M.; Levermann, A. Strong Increase of Racist Tweets Outside of Climate Comfort Zone in Europe. Environ. Res. Lett. 2021, 16, 114001. [Google Scholar] [CrossRef]
- Cetin, M. Climate Comfort Depending on Different Altitudes and Land Use in the Urban Areas in Kahramanmaras City. Air Qual. Atmos. Health 2020, 13, 991–999. [Google Scholar] [CrossRef]
- Luan, G.; Yin, P.; Li, T.; Wang, L.; Zhou, M. The Years of Life Lost on Cardiovascular Disease Attributable to Ambient Temperature in China. Sci. Rep. 2017, 7, 13531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Meng, X.; Chen, R.; Huang, G.; Ma, X.; Chen, J.; Huang, M.; Huang, M.; Gui, Y.; Chu, C.; et al. Ambient Air Pollution, Temperature and Kawasaki Disease in Shanghai, China. Chemosphere 2017, 186, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Im, E.-S.; Pal, J.S.; Eltahir, E.A.B. Deadly Heat Waves Projected in the Densely Populated Agricultural Regions of South Asia. Sci. Adv. 2017, 3, e1603322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Xu, Y.; Lin, G.; Liu, T.; Lin, H.; Xiao, J.; Zeng, W.; Li, X.; Ma, W. Impact of Air Temperature on Years of Life Lost among Residents in Guangzhou and Zhuhai: A Time-Series Study. Chin. J. Epidemiol. 2015, 36, 720–724. [Google Scholar] [CrossRef]
- Liu, T.; Xiao, J.; Zeng, W.; Li, X.; Li, Z.; Lin, H.; Du, Y.; Xu, X.; Ma, W. Investigation on the Heat Effect of Climate Change on Years of Life Lost in Guangzhou. J. Environ. Hyg. 2018, 8, 393–398. [Google Scholar]
Temperature–Humidity Index (THI) | Wind Efficiency Index (WEI) | Index of Cloth Loading (ICL) | Climate Comfort Index (CCI) Grade | ||||
---|---|---|---|---|---|---|---|
Grade Value | Human Feeling | Grade Value | Human Feeling | Grade Value | Human Wear | Symbols | Assignment |
≤40 | Extremely cold | ≤−1000 | Extremely cold wind | ≥2.5 | Down-filled or fur clothes | e. Extremely uncomfortable | ≤1 |
40–45 | Cold | −1000–−800 | Cold wind | 1.8–2.5 | Casual clothes plus coat | d. Uncomfortable | 1–3 |
45–55 | Relatively cold | −800–−600 | Relatively cold wind | 1.5–1.8 | Winter clothes | c. Relatively uncomfortable | 3–5 |
55–60 | Cool | −600–−300 | Cool wind | 1.3–1.5 | Spring and autumn clothes | b. Relatively comfortable | 5–7 |
60–65 | Refreshing | −300–−200 | Cosy wind | 0.7–1.3 | Shirts and casual clothes | A. Comfortable | 7–9 |
65–70 | Warm | −200–−50 | Warm wind | 0.5–0.7 | Light summer clothes | B. Relatively comfortable | 5–7 |
70–75 | Hot | −50–80 | Relatively warm wind | 0.3–0.5 | Polo shirts | C. Relatively uncomfortable | 3–5 |
75–80 | Muggy | 80–160 | Hot wind | 0.1–0.3 | Tropical single-layer clothes | D. Uncomfortable | 1–3 |
≥80 | Extremely muggy | ≥160 | Extremely hot wind | ≤0.1 | Light tropical single-layer clothes | E. Extremely uncomfortable | ≤1 |
CCI | 1 ≤ CCI < 3 | 3 ≤ CCI < 5 | 5 ≤ CCI < 7 | 7 ≤ CCI < 9 |
Comfort level | Uncomfortable | Relatively uncomfortable | Relatively comfortable | Comfortable |
Period | e | d | c | b | A | B | C | D | E | |
---|---|---|---|---|---|---|---|---|---|---|
THI | Human feeling | Ecold | Cold | Rcold | Cchilly | Cool | Warm | Rhot | Muggy | EMuggy |
1969–1978 | 3 | 5 | 40 | 39 | 41 | 43 | 49 | 97 | 2 | |
1979–1988 | 2 | 6 | 38 | 41 | 42 | 44 | 51 | 87 | 59 | |
1989–1998 | 2 | 4 | 24 | 27 | 37 | 44 | 45 | 62 | 125 | |
1999–2008 | 1 | 3 | 18 | 21 | 31 | 42 | 46 | 53 | 152 | |
2009–2018 | 2 | 4 | 20 | 24 | 33 | 39 | 42 | 56 | 149 | |
Averaged | 2 | 5 | 28 | 30 | 37 | 42 | 47 | 71 | 107 | |
TR | −0.04 | −0.06 * | −0.58 ** | −0.49 ** | −0.26 ** | −0.12 ** | −0.18 * | −1.12 * | 2.83 ** | |
Human feeling | EcoldW | ColdW | ScoldW | CoolW | CW | WarmW | ShotW | hotW | EhotW | |
WEI | 1969–1978 | 0 | 2 | 10 | 93 | 67 | 130 | 64 | 0 | 0 |
1979–1988 | 0 | 2 | 8 | 91 | 65 | 130 | 67 | 1 | 0 | |
1989–1998 | 0 | 1 | 6 | 81 | 68 | 141 | 67 | 1 | 0 | |
1999–2008 | 0 | 1 | 6 | 78 | 70 | 142 | 71 | 1 | 0 | |
2009–2018 | 0 | 1 | 7 | 91 | 66 | 132 | 70 | 2 | 0 | |
Averaged | 0 | 1 | 7 | 87 | 67 | 135 | 68 | 1 | 0 | |
TR | 0 | −0.01 | −0.07 | −0.17 * | 0.01 | 0.18 | 0.14 | 0.03 | 0 | |
ICL | Human wear | Down-filled/fur clothes | Casual clothes/coats | Winter clothes | S/A clothes | Skirts | Light summer clothes | Polo shirts | Tropical clothes | Light tropical clothes |
1969–1978 | 0 | 12 | 27 | 29 | 108 | 50 | 84 | 46 | 13 | |
1979–1988 | 0 | 11 | 25 | 30 | 109 | 49 | 78 | 52 | 13 | |
1989–1998 | 0 | 9 | 22 | 25 | 111 | 50 | 77 | 56 | 15 | |
1999–2008 | 0 | 9 | 21 | 23 | 112 | 49 | 82 | 59 | 13 | |
2009–2018 | 0 | 10 | 24 | 27 | 110 | 52 | 77 | 63 | 7 | |
Averaged | 0 | 10 | 24 | 27 | 110 | 50 | 79 | 55 | 12 | |
TR | 0 | −0.03 * | −0.09 | −0.11 * | 0.05 * | 0.06 | −0.06 | 0.39 | −0.12 ** |
Grading | Comfortable | Relatively Comfortable | Relatively Uncomfortable | Uncomfortable |
---|---|---|---|---|
1969–1978 | 120 | 90 | 112 | 43 |
1979–1988 | 123 | 90 | 101 | 49 |
1989–1998 | 98 | 81 | 119 | 64 |
1999–2008 | 83 | 83 | 128 | 71 |
2009–2018 | 86 | 80 | 128 | 70 |
Averaged | 102 | 85 | 117 | 59 |
TR | −1.06 ** | −0.28 ** | 0.64 ** | 0.73 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.; Song, S.; Zhong, R. Temporal and Spatial Evolution of Climate Comfort and Population Exposure in Guangdong Province in the Last Half Century. Atmosphere 2022, 13, 502. https://doi.org/10.3390/atmos13030502
Ye Z, Song S, Zhong R. Temporal and Spatial Evolution of Climate Comfort and Population Exposure in Guangdong Province in the Last Half Century. Atmosphere. 2022; 13(3):502. https://doi.org/10.3390/atmos13030502
Chicago/Turabian StyleYe, Ziqiang, Song Song, and Runfei Zhong. 2022. "Temporal and Spatial Evolution of Climate Comfort and Population Exposure in Guangdong Province in the Last Half Century" Atmosphere 13, no. 3: 502. https://doi.org/10.3390/atmos13030502
APA StyleYe, Z., Song, S., & Zhong, R. (2022). Temporal and Spatial Evolution of Climate Comfort and Population Exposure in Guangdong Province in the Last Half Century. Atmosphere, 13(3), 502. https://doi.org/10.3390/atmos13030502