Influence of Convectively Driven Flows in the Course of a Large Fire in Portugal: The Case of Pedrógão Grande
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fire Data Survey
2.2. Surface Observations
2.3. Weather Radar Data and Processing
2.4. Numerical Model and Rawinsonde Data
3. Background Conditions
3.1. Topography and Fuel
3.2. Synoptic and Mesoscale Environments
4. The Mesoscale Convective System of 17 June
4.1. MCS Type
4.2. System-Relative Winds
4.3. Convective Regimes and Airflows Observed in the MCS
4.3.1. Initial and Mature Stages
- (a)
- Reflectivity cores and downburst activity
- (b) Airflows at several scales
4.3.2. Dissipating Stage: The Rear Inflow Jet
5. Evolution of the Pyroconvective Plume: Fire Intensity, Plume Orientation, Plume Vertical Extent and Plume Mode
6. Discussion: Influence of the MCS Driven Flows in the Course of the PG Fires
6.1. MCS Driven Flows
6.2. Evolution of the Fire
6.3. Radar Observation
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Countryman, C.M. Mass Fires and Fire Behavior; Research paper, PSW; U.S. Forest Service: Washington, DC, USA, 1964; p. 53. [Google Scholar]
- Carrier, G.F.; Fendell, F.E.; Feldman, P.S. Firestorms. J. Heat Transf. 1985, 107, 19–27. [Google Scholar] [CrossRef]
- Jenkins, M.A.; Clark, T.; Coen, J. Coupling Atmospheric and Fire Models. In Forest Fires; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar] [CrossRef]
- Finney, M.A.; McAllister, S.S. A review of fire interactions and mass fires. J. Combust. 2011, 2011, 548328. [Google Scholar] [CrossRef]
- Coen, J.L.; Riggan, P.J. Simulation and thermal imaging of the 2006 Esperanza Wildfire in southern California: Application of a coupled weather-wildland fire model. Int. J. Wildl. Fire 2014, 23, 755–770. [Google Scholar] [CrossRef]
- Werth, P.A.; Potter, B.E.; Alexander, M.E.; Clements, C.B.; Cruz, M.G.; Finney, M.A.; Forthofer, J.M.; Goodrick, S.L.; Hoffman, C.; Jolly, W.M.; et al. Synthesis of knowledge of extreme fire behavior: Volume 2 for Fire Behavior Specialists, Researchers, and Meteorologists. In General Technical Report PNW-GTR-891; U.S. Department of Agriculture: Portland, OR, USA, 2016; Volume 2, p. 258. [Google Scholar]
- Viegas, D.X. A Mathematical Model for Forest Fires Blowup. Combust. Sci. Technol. 2005, 177, 27–51. [Google Scholar] [CrossRef] [Green Version]
- Viegas, D.X. Parametric study of an eruptive fire behaviour model. Int. J. Wildl. Fire 2006, 15, 169–177. [Google Scholar] [CrossRef]
- Johnson, R.H.; Schumacher, R.S.; Ruppert, J.H.; Lindsey, D.T.; Ruthford, J.E.; Kriederman, L. The Role of Convective Outflow in the Waldo Canyon Fire. Mon. Weather Rev. 2014, 142, 3061–3080. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A. Mesoscale convective systems. Rev. Geophys. 2004, 42, RG4003. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.T. Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci. 1981, 38, 1511–1534. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.T. The downburst: Microburst and macroburst. In Satellite and Mesometeorology Research Project; Research Pap. No. 210; University of Chicago: Chicago, IL, USA, 1985; p. 122. [Google Scholar]
- McCarthy, N.; McGowan, H.; Guyot, A.; Dowdy, A. Mobile X-pol radar: A new tool for investigating pyroconvection and associated wildfire meteorology. Bull. Am. Met. Soc. 2018, 99, 1177–1195. [Google Scholar] [CrossRef] [Green Version]
- Viegas, D.X.; Almeida, M.; Ribeiro, L.; Raposo, J.; Viegas, M.T.; Oliveira, R.; Alves, D.; Pinto, C.; Humberto, J.; Rodrigues, A.; et al. O Complexo de Incêndios de Pedrógão Grande e Concelhos Limítrofes, Iniciado a 17 de Junho de 2017. ADAI-CEIF, Coimbra. 2017 (In Portuguese). Available online: http://www.portugal.gov.pt/donwload-ficheiros/ficheiro.aspx?v=3bb97773b-59fb-4099-9de5-a22fdcad1e3b (accessed on 12 November 2021).
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965.
- IPMA. Boletim Climatológico Maio 2017; IPMA: Lisbon, Portugal, 2017. (In Portuguese) [Google Scholar]
- Van Wagner, C.E. Development and structure of the Canadian Forest Fire Weather Index System. Can. For. Serv. For. Tech. Rep. 1987, 35, 37. [Google Scholar]
- Rotunno, R.; Klemp, J.B.; Weisman, L.M. A theory for strong, long-lived squall lines. J. Atmos. Sci. 1988, 45, 463–485. [Google Scholar] [CrossRef] [Green Version]
- Weisman, M.L. The genesis of severe long-lived bow echoes. J. Atmos. Sci. 1992, 49, 1826–1847. [Google Scholar] [CrossRef] [Green Version]
- Weisman, M.L.; Rotunno, R. “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci. 2004, 61, 361–382. [Google Scholar] [CrossRef]
- Grim, J.A.; Rauber, R.M.; McFarquhar, G.M.; Jewett, B.F. Development and forcing of the Rear Inflow Jet in a Rapidly Developing and Decaying Squall Line during BAMEX. Mon. Weather Rev. 2009, 137, 1206–1229. [Google Scholar] [CrossRef]
- Churchill, D.D.; Houze, R.A. Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci. 1984, 41, 933–960. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A. 100 years of research on mesoscale convective systems. Meteorol. Monogr. 2018, 59, 17.1–17.54. [Google Scholar] [CrossRef]
- Smull, B.F.; Houze, R.A. Rear inflow in squall lines with trailing stratiform precipitation. Mon. Weather Rev. 1987, 115, 2869–2889. [Google Scholar] [CrossRef] [Green Version]
- Kingsmill, D.; Houze, R. Kinematic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool: An airborne Doppler radar survey. Q. J. R. Meteor. Soc. 1999, 125, 1165–1207. [Google Scholar] [CrossRef]
- Brown, J.M. Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci. 1979, 36, 313–338. [Google Scholar] [CrossRef]
- Braun, S.A.; Houze, R.A. The evolution of the 10–11 June 1985 PRE-STORM squall line: Initiation, development of rear inflow and dissipation. Mon. Weather Rev. 1997, 125, 478–504. [Google Scholar] [CrossRef]
- Davis, C.; Atkins, N.; Bartels, D.; Bosart, L.; Coniglio, M.; Bryan, G.; Cotton, W.; Dowell, D.; Jewett, R.; Johns, R.; et al. The Bow Echo and MCV Experiment. Bull. Am. Meteor. Soc. 2004, 85, 1075–1093. [Google Scholar] [CrossRef] [Green Version]
- Vaisala. User Guide, Utilities, IRIS and RDA; Vaisala Oyj: Vantaa, Finland, 2017. [Google Scholar]
- McCarthy, N.; Guyot, A.; Dowdy, A.; McGowan, H. Wildfire and Weather Radar: A Review. J. Geophys. Res. 2019, 124, 266–286. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.A.; Christopher, S.A. Satellite and radar observations of the 9 April 2009 Texas and Oklahoma grassfires. Bull. Am. Met. Soc. 2010, 91, 455–460. [Google Scholar] [CrossRef]
- Murdoch, G.P.; Christopher, M.G.; Lindley, T.; Mahale, V. Identifying Plume Mode via WSR-88D Observations of Wildland Fire Convective Plumes and Proposed Tactical Decision Support Applications. J. Oper. Metereol. 2019, 7, 153–163. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Zrnic, D.S. Use of Polarization to Characterize Precipitation and Discriminate Large Hail. J. Atmos. Sci. 1990, 47, 1525–1540. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A.; Dolan, B.; Krehbiel, P.; Rison, W.; Lindsey, D.T. Lightning in Wildfire Smoke Plumes Observed in Colorado during Summer 2012. Mon. Weather Rev. 2014, 142, 489–507. [Google Scholar] [CrossRef] [Green Version]
- LaRoche, K.T.; Lang, T.J. Observations of Ash, Ice, and Lightning within Pyrocumulus Clouds Using Polarimetric NEXRAD Radars and the National Lightning Detection Network. Mon. Weather Rev. 2017, 145, 4899–4910. [Google Scholar] [CrossRef]
- Kiefer, M.T.; Lin, Y.L.; Charney, J.J. A study of two-dimensional dry convective plume modes with variable critical level height. J. Atmos. Sci. 2008, 65, 448–469. [Google Scholar] [CrossRef]
- Kiefer, M.T.; Parker, M.D. Regimes of dry convection above wildfires: Idealized numerical simulations and dimensional analysis. J. Atmos. Sci. 2009, 66, 806–836. [Google Scholar] [CrossRef] [Green Version]
- Rothermel, R. Predicting Behavior and Size of Crown Fires in the Northern Rocky Mountains; Research Paper INT-RP-438; U.S. Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1991; p. 46.
- Mphale, K.; Heron, M.; Verma, T. Effect of wildfire-induced thermal bubble on radio communication. Prog. Electromagn. Res. 2007, 68, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Banta, R.M.; Olivier, L.D.; Holloway, E.T.; Kropfli, R.A.; Bartram, B.W.; Cupp, R.E.; Post, M.J. Smoke-column observations from two forest fires using Doppler lidar and Doppler radar. J. Appl. Meteorol. 1992, 31, 1328–1349. [Google Scholar] [CrossRef] [Green Version]
- Lareau, N.P.; Clements, C.B. The mean and turbulent properties of a wildfire convective plume. J. Appl. Metorol. Climatol. 2017, 56, 2289–2299. [Google Scholar] [CrossRef]
- Haiden, T.; Janousek, M.; Bidlot, J.; Ferranti, L.; Prates, F.; Vitart, F.; Bauer, P.; Richardson, D. Evaluation of ECMWF Forecasts, Including 2016–2017 Upgrades. ECMWF Technical Memorandum (Forecast Department). 2017. Available online: http://www.ecmwf.int/publications/ (accessed on 13 November 2021).
- Viegas, D.X.; Simeoni, A. Eruptive Behaviour of Forest Fires. Fire Technol. 2011, 47, 303–320. [Google Scholar] [CrossRef] [Green Version]
- Almeida, M.; Viegas, D.; Raposo, J. Analysis of firebrand release on the spot fire mechanism. In Advances in Forest Fire Research; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2014; pp. 61–72. [Google Scholar] [CrossRef] [Green Version]
- IPMA. Condições Meteorológicas Associadas ao Incêndio de Pedrógão Grande de 17 de Junho 2017; IPMA: Lisbon, Portugal, 2017. (In Portuguese) [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. Analysis of Standardized Precipitation Index (SPI) data for drought assessment. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 1–72. [Google Scholar] [CrossRef]
- Viegas, D.X.; Rossa, C.; Ribeiro, L.M. Incêndios Florestais, 1st ed.; Verlag Dashöfer Edições Profissionais Unipessoal Lda.: Lisbon, Portugal, 2011. [Google Scholar]
- Weisman, M.L.; Klemp, J.B. Characteristics of Isolated Convective Storms. In Mesoscale Meteorology and Forecasting; Ray, P., Ed.; American Meteorological Society: Boston, MA, USA, 1986; pp. 331–358. [Google Scholar] [CrossRef]
- Bluestein, H.B.; Jain, M.H. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci. 1985, 42, 1711–1732. [Google Scholar] [CrossRef]
- Blanchard, D.O. Mesoscale Convective Patterns of the Southern High Plains. Bull. Am. Meteorol. Soc. 1990, 71, 994–1005. [Google Scholar] [CrossRef] [Green Version]
- Parker, M.D.; Johnson, R.H. Organizational modes of midlatitude mesoscale convective systems. Mon. Weather Rev. 2000, 128, 3413–3436. [Google Scholar] [CrossRef]
- Maddox, R.A. Mesoscale convective complexes. Bull. Am. Met. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Houze, R.A.; Betts, A.K. Convection in GATE. Rev. Geophys. Space Phys. 1981, 19, 541–576. [Google Scholar] [CrossRef] [Green Version]
- Klingle, D.L.; Smith, D.R.; Wolfson, M.M. Gust Front Characteristics as Detected by Doppler Radar. Mon. Weather Rev. 1987. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R. A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci. 1987, 44, 1752–1774. [Google Scholar] [CrossRef] [Green Version]
- Schmocker, G.; Przybylinski, R. Mid-Altitude Radial Convergence (MARC) Velocity Signature. NWS. 2009. Available online: https://www.weather.gov/lsx/marc_signature (accessed on 10 July 2021).
- Eilts, M.D.; Johnson, J.T.; Mitchell, E.D.; Lynn, R.J.; Spencer, P.; Cobb, S.; Smith, T.M. Damaging Downburst Prediction and Detection Algorithm for the WSR-88D. In Preprints, 18th Conf. on Severe Local Storms; American Meteorological Society: San Francisco, CA, USA, 1996; pp. 541–545. [Google Scholar]
- Barnes, H.C.; Houze, R.A. The precipitating cloud population of the Madden-Julian Oscillation over the Indian and west Pacific Oceans. J. Geophys. Res. Atmos. 2013, 118, 6996–7023. [Google Scholar] [CrossRef]
- Smull, B.F.; Houze, R.A. A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Weather Rev. 1985, 113, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Przybylinski, R.W. The Bow Echo: Observations, Numerical Simulations, and Severe Weather Detection Methods. Weather Forecast 1995, 10, 203–218. [Google Scholar] [CrossRef]
- Houze, R.A.; Rutdledge, S.A.; Biggerstaff, M.I.; Smull, B.F. Interpretation of Doppler weather radar displays of mid-latitude mesoscale convective systems. Bull. Am. Meteor. Soc. 1989, 70, 608–619. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Weisman, M.L.; Klemp, J.B. Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci. 1994, 51, 2563–2584. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.W.; Roberts, R.D.; Kessinger, C.; McCarthy, J. Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Clim. Appl. Meteor. 1984, 23, 898–915. [Google Scholar] [CrossRef] [Green Version]
- Zrnic, D.; Zhang, P.; Melnikov, V.; Mirkovic, D. Of fire and Smoke Plumes, Polarimetric Radar Characteristics. Atmosphere 2020, 11, 363. [Google Scholar] [CrossRef] [Green Version]
- Khain, A.; Rosenfeld, D.; Pokrovsky, A. Aerosol impact on the dynamics and microphysics of convective clouds. Q. J. R. Meteorol. Soc. 2005, 131, 2639–2663. [Google Scholar] [CrossRef] [Green Version]
- Viegas, D.X.; Raposo, J.; Davim, D.; Rossa, C. Study of the jump fire produced by the interaction of two oblique fire fronts. Part 1. Analytical model and validation with no-slope laboratory experiments. Int. J. Wildland Fire 2012, 21, 843–856. [Google Scholar] [CrossRef]
- Raposo, J.R.; Viegas, D.X.; Xie, X.; Almeida, M.; Figueiredo, A.R.; Porto, L.; Sharples, J. Analysis of the physical processes associated with junction fires at laboratory and field scales. Int. J. Wildland Fire 2018, 27, 52–68. [Google Scholar] [CrossRef]
- Doogan, M. The Canberra Fire Storm. Inquests and Inquiry into Four Deaths and Four Fires Between 8 and 18 January 2003; ACT Coroners Court: Canberra, Australia, 2006; Volume 1. [Google Scholar]
- Khain, A.; Leung, L.; Lynn, B.; Ghan, S. Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J. Geophys. Res. 2009, 114, D22203. [Google Scholar] [CrossRef] [Green Version]
Radar Station (ID, Technology) | Volumetric Scan | Products |
---|---|---|
C/CL, single pol | Reflectivity, 16 tilts, time stamp on the hour, every 10 min | PPI of Z |
Reflectivity, 5 tilts, time stamp on the hour + 05 min, every 10 min | PPI of Z | |
Doppler, 5 tilts, time stamp on the hour + 06 min, every 10 min | PPI of Z PPI of V and SRV | |
A/PG, dual pol | Same as above | Same as above plus PPI of ρHV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, P.; Silva, Á.P.; Viegas, D.X.; Almeida, M.; Raposo, J.; Ribeiro, L.M. Influence of Convectively Driven Flows in the Course of a Large Fire in Portugal: The Case of Pedrógão Grande. Atmosphere 2022, 13, 414. https://doi.org/10.3390/atmos13030414
Pinto P, Silva ÁP, Viegas DX, Almeida M, Raposo J, Ribeiro LM. Influence of Convectively Driven Flows in the Course of a Large Fire in Portugal: The Case of Pedrógão Grande. Atmosphere. 2022; 13(3):414. https://doi.org/10.3390/atmos13030414
Chicago/Turabian StylePinto, Paulo, Álvaro Pimpão Silva, Domingos Xavier Viegas, Miguel Almeida, Jorge Raposo, and Luís Mário Ribeiro. 2022. "Influence of Convectively Driven Flows in the Course of a Large Fire in Portugal: The Case of Pedrógão Grande" Atmosphere 13, no. 3: 414. https://doi.org/10.3390/atmos13030414
APA StylePinto, P., Silva, Á. P., Viegas, D. X., Almeida, M., Raposo, J., & Ribeiro, L. M. (2022). Influence of Convectively Driven Flows in the Course of a Large Fire in Portugal: The Case of Pedrógão Grande. Atmosphere, 13(3), 414. https://doi.org/10.3390/atmos13030414