Recent Progress in Radon Metrology at IFIN-HH, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Reference Radon Monitor
2.2. The Solid-State Nuclear Track Detectors and the Associated Dosimetry System with Optical Reading
2.3. Description of the First Calibrated Radon Monitor
2.4. Testing and Optimizing the Tightness of the Radon Chamber Calibration Stand
3. Results
3.1. The Calibration of the Radon Monitor Model Pylon AB5
3.2. The Tightness Improvement of the Radon Chamber
3.3. The Radon Exposure of the TASTRAK Nuclear Track Detectors in the Radon Chamber
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Council Directive 2013/59/Euratom of 5 December 2013 Laying down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off. J. L 2014, 13, 1–73. Available online: https://eur-lex.europa.eu/eli/dir/2013/59/oj (accessed on 3 January 2022).
- Cosma, C.; Ciorba, D.; Timar, A.; Szacsvai, K.; Dinu, A. Radon exposure and lung cancer risk in Romania. J. Environ. Prot. Ecol. 2009, 10, 94–103. [Google Scholar]
- Cassette, P.; Sahagia, M.; Grigorescu, L.; Lépy, M.C.; Picolo, J.L. Standardization of Rn-222 by LSC and comparison with alpha and gamma spectrometry. Appl. Radiat. Isot. 2006, 64, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Sahagia, M.; Stanescu, G.; Luca, A.; Antohe, A.; Calin, M.R.; Radulescu, I. Education and training tradition at IFIN-HH in radon measurement and evaluation of radiological impact. Rom. Rep. Phys. 2019, 71, 906. [Google Scholar]
- Realisation of the Romanian Radon Primary Standard System Aimed to Assure the National and International Traceability of the Measurements (SEPRAD). Available online: https://www.nipne.ro/proiecte/pn2/19-projects.html (accessed on 3 January 2022).
- Sahagia, M.; Stanga, D.; Wätjen, A.C.; Luca, A.; Cassette, P.; Ivan, C.; Antohe, A. The Rn-222 standard system established at IFIN-HH, Romania. Appl. Radiat. Isot. 2010, 68, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Sahagia, M.; Luca, A.; Wätjen, A.C.; Antohe, A.; Ivan, C.; Stanga, D.; Varlam, C.; Faurescu, I.; Toro, L.; Noditi, M.; et al. The primary Romanian radon standard, a common project: IFIN-HH, Bucharest; ICSI, Rm. Valcea; ISP, Timisoara; CEA/LNE-LNHB, Saclay (France). Prog. Cryog. Isot. Sep. 2010, 63, 113–129. [Google Scholar]
- Sahagia, M.; Luca, A.; Wätjen, A.C.; Antohe, A.; Ivan, C.; Stanga, D.; Varlam, C.; Faurescu, I.; Toro, L.; Noditi, M.; et al. Results obtained in measurements of Rn-222 with the Romanian standard system. Rom. J. Phys. 2011, 56, 682–691. [Google Scholar]
- Sahagia, M.; Luca, A.; Wätjen, A.C.; Antohe, A.; Ivan, C.; Varlam, C.; Faurescu, I.; Cassette, P. Establishment of the Rn-222 traceability chain with the Romanian Standard System. Nucl. Instrum. Meth. Phys. Res. A 2011, 631, 73–79. [Google Scholar] [CrossRef]
- Realization of a Radon Chamber—Calibration Stand for the Equipment Used in the Measurement of Radon and Daughter Products Concentration in Air (CARSTEAM). Available online: https://www.nipne.ro/proiecte/pn2/141-projects.html (accessed on 3 January 2022).
- Luca, A.; Sahagia, M.; Antohe, A.; Ioan, M.R.; Serbina, L.; Ivan, C. Radon gas activity measurements in the frame of an international comparison. J. Radioanal. Nucl. Chem. 2017, 311, 1075–1079. [Google Scholar] [CrossRef]
- Sima, O.; Luca, A.; Sahagia, M. Monte Carlo simulation of air sampling methods for the measurement of radon decay products. Appl. Radiat. Isot. 2017, 126, 4–8. [Google Scholar] [CrossRef] [PubMed]
- MetroRADON—Metrology for Radon Monitoring. Available online: http://www.metroradon.eu/ (accessed on 3 January 2022).
- Luca, A.; Serbina, L.; Varlam, C.; Sahagia, M.; Schitea, D.; Faurescu, I.; Sima, O.; Ioan, M.R.; Antohe, A.; Teodorescu, C.; et al. Designing and construction of a new radon calibration facility in Romania. In IRPA 2018 Book of Abstracts, 25 January 2019, Proceedings of the 5th European IRPA Congress, “Encouraging Sustainability in Radiation Protection”, The Hague, The Netherlands, 4–8 June 2018; Version 1.1; Smetsers, R., Ed.; Subject: Radon/Thoron; p. 217. Available online: https://irpa2018europe.com/ (accessed on 3 January 2022).
- Pierre, S.; Cassette, P.; Sabot, B.; Fréchou, C.; Antohe, A.; Barna, C.; Blahusiak, P.; Cardellini, F.; Dersch, R.; Honig, A.; et al. International comparison of activity measurements of radon 222—EURAMET Project no. 1475—EURAMET.RI(II)-S8.Rn-222. Metrologia 2021, 58, 06015. [Google Scholar] [CrossRef]
- AlphaGuard—Radon Monitor. Available online: https://www.bertin-instruments.com/product/radon-professional-monitoring/radon-alphaguard/ (accessed on 3 January 2022).
- Chisté, V.; Bé, M.-M. 222Rn nuclear decay data. In Monographie BIPM-5: Table of Radionuclides (Vol. 4 − A = 133 to 252); Bé, M.-M., Chisté, V., Dulieu, C., Browne, E., Chechev, V., Kuzmenko, N., Kondev, F., Luca, A., et al., Eds.; Bureau International des Poids et Mesures (BIPM): Sèvres, France, 2008; Volume 4, pp. 143–147. ISBN 92-822-2230-6. Available online: https://www.bipm.org/en/publications/monographies (accessed on 3 January 2022).
- TASLImage©. Training Notes; Track Analysis Systems Ltd.: Bristol, UK, 2020. [Google Scholar]
- TASLImage. Manual and Installation Guide; Track Analysis Systems Ltd.: Bristol, UK, 2020; Available online: https://www.tasl.co.uk/tasl-image.php; https://www.tasl.co.uk/radon.php; (accessed on 3 January 2022). [Google Scholar]
- TASLImage©. Training Courses; Track Analysis Systems Ltd.: Bristol, UK, 2020. [Google Scholar]
- SR Ghid ISO/CEI 98-3; Incertitudine de Măsurare, Partea 3: Ghid Pentru Exprimarea Incertitudinii de Măsurare (GUM:1995). National Standardisation Body—ASRO: Bucharest, Romania, 2010. Available online: https://www.asro.ro/en/ (accessed on 3 January 2022). (In Romanian)
- Pylon® Models 110A & 300A Lucas Cell. Use with the Pylon Model AB-5/AB-5R Instruction Manual; Pylon Electronics Inc.: Ottawa, ON, Canada, 2002. [Google Scholar]
- Torr Seal® Low Vapor Pressure Epoxy. Available online: https://www.lesker.com/newweb/fluids/sealants-epoxy/torrseal/ (accessed on 3 January 2022).
- Calin, M.R.; Radulescu, I.; Chiper, D.; Barna, C.; Cimpeanu, C. Chemical characterization and radiation exposure from the natural radioactivity in Romanian building materials. Radiochim. Acta 2018, 106, 413–425. [Google Scholar] [CrossRef]
- Chiper, D.; Cimpeanu, C.; Barna, C.; Ilie, S. Determination of the radioactivity levels and heavy metals content of the local natural rocks widely used as raw materials in industry. Rom. J. Phys. 2018, 63, 808. [Google Scholar]
- Mostafa, M.Y.A.; Vasyanovich, M.; Zhukovsky, M. Prototype of a primary calibration system for measurement of radon activity concentration. Appl. Radiat. Isot. 2016, 107, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Stajic, J.M.; Markovic, V.M.; Milenkovic, B.; Stevanovic, N.; Nikezic, D. Distribution of alpha particle tracks on CR-39 detector in radon diffusion chamber. Rad. Phys. Chem. 2021, 181, 109340. [Google Scholar] [CrossRef]
- Fialova, E.; Otahal, P.P.S.; Vosahlik, J.; Mazanova, M. Equipment for testing measuring devices at a low-level radon activity concentration. Int. J. Environ. Res. Public Health 2020, 17, 1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trace Radon Project. Available online: http://traceradon-empir.eu/ (accessed on 3 January 2022).
- Radulescu, I.; Calin, M.R.; Luca, A.; Röttger, A.; Grossi, C.; Done, L.; Ioan, M.R. Inter-comparison of commercial continuous radon monitors responses. Nucl. Instrum. Meth. Phys. Res. A 2022, 1021, 165927. [Google Scholar] [CrossRef]
Radionuclide | Alpha-Particle Energy (MeV) | Range in Air (cm) | Range in TASTRAK (μm) |
---|---|---|---|
222Rn | 5.5 | 4.0 | 33 |
218Po | 6.0 | 4.9 | 40 |
214Po | 7.7 | 7.0 | 58 |
Type of Scintillation Cell | CPRD | Model 110A | Model 300A |
---|---|---|---|
Volume | (272 ± 3) mL | (151 ± 3) mL | (270 ± 3) mL |
Scintillator | ZnS(Ag) | ZnS(Ag) | ZnS(Ag) |
Active surface area | - | 18,800 mm2 | 27,700 mm2 |
Type | Diffusion | Vacuum | Vacuum |
Number of connectors | 2 | 2 | 2 |
Detection sensitivity | 1.55 counts per minute/(pCi·L−1) | 0.76 counts per minute/(pCi·L−1) | 1.37 counts per minute/(pCi·L−1) |
Background (maximum) | 1 count per minute | 1 count per minute | 1 count per minute |
External diameter head/body | 55 mm/58 mm | 55 mm/58 mm | 55 mm/58 mm |
Dimensions (without connectors) | 149 mm | 86.5 mm | 139 mm |
Total length | 149 mm | 127.5 mm | 180 mm |
Mass | 0.128 kg | 0.270 kg | 0.318 kg |
Crt. No. | Date | Time Interval | Reference (Average) Activity Concentration (Bq/m3) 1 | Activity Concentration (Pylon AB5) (Bq/m3) | Relative Difference (%) |
---|---|---|---|---|---|
1 | 3 December 2020 | 11:24–12:24 | 458 ± 76 | 406 ± 21 | −11.4 |
2 | 3 December 2020 | 16:24–17:24 | 445 ± 76 | 466 ± 24 | +4.7 |
Region in the Radon Chamber | Number | Integrated Radon Exposure (kBq·h·m−3) | Average Radon Activity Concentration (kBq/m3) |
---|---|---|---|
Lateral pipes (radon injection area) | I | 311 ± 50 | 1.85 ± 0.30 |
II | 376 ± 60 | 2.24 ± 0.36 | |
III | 310 ± 40 | 2.01 ± 0.24 | |
IV | 423 ± 50 | 2.52 ± 0.30 | |
Bottom plate (in its center) | V | 482 ± 77 | 2.87 ± 0.46 |
Center | VI | 463 ± 74 | 2.52 ± 0.44 |
VII | 465 ± 74 | 2.77 ± 0.44 | |
Upper pipes | VIII | 159 ± 26 | 0.95 ± 0.15 |
IX | 200 ± 32 | 1.19 ± 0.19 | |
Bottom pipe | X | 212 ± 34 | 1.26 ± 0.20 |
Exterior (outside the chamber) | - | 99 ± 16 | 0.59 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luca, A.; Rădulescu, I.; Ioan, M.-R.; Fugaru, V.; Teodorescu, C.; Barna, C.; Tuță, C.S.; Tugulan, C.L.; Antohe, A.; Lalău, I.; et al. Recent Progress in Radon Metrology at IFIN-HH, Romania. Atmosphere 2022, 13, 363. https://doi.org/10.3390/atmos13030363
Luca A, Rădulescu I, Ioan M-R, Fugaru V, Teodorescu C, Barna C, Tuță CS, Tugulan CL, Antohe A, Lalău I, et al. Recent Progress in Radon Metrology at IFIN-HH, Romania. Atmosphere. 2022; 13(3):363. https://doi.org/10.3390/atmos13030363
Chicago/Turabian StyleLuca, Aurelian, Ileana Rădulescu, Mihail-Răzvan Ioan, Viorel Fugaru, Constantin Teodorescu, Cătălina Barna, Cătălin Stelian Tuță, Cornel Liviu Tugulan, Andrei Antohe, Ioana Lalău, and et al. 2022. "Recent Progress in Radon Metrology at IFIN-HH, Romania" Atmosphere 13, no. 3: 363. https://doi.org/10.3390/atmos13030363
APA StyleLuca, A., Rădulescu, I., Ioan, M. -R., Fugaru, V., Teodorescu, C., Barna, C., Tuță, C. S., Tugulan, C. L., Antohe, A., Lalău, I., Cîmpeanu, C., & Postolache, C. (2022). Recent Progress in Radon Metrology at IFIN-HH, Romania. Atmosphere, 13(3), 363. https://doi.org/10.3390/atmos13030363