Comparative Study of Zn Loading on Advanced Functional Zeolite NaY from Bagasse Ash and Rice Husk Ash for Sustainable CO2 Adsorption with ANOVA and Factorial Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Silica Extraction Derived from Bagasse Ash and Rice Husk Ash
2.3. Zeolite NaY Synthesis
2.4. Zn Loading to Zeolite NaY
2.5. CO2 Adsorption Test
2.6. Characterization of Zeolite NaY
2.7. Statistical Analysis of the CO2 Adsorption
3. Results
3.1. Extracted Silica from Bagasse Ash and Rice Husk Ash
3.2. Synthesis of Zeolite NaY from Bagasse Ash and Rice Husk Ash
3.3. Zeolite NaY Improvements
3.4. CO2 Adsorption Test
3.4.1. Effect of Crystallization Temperatures on the CO2 Adsorption
3.4.2. Effect of Zn Loading on the CO2 Adsorption
3.4.3. Effect of Adsorption Temperature on the CO2 Adsorption
3.4.4. Effect of CO2 Flow Rate on the CO2 Adsorption
3.5. Statistical Analysis of the CO2 Adsorption
3.5.1. Effects of Raw Material and Crystallization Temperature on the CO2 Adsorption
3.5.2. Effects of Raw Material and Zn Loading on the CO2 Adsorption
3.5.3. Effects of Raw Material and of Adsorption Temperature on the CO2 Adsorption
3.5.4. Effects of Raw Material and CO2 Flow Rate on the CO2 Adsorption
4. Discussion
4.1. Silica Extraction from Bagasse Ash and Rice Husk Ash
4.2. Synthesis of NaY Zeolite from Bagasse Ash and Rice Husk Ash
4.3. Zn Loading to Zeolite NaY
4.4. CO2 Adsorption Test
4.4.1. Effect of Crystallization Temperature
4.4.2. Effect of Zn Loading
4.4.3. Effect of Adsorption Temperature
4.4.4. Effect of CO2 Flow Rate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Z.; Ma, C.; Chen, F.; Xu, G.; Pang, R.; Qian, X.; Shao, J.; Hu, X. Water caltrop shell-derived nitrogen-doped porous carbons with high CO2 adsorption capacity. Biomass Bioenergy 2021, 145, 105969. [Google Scholar] [CrossRef]
- Yang, P.; Rao, L.; Zhu, W.; Wang, L.; Ma, R.; Chen, F.; Lin, G.; Hu, X. Porous carbons derived from sustainable biomass via a facile one step synthesis strategy as efficient CO2 adsorbents. Ind. Eng. Chem. Res. 2020, 59, 6194–6201. [Google Scholar] [CrossRef]
- Ma, C.; Lu, T.; Shao, J.; Huang, J.; Hu, X.; Wang, L. Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO2 adsorption. Sep. Purif. Technol. 2022, 281, 119899. [Google Scholar] [CrossRef]
- Gavrilescu, D. Energy from biomass in pulp and paper mills. Environ. Eng. Manag. J. 2008, 7, 537–546. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, N.; Baredar, P.; Shukla, A. A review on biomass energy resources, potential, conversion and policy in India. Renew. Sustain. Energy Rev. 2015, 45, 530–539. [Google Scholar] [CrossRef]
- Office of the cane and sugar board. International Sugar Statistics; Ministry of Industry: Bangkok, Thailand, 2018; Available online: http://www.ocsb.go.th (accessed on 12 December 2021).
- Prasara-A, J.; Gheewala, S.H. Sustainable utilization of rice husk ash from power plants: A review. J. Clean. Prod. 2017, 167, 1020–1028. [Google Scholar] [CrossRef]
- Office of Agricultural Economics. Agricultural Production Statistics; Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2018. Available online: https://www.oae.go.th/ (accessed on 12 December 2021).
- Chauhan, M.K.; Chaudhary, V.S.; Samar, S.K. Life cycle assessment of sugar industry: A review. Renew. Sustain. Energy Rev. 2011, 15, 3445–3453. [Google Scholar] [CrossRef]
- Nachat, N.; Tobarameekul, P.; Worathanakul, P. Activated carbon from bagasse for syrup decolorization as an alternative for waste management and the assessment of carbon footprint. Environ. Nat. Resour. J. 2014, 12, 66–73. [Google Scholar]
- Tippayawong, N.; Nakpan, K. Extened bagasse utilization for surplus electricity generation in sugar mills. In Proceedings of the International Conference on Green and Sustainable Innovation, Chiang Mai, Thailand, 29 November–1 December 2006. [Google Scholar]
- Dias, M.O.D.S.; Filho, R.M.F.; Mantelatto, P.E.; Cavalett, O.; Rossell, C.E.V.; Bonomi, A.; Leal, M.R.L.V. Sugarcane processing for ethanol and sugar in Brazil. Environ. Dev. 2015, 15, 35–51. [Google Scholar] [CrossRef]
- Na chat, N.; Maksiri, R.; Vichaikham, P.; Worathanakul, P. Carbon footprint of zeolite A and zeolite Y derived from bagasse ash for CO2 adsorption. In Proceedings of the 11th International Conference on Life Cycle Assessment of Food in conjunction with the 6th LCA AgriFood Asia and 7th International Conference on Green and Sustainable Innovation, Bangkok, Thailand, 17–19 October 2018. [Google Scholar]
- Katsuki, H.; Komarneni, S. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk. J. Solid State Chem. 2009, 182, 1749–1753. [Google Scholar] [CrossRef]
- Yoon, S.J.; Son, Y.I.; Kim, Y.K.; Lee, J.G. Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renew. Energy 2012, 42, 163–167. [Google Scholar] [CrossRef]
- Panpa, W.; Jinawath, S. Synthesis of ZSM-5 zeolite and silicalite from rice husk ash. Appl. Catal. B-Environ. 2009, 90, 389–394. [Google Scholar] [CrossRef]
- An, D.; Guo, Y.; Zhu, Y.; Wang, Z. A green route to preparation of silica powders with rice husk ash and waste gas. Chem. Eng. J. 2010, 162, 509–514. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Kistowski, M. Greenhouse gas emissions from cultivation of plants used for biofuel production in Poland. Atmosphere 2020, 11, 394. [Google Scholar] [CrossRef] [Green Version]
- Kaithwas, A.; Prasad, M.; Kulshreshtha, A.; Verma, S. Industrial wastes derived solid adsorbents for CO2 capture: A mini review. Chem. Eng. Res. Des. 2012, 90, 1632–1641. [Google Scholar] [CrossRef]
- Worathanakul, P.; Tobarameekul, P. Development of NaY zeolite derived from biomass and environmental assessment of carbon dioxide reduction. MATEC Web Conf. 2016, 62, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Worathanakul, P.; Kittipalarak, S.; Anusarn, K. Utilization biomass from bagasse ash for phillipsite zeolite synthesis. Adv. Mater. Res. 2011, 383–390, 4038–4042. [Google Scholar]
- Tadjarodi, A.; Haghverdi, M.; Mohammadi, V. Preparation and characterization of nano-porous silica aerogel from rice husk ash by drying at atmospheric pressure. Mater. Res. Bull. 2012, 47, 2584–2589. [Google Scholar] [CrossRef]
- Wang, Y.; Du, T.; Qiu, Z.; Song, Y.; Che, S.; Fang, X. CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash. Mater. Chem. Phys. 2018, 207, 105–113. [Google Scholar] [CrossRef]
- Liou, T.H. Preparation and characterization of nano-structured silica from rice husk. Mater. Sci. Eng. A 2004, 364, 313–323. [Google Scholar] [CrossRef]
- Worathanakul, P.; Layakul, T.; Juengsura, P. Kinetic model of nitric oxide reduction on CuFe/SUZ-4 catalyst in packed bed column. Int. J. Chem. Eng. Appl. 2015, 6, 450–454. [Google Scholar] [CrossRef]
- Papailias, G.; Mavroidis, I. Atmospheric emissions from oil and gas extraction and production in Greece. Atmosphere 2017, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Shi, Y. Estimating CO2 emissions from large scale coal-fired power plants using OCO-2 observations and emission inventories. Atmosphere 2021, 12, 811. [Google Scholar] [CrossRef]
- Patiño, L.I.; Padilla, E.; Alcántara, V.; Raymond, J.L. The relationship of energy and CO2 emissions with GDP per capita in Colombia. Atmosphere 2020, 11, 778. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Shariaty, P.; Hashisho, Z.; Daneshmand, M. A non-contact microwave sensor for monitoring the interaction of zeolite 13X with CO2 and CH4 in gaseous streams. Sens. Actuators B Chem. 2017, 238, 1240–1247. [Google Scholar] [CrossRef]
- Abid, H.R.; Rada, Z.H.; Shang, J.; Wang, S. Synthesis, characterization, and CO2 adsorption of three metal-organic frameworks (MOFs): MIL-53, MIL-96, and amino-MIL-53. Polyhedron 2016, 120, 103–111. [Google Scholar] [CrossRef]
- Song, G.; Zhu, X.; Chen, R.; Liao, Q.; Ding, Y.-D.; Chen, L. An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem. Eng. J. 2016, 283, 175–183. [Google Scholar] [CrossRef]
- IPCC (Intergovenmental Panel on Climate Change). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C.; Yeung, H. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, W.; Ding, J.; Wei, X.; Lu, J. CO2 adsorption capacity of FAU zeolite in presence of H2O a monte carlo simulation study. Energy Procedia 2017, 105, 4370–4376. [Google Scholar] [CrossRef]
- Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A.A.; Pérez, A.; Rana, M.S. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Sep. Purif. Technol. 2017, 188, 431–450. [Google Scholar] [CrossRef]
- Raganati, F.; Alfe, M.; Gargiulo, V.; Chirone, R.; Ammendola, P. Isotherms and thermodynamics of CO2 adsorption on a novel carbon-magnetite composite sorbent. Chem. Eng. Res. Des. 2018, 134, 540–552. [Google Scholar] [CrossRef]
- Liang, Z.; Marshall, M.; Chaffee, A.L. Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation. Energy Procedia 2009, 1, 1265–1271. [Google Scholar] [CrossRef] [Green Version]
- Banihashemi, F.; Pakizeh, M.; Ahmadpour, A. CO2 separation using PDMS/ZSM-5 zeolite composite membrane. Sep. Purif. Technol. 2011, 79, 293–302. [Google Scholar] [CrossRef]
- Moura, P.A.S.; Bezerra, D.P.; Vilarrasa-Garcia, E.; Bastos-Neto, M.; Azevedo, D.C.S. Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X. Adsorption 2016, 22, 71–80. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, L.; Fu, X.; Sun, Y.; Su, W.; Zhou, Y. Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4. Chem. Eng. Sci. 2007, 62, 1101–1110. [Google Scholar] [CrossRef]
- Zhao, Z.; Cui, X.; Ma, J.; Li, R. Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents. Int. J. Greenh. Gas Control 2007, 1, 355–359. [Google Scholar] [CrossRef]
- Grande, C.A.; Rodrigues, A.E. Electric swing adsorption for CO2 removal from flue gases. Int. J. Greenh. Gas Control 2008, 2, 194–202. [Google Scholar] [CrossRef]
- Grant, G.T.; Dunne, K.I.; Davis, R.J.; LeVan, M.D. Carbon-silica composite adsorbent: Characterization and adsorption of light gases. Micropor. Mesopor. Mater. 2008, 111, 1–11. [Google Scholar]
- Gray, M.L.; Champagne, K.J.; Fauth, D.; Baltrus, J.P.; Pennline, H. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. Int. J. Greenh. Gas Control 2008, 2, 3–8. [Google Scholar] [CrossRef]
- Subagyono, D.J.N.; Liang, Z.; Knowles, G.P.; Chaffee, A.L. Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chem. Eng. Res. Des. 2011, 89, 1647–1657. [Google Scholar] [CrossRef]
- Rajamani, K.; Jasper, M.V.B. A comparison of the CO2 capture characteristics of zeolites and metal-organic frameworks. Sep. Purif. Technol. 2012, 87, 120–126. [Google Scholar]
- Shafeeyan, M.S.; Daud, W.M.A.W.; Shamiri, A.; Aghamohammadi, N. Adsorption equilibrium of carbon dioxide onammonia-modified activated carbon. Chem. Eng. Res. Des. 2015, 104, 42–52. [Google Scholar] [CrossRef]
- Rad, M.D.; Fatemi, S.; Mirfendereski, S.M. Development of T type zeolite for separation of CO2 from CH4 in adsorption processes. Chem. Eng. Res. Des. 2012, 90, 1687–1695. [Google Scholar] [CrossRef]
- Chang, H.L.; Dong, H.H.; Hyunchul, J.; Wonkeun, C.; Dong, H.J.; Dong, K.S.; Sung, H.K. Effects of pore structure and PEI impregnation on carbon dioxide adsorption by ZSM-5 zeolites. J. Ind. Eng. Chem. 2015, 23, 251–256. [Google Scholar]
- Worathanakul, P.; Rakpasert, N. Different preparation methods of Ni-FAU(Y) zeolite for nitric oxide reduction. Int. J. Chem. Eng. Appl. 2019, 10, 106–109. [Google Scholar] [CrossRef]
- Bezerra, D.P.; Oliveira, R.S.; Vieira, R.S.; Cavalcante, C.L., Jr.; Azevedo, D.C.S. Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorption 2011, 17, 235–246. [Google Scholar] [CrossRef]
- Ammendola, P.; Raganati, F.; Chirone, R. CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: Thermodynamics and kinetics. Chem. Eng. J. 2017, 322, 302–313. [Google Scholar] [CrossRef]
- Grande, C.A.; Kvamsdal, H.; Mondino, G.; Blom, R. Development of moving bed temperature swing adsorption (MBTSA) process for postcombustion CO2 capture: Initial benchmarking in a NGCC context. Energy Procedia 2017, 114, 2203–2210. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, S.J. A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 2015, 23, 1–11. [Google Scholar] [CrossRef]
- Worathanakul, P.; Rakpasert, N. Influence of different preparation methods of copper loading on Na-Y zeolite for green gas emission. Int. J. Environ. Sci. Dev. 2016, 7, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Esquivel, D.; Cruz-Cabeza, A.J.; Jiménez-Sanchidrián, C.; Romero-Salguero, F.J. Transition metal exchanged β zeolites: Characterization of the metal state and catalytic application in the methanol conversion to hydrocarbons. Micropor. Mesopor. Mater. 2013, 179, 30–39. [Google Scholar] [CrossRef]
- Smykowski, D.; Szyja, B.; Szczygieł, J. DFT modeling of CO2 adsorption on Cu, Zn, Ni, Pd/DOH zeolite. J. Mol. Graph. Model. 2013, 41, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Wardono, A.; Agoestanto, A.; Rosidah, S. Arima method with the software minitab and eviews to forecast inflation in semarang Indonesia. J. Theor. Appl. Inf. Technol. 2016, 94, 61–76. [Google Scholar]
- Ziari, H.; Farahani, H.; Goli, A. Using the statistical analysis of carbon nano-tubes dispersion in bitumen employing software MINITAB. Int. J. Transp. Eng. 2013, 1, 125–136. [Google Scholar]
- Baldovino, F.H.B.; Dugos, N.P.; Roces, S.A.; Quitain, A.T.; Kida, T. Process optimization of carbon dioxide adsorption using nitrogen-functionalized graphene oxide via response surface methodology approach. Am. J. Chem. Eng. 2017, 17, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Gunawan, T.J.; Ikhwan, Y.; Restuhadi, F.; Pato, U. Effect of light Intensity and photoperiod on growth of Chlorella pyrenoidosa and CO2 Biofixation. E3S Web Conf. 2018, 31, 1–7. [Google Scholar]
- Pedraza, J.I.; Suarez, L.A.; Martinez, L.A.; Rojas, N.Y.; Tobon, J.I.; Ramirez, J.H.; Zea, H.R.; Caceres, A.A. Carbon capture and utilization by mineral carbonation with CKD in aqueous phase: Experimental stage and characterization of carbonated products. In Proceedings of the 7th International Workshop, Advances in Cleaner Production, Academic Work, Barranquilla, Colombia, 21–22 June 2018. [Google Scholar]
- Rodríguez-Mosqueda, R.; Bramer, E.A.; Brem, G. CO2 capture from ambient air using hydrated Na2CO3 supported on activated carbon honeycombs with application to CO2 enrichment in greenhouses. Chem. Eng. Sci. 2018, 189, 114–122. [Google Scholar] [CrossRef]
- Thompson, W.A.; Perier, C.; Maroto-Valer, M.M. Systematic study of sol-gel parameters on TiO2 coating for CO2 photoreduction. Appl. Catal. B-Environ. 2018, 238, 136–146. [Google Scholar] [CrossRef]
- Mohammad, A.F.; El-Naas, M.H.; Suleiman, M.I.; Musharfy, M.A. Optimization of a Solvay-Based Approach for CO2 Capture. Int. J. Chem. Eng. Appl. 2016, 7, 230–234. [Google Scholar] [CrossRef] [Green Version]
- El-Azazy, M.; El-Shafie, A.S.; Issa, A.A.; Al-Sulaiti, M.; Al-Yafie, J.; Shomar, B.; Al-Saad, K. Potato peels as an adsorbent for heavy metals from aqueous solutions: Eco-structuring of a green adsorbent operating Plackett-Burman Design. J. Chem. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rakpasert, N. Preparation of Different Metals Loading on FAU Zeolite for NO Reduction. Master’s Thesis, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand, 2012. [Google Scholar]
- Worathanakul, P.; Saisuwansiri, P. Effect of copper and iron loading on zeolite Y for carbon dioxide adsorption. J. King Mongkut's Univ. Technol. N. Bangk. 2017, 28, 373–381. [Google Scholar] [CrossRef]
- Nikolaidis, G.N.; Kikkinides, E.S.; Georgiadis, M.C. A model-based approach for the evaluation of new zeolite 13X-based adsorbents for the efficient post-combustion CO2 capture using P/VSA processes. Chem. Eng. Res. Des. 2018, 131, 362–374. [Google Scholar] [CrossRef]
- Park, Y.; Ju, Y.; Park, D.; Lee, C.-H. Adsorption equilibria and kinetics of six pure gases on pelletized zeolite 13X up to 1.0 MPa: CO2, CO, N2, CH4, Ar and H2. Chem. Eng. J. 2016, 292, 348–365. [Google Scholar] [CrossRef]
- Liu, S.; Rao, L.; Yang, P.; Wang, X.; Wang, L.; Ma, R.; Yue, L.; Hu, X. Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin. J. Environ. Sci. 2002, 93, 109–116. [Google Scholar] [CrossRef]
- Hedin, N.; Andersson, L.; Bergström, L.; Yan, J. Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Appl. Energy 2013, 104, 418–433. [Google Scholar] [CrossRef]
- Salehi, S.; Anbia, M. Characterization of CPs/Ca-exchanged FAU- and LTA-type zeolite nanocomposites and their selectivity for CO2 and N2 adsorption. J. Phys. Chem. Solids 2017, 110, 116–128. [Google Scholar] [CrossRef]
- Köroğlu, H.J.; Sarıoğlan, A.; Tatlıer, M.; Erdem-Şenatalar, A.; Savaşçı, Ö.T. Effects of low-temperature gel aging on the synthesis of zeolite Y at different alkalinities. J. Cryst. Growth 2002, 241, 481–488. [Google Scholar] [CrossRef]
- Younas, M.; Sohail, M.; Leong, L.K.; Bashir, M.J.K.; Sumathi, S. Feasibility of CO2 adsorption by solid adsorbents: A review on low-temperature systems. Int. J. Environ. Sci. Technol. 2016, 13, 1839–1860. [Google Scholar] [CrossRef] [Green Version]
- Diaz, E.; Munoz, E.; Vega, A.; Ordonez, S. Enhancement of the CO2 retention capacity of X zeolites by Na- and Cs-treatments. Chemosphere 2008, 70, 1375–1382. [Google Scholar] [CrossRef]
- Nyankson, E.; Efavi, J.K.; Yaya, A.; Manu, G.; Asare, K.; Daafuor, J.; Abrokwah, R.Y. Synthesis and characterisation of zeolite-A and Zn-exchanged zeolite-A based on natural aluminosilicates and their potential applications. Cogent Eng. 2018, 5, 1–23. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Yang, J.; Zhang, J.; Zheng, C. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas. Chem. Eng. J. 2018, 348, 618–629. [Google Scholar] [CrossRef]
- Ramasubramanian, K.; Severance, M.A.; Dutta, P.K.; Ho, W.S.W. Fabrication of zeolite/ polymer multilayer composite membranes for carbon dioxide capture: Deposition of zeolite particles on polymer supports. J. Colloid Interface Sci. 2015, 452, 203–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.; Lee, J.Y.; Bokare, A.D.; Kwon, S.B.; Park, D.S.; Jung, W.S.; Choi, J.S.; Yang, Y.M.; Lee, J.Y.; Choi, W. LiOH-embedded zeolite for carbon dioxide capture under ambient conditions. J. Ind. Eng. Chem. 2015, 22, 350–356. [Google Scholar] [CrossRef]
- Worathanakul, P.; Klinpol, N.; Sarai, T. Innovation of CO2 adsorption with Li/zeolite A derived from bagasse ash. In Proceedings of the Universal Academic Cluster International Spring Conference in Osaka, Osaka, Japan, 12–14 April 2017. [Google Scholar]
Sample | Si | Al | 0 | Na | Zn |
---|---|---|---|---|---|
1B298 | 12.16 | 16.11 | 56.14 | 14.46 | 1.13 |
3B298 | 12.23 | 16.13 | 57.85 | 10.69 | 3.10 |
5B298 | 12.08 | 16.21 | 58.33 | 8.23 | 5.15 |
1R298 | 12.36 | 16.48 | 56.13 | 14.04 | 0.99 |
3R298 | 12.18 | 16.20 | 57.14 | 11.59 | 2.89 |
5R298 | 12.28 | 16.44 | 57.52 | 8.56 | 5.20 |
Sample | Surface Area (m2/g) | Micropore Volume (cm3/g) | Total Pore Volume (cm3/g) |
---|---|---|---|
1B298 | 39.86 | 0.020 | 0.163 |
3B298 | 54.39 | 0.025 | 0.229 |
5B298 | 71.14 | 0.030 | 0.291 |
1R298 | 34.57 | 0.018 | 0.137 |
3R298 | 50.71 | 0.023 | 0.205 |
5R298 | 68.75 | 0.028 | 0.264 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobarameekul, P.; Sangsuradet, S.; Worathanakul, P. Comparative Study of Zn Loading on Advanced Functional Zeolite NaY from Bagasse Ash and Rice Husk Ash for Sustainable CO2 Adsorption with ANOVA and Factorial Design. Atmosphere 2022, 13, 314. https://doi.org/10.3390/atmos13020314
Tobarameekul P, Sangsuradet S, Worathanakul P. Comparative Study of Zn Loading on Advanced Functional Zeolite NaY from Bagasse Ash and Rice Husk Ash for Sustainable CO2 Adsorption with ANOVA and Factorial Design. Atmosphere. 2022; 13(2):314. https://doi.org/10.3390/atmos13020314
Chicago/Turabian StyleTobarameekul, Patchaya, Supawon Sangsuradet, and Patcharin Worathanakul. 2022. "Comparative Study of Zn Loading on Advanced Functional Zeolite NaY from Bagasse Ash and Rice Husk Ash for Sustainable CO2 Adsorption with ANOVA and Factorial Design" Atmosphere 13, no. 2: 314. https://doi.org/10.3390/atmos13020314
APA StyleTobarameekul, P., Sangsuradet, S., & Worathanakul, P. (2022). Comparative Study of Zn Loading on Advanced Functional Zeolite NaY from Bagasse Ash and Rice Husk Ash for Sustainable CO2 Adsorption with ANOVA and Factorial Design. Atmosphere, 13(2), 314. https://doi.org/10.3390/atmos13020314