Impact Analysis of Variable Resolution of MPAS on Intrinsic Predictability Using Bred Vectors
Abstract
:1. Introduction
2. Methodology and Experimental Design
2.1. MPAS Model
2.2. Breeding Cycles
3. Results
3.1. Forecast Uncertainty Estimated by the Breeding Cycles
3.2. Sensitivity to Breeding Intervals
3.3. Sensitivity to Horizontal Resolutions
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Lorenz, E.N. Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 1969, 26, 636–646. [Google Scholar] [CrossRef]
- Lorenz, E.N. Atmospheric predictability experiments with a large numerical model. Tellus 1982, 34, 505–513. [Google Scholar] [CrossRef]
- Mapes, B.; Tulich, S.; Nasuno, T.; Satoh, M. Predictability aspects of global aqua-planet simulations with explicit convection. J. Meteorol. Soc. Jpn. Ser. II 2008, 86, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Sippel, J.A.; Zhang, F. A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci. 2008, 65, 3440–3459. [Google Scholar] [CrossRef] [Green Version]
- Melhauser, C.; Zhang, F. Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci. 2012, 69, 3350–3371. [Google Scholar] [CrossRef]
- Greybush, S.J.; Kalnay, E.; Hoffman, M.J.; Wilson, R.J. Identifying Martian atmospheric instabilities and their physical origins using bred vectors. Q. J. R. Meteorol. Soc. 2013, 139, 639–653. [Google Scholar] [CrossRef]
- Judt, F. Insights into atmospheric predictability through global convection-permitting model simulations. J. Atmos. Sci. 2018, 75, 1477–1497. [Google Scholar] [CrossRef]
- Markowski, P.M. What is the intrinsic predictability of tornadic supercell thunderstorms? Mon. Weather Rev. 2020, 148, 3157–3180. [Google Scholar] [CrossRef]
- Lorenz, E.N. Predictability: A problem partly solved. In Proceeding Seminar on Predictability; 1996; Volume 1. Available online: https://eapsweb.mit.edu/sites/default/files/Predicability_a_Problem_2006.pdf (accessed on 4 January 2022).
- Sun, Y.Q.; Zhang, F. Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci. 2016, 73, 1419–1438. [Google Scholar] [CrossRef]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Zhang, F. Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Weather Rev. 2005, 133, 2876–2893. [Google Scholar] [CrossRef] [Green Version]
- Doblas-Reyes, F.J.; Weisheimer, A.; Déqué, M.; Keenlyside, N.; McVean, M.; Murphy, J.M.; Rogel, P.; Smith, D.; Palmer, T.N. Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences. Appl. Meteorol. Phys. Oceanogr. 2009, 135, 1538–1559. [Google Scholar]
- Baumgart, M.; Riemer, M. Processes governing the amplification of ensemble spread in a medium-range forecast with large forecast uncertainty. Q. J. R. Meteorol. Soc. 2019, 145, 3252–3270. [Google Scholar] [CrossRef]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NMC: The generation of perturbations. Bull. Am. Meteorol. Soc. 1993, 74, 2317–2330. [Google Scholar] [CrossRef]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NCEP and the breeding method. Mon. Weather Rev. 1997, 125, 3297–3319. [Google Scholar] [CrossRef]
- Corazza, M.; Kalnay, E.; Patil, D.J.; Yang, S.C.; Morss, R.; Cai, M.; Szunyogh, I.; Hunt, B.R.; Yorke, J.A. Use of the breeding technique to estimate the structure of the analysis “errors of the day”. Nonlinear Process. Geophys. 2003, 10, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Cai, M. Formation of the cold tongue and ENSO in the equatorial Pacific basin. J. Clim. 2003, 16, 144–155. [Google Scholar] [CrossRef]
- Peña, M.; Kalnay, E. Separating fast and slow modes in coupled chaotic systems. Nonlinear Process. Geophys. 2004, 11, 319–327. [Google Scholar] [CrossRef]
- Yang, S.C.; Kalnay, E.; Cai, M.; Rienecker, M.; Yuan, G.; Toth, Z. ENSO bred vectors in coupled ocean–atmosphere general circulation models. J. Clim. 2006, 19, 1422–1436. [Google Scholar] [CrossRef]
- Yang, S.C.; Keppenne, C.; Rienecker, M.; Kalnay, E. Application of coupled bred vectors to seasonal-to-interannual forecasting and ocean data assimilation. J. Clim. 2009, 22, 2850–2870. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Duda, M.G.; Fowler, L.D.; Park, S.H.; Ringler, T.D. A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Weather Rev. 2012, 140, 3090–3105. [Google Scholar] [CrossRef]
- Kang, J.S.; Myung, H.; Yuk, J.H. Examination of computational performance and potential applications of a global numerical weather prediction model MPAS using KISTI Supercomputer NURION. J. Mar. Sci. Eng. 2021, 9, 1147. [Google Scholar] [CrossRef]
- Whitaker, J.S.; Hamill, T.M.; Wei, X.; Song, Y.; Toth, Z. Ensemble data assimilation with the NCEP global forecast system. Mon. Weather Rev. 2008, 136, 463–482. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.S.; Kalnay, E.; Miyoshi, T.; Liu, J.; Fung, I. Estimation of surface carbon fluxes with an advanced data assimilation methodology. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Shin, S.; Kang, J.S.; Yang, S.C.; Kalnay, E. Ensemble singular vectors as additive inflation in the Local Ensemble Transform Kalman Filter (LETKF) framework with a global NWP model. Q. J. R. Meteorol. Soc. 2019, 145, 258–272. [Google Scholar] [CrossRef]
Parameterization | Schemes |
---|---|
Microphysics | WSM6 |
Convection | New Tiedtke |
Radiation (long/short waves) | RRTMG |
Cloud fraction for radiation | Xu–Randall |
Gravity wave drag by orography | YSU |
Boundary layer | YSU |
Surface layer | Monin–Obukhov |
Land surface | NOAH |
Horizontal Resolution | Rescaling Period | Experiment Name |
---|---|---|
Quasi-uniform 60 km | 6 h | Ures_6hr |
24 h | Ures_1dy | |
Variable resolution 60–15 km | 6 h | Vres_6hr |
24 h | Vres_1dy |
Experiments | Ures_6hr | Ures_1dy | Vres_6hr | Vres_1dy | |
---|---|---|---|---|---|
Variables (Units) | |||||
Zonal wind (m/s) | 1.90 | 1.67 | 1.76 | 1.37 | |
Meridional wind (m/s) | 1.66 | 1.66 | 1.56 | 1.33 | |
Potential temperature (K) | 6.40 × 101 | 7.05 × 101 | 5.37 × 101 | 5.66 × 101 | |
Specific humidity (kg/kg) | 6.83 × 104 | 3.93 × 104 | 6.78 × 104 | 3.60 × 104 |
Experiments | Ures_6hr | Ures_1dy | Vres_6hr | Vres_1dy | |
---|---|---|---|---|---|
Processes | |||||
Total time | 1663 (31) | 5886 (75) | 4811 (102) | 19,237 (3133) | |
┗ Initialization | 227 (25) | 242 (31) | 480 (87) | 476 (77) | |
┗ Time integration | 1377 (16) | 5515 (65) | 4208 (39) | 18,544 (3125) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-S.; Shin, S.; Myung, H. Impact Analysis of Variable Resolution of MPAS on Intrinsic Predictability Using Bred Vectors. Atmosphere 2022, 13, 2070. https://doi.org/10.3390/atmos13122070
Kang J-S, Shin S, Myung H. Impact Analysis of Variable Resolution of MPAS on Intrinsic Predictability Using Bred Vectors. Atmosphere. 2022; 13(12):2070. https://doi.org/10.3390/atmos13122070
Chicago/Turabian StyleKang, Ji-Sun, Seoleun Shin, and Hunjoo Myung. 2022. "Impact Analysis of Variable Resolution of MPAS on Intrinsic Predictability Using Bred Vectors" Atmosphere 13, no. 12: 2070. https://doi.org/10.3390/atmos13122070
APA StyleKang, J. -S., Shin, S., & Myung, H. (2022). Impact Analysis of Variable Resolution of MPAS on Intrinsic Predictability Using Bred Vectors. Atmosphere, 13(12), 2070. https://doi.org/10.3390/atmos13122070