Trend Analysis of Hydro-Climatological Factors Using a Bayesian Ensemble Algorithm with Reasoning from Dynamic and Static Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Variable Pre-Processing
2.2.1. Dynamic Layers
2.2.2. SMVITERA Index
2.2.3. Static Layers
2.3. Methods
2.3.1. Analytical Hierarchical Process (AHP)
2.3.2. Mann–Kendall Trend Test
2.3.3. Bayesian Estimator of Abrupt Change, Seasonal Change, and Trend (BEAST)
2.4. Challenges and Betterness
- Mann–Kendall is a linear, nonparametric trend test often applicable to a monotonic moving dataset. As the real datasets on hydro climatological factors exhibit vibrant and non-cyclic changes, fitting a linear trend is not apt. The Bayesian algorithm overcomes this challenge by finding piecewise linearly fitted trends.
- The Mann–Kendall trend test fits a single trend line to the datasets. The interpretation of time series solely depends on the models being utilized and finding the optimal models is never easy. BEAST offers the single best model approach and adopts the concept of embracing all the models using the Bayesian model averaging scheme, which is always better.
- Sen’s slope technique produces an overall slope for the Mann–Kendall test. BEAST provides the slope at each time series point of the data sets. Additionally, the Bayesian process may be used to determine how likely an event is to occur.
- The data point is removed from computations using the Mann–Kendall test if there are any missing values. Consequently, the trend analysis only considers non-NaN or non-missing variables, while the final fitted trend in BEAST will be continuous even when missing values are provided, eliminating the repercussions of missing values and discontinuity in the outcome.
- Mann–Kendall is highly sensitive to outliers, while the sensitivity is comparatively less for the Bayesian approach. BEAST studies the nature of the whole dataset rather than focusing on the end points.
2.5. Inference and Modulation
3. Results and Discussion
3.1. SMVITERA Index Formulation
3.2. General Characteristics of Variables
3.3. Groundwater Level Trend Analysis
3.4. Dynamic Layers Trend Analysis
3.4.1. Climatological Factors
3.4.2. Soil Moisture and NDVI
3.5. Dynamic Layer Trend in Accordance with Groundwater Level
3.6. SMVITERA Index
3.7. Static Layers Analysis
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varma, A. Groundwater Resource and Governance in Kerala Groundwater Resource and Governance in Kerala: Status, Issues and Prospects; Forum Policy Dialogue Water Conflicts: Pune, India, 2017. [Google Scholar]
- Pullare, N.; Ground, C.; Board, W. Changes in Ground Water Utilization in Kerala—Causes & Consequences. In Proceedings of the 4th National Ground Water Congress, Kerala, India, January 2012. [Google Scholar] [CrossRef]
- Ziolkowska, J.R.; Reyes, R. Groundwater Level Changes Due to Extreme Weather-an Evaluation Tool for Sustainable Water Management. Water 2017, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Hua, Z.; Cheng, W.; Yi, S.; Jiang, Q. Geostatistical Analysis of Spatial and Temporal Variations of Groundwater Depth in Shule River. In Proceedings of the 2009 WASE International Conference on Information Engineering (ICIE 2009), Taiyuan, China, 10–11 July 2009; Volume 2, pp. 453–457. [Google Scholar]
- Bhanja, S.N.; Mukherjee, A. In Situ and Satellite-Based Estimates of Usable Groundwater Storage across India: Implications for Drinking Water Supply and Food Security. Adv. Water Resour. 2019, 126, 15–23. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A.; Saha, D.; Velicogna, I.; Famiglietti, J.S. Validation of GRACE Based Groundwater Storage Anomaly Using In-Situ Groundwater Level Measurements in India. J. Hydrol. 2016, 543, 729–738. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Mal, B.C. Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, GIS and MCDM Techniques. Water Resour. Manag. 2011, 25, 1359–1386. [Google Scholar] [CrossRef]
- Mengistu, H.A.; Demlie, M.B.; Abiye, T.A. Review: Groundwater Resource Potential and Status of Groundwater Resource Development in Ethiopia. Hydrogeol. J. 2019, 27, 1051–1065. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, J.; Shirsath, P.B. Sustainability of Groundwater Resources at the Subnational Level in the Context of Sustainable Development Goals. Agric. Econ. Res. Rev. 2018, 31, 79. [Google Scholar] [CrossRef] [Green Version]
- Koundouri, P. Potential for Groundwater Management: Gisser-Sanchez Effect Reconsidered. Water Resour. Res. 2004, 40, W06S16. [Google Scholar] [CrossRef] [Green Version]
- Thakur, G.S.; Thomas, T. Analysis of Groundwater Levels for Detection of Trend in Sagar District, Madhya Pradesh. J. Geol. Soc. India 2011, 77, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Knapp, K.C.; Weinberg, M.; Howitt, R.; Posnikoff, J.F. Water Transfers, Agriculture, and Groundwater Management: A Dynamic Economic Analysis. J. Environ. Manag. 2003, 67, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Rashid Abubaker, S.; Othman Ali, R. Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan View Project Water Resources Problem in Huai River Basin View Project Trend Analysis Using Mann-Kendall, Sen’s Slope Estimator Test and Innovative. Int. J. Eng. Technol. 2019, 8, 110–119. [Google Scholar] [CrossRef]
- Xing, L.; Huang, L.; Chi, G.; Yang, L.; Li, C.; Hou, X. A Dynamic Study of a Karst Spring Based on Wavelet Analysis and the Mann-Kendall Trend Test. Water 2018, 10, 698. [Google Scholar] [CrossRef] [Green Version]
- Hamidov, A.; Khamidov, M.; Ishchanov, J. Impact of Climate Change on Groundwater Management in the Northwestern Part of Uzbekistan. Agronomy 2020, 10, 1173. [Google Scholar] [CrossRef]
- Dinpashoh, Y. Trend Analysis of Groundwater Level, Using Mann-Kendall Non Parametric Method (Case Study: Tabriz Plain). J. Water Soil Sci. 2019, 23, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Meggiorin, M.; Passadore, G.; Bertoldo, S.; Sottani, A.; Rinaldo, A. Assessing the Long-Term Sustainability of the Groundwater Resources in the Bacchiglione Basin (Veneto, Italy) with the Mann–Kendall Test: Suggestions for Higher Reliability. Acque Sotter. Ital. J. Groundw. 2021, 10, 35–48. [Google Scholar] [CrossRef]
- Wilopo, W.; Putra, D.P.E.; Hendrayana, H. Impacts of Precipitation, Land Use Change and Urban Wastewater on Groundwater Level Fluctuation in the Yogyakarta-Sleman Groundwater Basin, Indonesia. Environ. Monit. Assess. 2021, 193, 76. [Google Scholar] [CrossRef] [PubMed]
- Ndlovu, M.S.; Demlie, M. Statistical Analysis of Groundwater Level Variability across KwaZulu-Natal Province, South Africa. Environ. Earth Sci. 2018, 77, 739. [Google Scholar] [CrossRef]
- Valois, R.; MacDonell, S.; Núñez Cobo, J.H.; Maureira-Cortés, H. Groundwater Level Trends and Recharge Event Characterization Using Historical Observed Data in Semi-Arid Chile. Hydrol. Sci. J. 2020, 65, 597–609. [Google Scholar] [CrossRef]
- Goyal, S.K.; Chaudhary, B.S.; Singh, O.; Sethi, G.K.; Thakur, P.K. Variability Analysis of Groundwater Levels—AGIS-Based Case Study. J. Indian Soc. Remote Sens. 2010, 38, 355–364. [Google Scholar] [CrossRef]
- Anand, B.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K.; Suresh, M. Long-Term Trend Detection and Spatiotemporal Analysis of Groundwater Levels Using GIS Techniques in Lower Bhavani River Basin, Tamil Nadu, India. Environ. Dev. Sustain. 2020, 22, 2779–2800. [Google Scholar] [CrossRef]
- Panda, D.K.; Mishra, A.; Kumar, A.; Mishra, D.K.; Kumar, A. Quantification of Trends in Groundwater Levels of Gujarat in Western India. Hydrol. Sci. J. 2012, 57, 1325–1336. [Google Scholar] [CrossRef]
- Krishan, G.; Rao, M.S.; Loyal, R.S.; Lohani, A.K.; Tuli, N.K.; Takshi, K.S.; Kumar, C.P.; Semwal, P.; Kumar, S. Groundwater Level Analyses of Punjab, India: A Quantitative Approach. Octa J. Environ. Res. 2014, 2, 221–226. [Google Scholar]
- Sishodia, R.P.; Shukla, S.; Graham, W.D.; Wani, S.P.; Garg, K.K. Bi-Decadal Groundwater Level Trends in a Semi-Arid South Indian Region: Declines, Causes and Management. J. Hydrol. Reg. Stud. 2016, 8, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Tirkey, A.S.; Pandey, A.C.; Nathawat, M.S. Groundwater Level and Rainfall Variability Trend Analysis Using GIS in Parts of Jharkhand State ( India ) for Sustainable Management of Water Resources. Int. Res. J. Environ. Sci. 2012, 1, 24–31. [Google Scholar]
- Dinpashoh, Y.; Mirabbasi, R.; Jhajharia, D.; Abianeh, H.Z.; Mostafaeipour, A. Effect of Short-Term and Long-Term Persistence on Identification of Temporal Trends. J. Hydrol. Eng. 2014, 19, 617–625. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Kam, J.; Thurner, K. Streamflow Trends in Indiana: Effects of Long Term Persistence, Precipitation and Subsurface Drains. J. Hydrol. 2009, 374, 171–183. [Google Scholar] [CrossRef]
- Drápela, K.; Drápelová, I.; Drápela, D.I.K. Application of Mann-Kendall Test and the Sen’s Slope Estimates for Trend Detection in Deposition Data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997–2010. Beskydy 2011, 4, 133–146. [Google Scholar]
- Patakamuri, S.K.; Muthiah, K.; Sridhar, V. Long-Term Homogeneity, Trend, and Change-Point Analysis of Rainfall in the Arid District of Ananthapuramu, Andhra Pradesh State, India. Water 2020, 12, 211. [Google Scholar] [CrossRef] [Green Version]
- Satish Kumar, K.; Venkata Rathnam, E. Analysis and Prediction of Groundwater Level Trends Using Four Variations of Mann Kendall Tests and ARIMA Modelling. J. Geol. Soc. India 2019, 94, 281–289. [Google Scholar] [CrossRef]
- Swain, S.; Sahoo, S.; Taloor, A.K.; Mishra, S.K.; Pandey, A. Exploring Recent Groundwater Level Changes Using Innovative Trend Analysis (ITA) Technique over Three Districts of Jharkhand, India. Groundw. Sustain. Dev. 2022, 18, 100783. [Google Scholar] [CrossRef]
- Zakwan, M. Trend Analysis of Groundwater Level Using Innovative Trend Analysis. In Groundwater Resources Development and Planning in the Semi-Arid Region; Springer: Cham, Switzerland, 2021; pp. 389–405. [Google Scholar]
- Abbas, M.; Arshad, M.; Shahid, M.A. Charectarization of Groundwater Level Zones Using Innovative Trend & Regression Analysis: Case Study at Rechna Doab-Pakistan. Available online: https://www.researchsquare.com/article/rs-2140740/v1 (accessed on 5 November 2022).
- Li, J.; Li, Z.L.; Wu, H.; You, N. Trend, Seasonality, and Abrupt Change Detection Method for Land Surface Temperature Time-Series Analysis: Evaluation and Improvement. Remote Sens. Environ. 2022, 280, 113222. [Google Scholar] [CrossRef]
- Yang, X.; Tian, S.; You, W.; Jiang, Z. Reconstruction of Continuous GRACE/GRACE-FO Terrestrial Water Storage Anomalies Based on Time Series Decomposition. J. Hydrol. 2021, 603, 127018. [Google Scholar] [CrossRef]
- Xu, X.; Yang, J.; Ma, C.; Qu, X.; Chen, J.; Cheng, L. Segmented Modeling Method of Dam Displacement Based on BEAST Time Series Decomposition. Measurement 2022, 202, 111811. [Google Scholar] [CrossRef]
- Tingwei, C.; Tingxuan, H.; Bing, M.; Fei, G.; Yanfang, X.; Rongjie, L.; Yi, M.; Jie, Z.; Tingwei, C.; Tingxuan, H.; et al. Spatiotemporal Pattern of Aerosol Types over the Bohai and Yellow Seas Observed by CALIOP. Infrared Laser Eng. 2021, 50, 20211030–20211031. [Google Scholar] [CrossRef]
- Duke, N.C.; Mackenzie, J.R.; Canning, A.D.; Hutley, L.B.; Bourke, A.J.; Kovacs, J.M.; Cormier, R.; Staben, G.; Lymburner, L.; Ai, E. ENSO-Driven Extreme Oscillations in Mean Sea Level Destabilise Critical Shoreline Mangroves—An Emerging Threat. PLoS Clim. 2022, 1, e0000037. [Google Scholar] [CrossRef]
- Zannat, F.; Islam, A.R.M.T.; Rahman, M.A. Spatiotemporal Variability of Rainfall Linked to Ground Water Level under Changing Climate in Northwestern Region, Bangladesh. Eur. J. Geosci. 2019, 1, 35–56. [Google Scholar] [CrossRef]
- Shaji, E. Groundwater Quality Management in Kerala. Int. Inte-Res. J. 2013, 3, 63–68. [Google Scholar]
- Tabari, H.; Nikbakht, J.; Shifteh Some’e, B. Investigation of Groundwater Level Fluctuations in the North of Iran. Environ. Earth Sci. 2011, 66, 231–243. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Jadczyszyn, J.; Gnatowski, T.; Brandyk, A. Variation of Moisture and Soil Water Retention in a Lowland Area of Central Poland—Solec Site Case Study. Atmosphere 2022, 13, 1372. [Google Scholar] [CrossRef]
- Naga Rajesh, A.; Abinaya, S.; Purna Durga, G.; Lakshmi Kumar, T.V. Long-Term Relationships of MODIS NDVI with Rainfall, Land Surface Temperature, Surface Soil Moisture and Groundwater Storage over Monsoon Core Region of India. Arid L. Res. Manag. 2022, 1–20. [Google Scholar] [CrossRef]
- Halder, S.; Roy, M.B.; Roy, P.K. Analysis of Groundwater Level Trend and Groundwater Drought Using Standard Groundwater Level Index: A Case Study of an Eastern River Basin of West Bengal, India. SN Appl. Sci. 2020, 2, 507. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Swain, S.; Goswami, A.; Sharma, R.; Pateriya, B. Assessment of Trends and Multi-Decadal Changes in Groundwater Level in Parts of the Malwa Region, Punjab, India. Groundw. Sustain. Dev. 2021, 14, 100644. [Google Scholar] [CrossRef]
- Babre, A.; Kalvāns, A.; Avotniece, Z.; Retiķe, I.; Bikše, J.; Jemeljanova, K.P.M.; Zelenkevičs, A.; Dēliņa, A. The Use of Predefined Drought Indices for the Assessment of Groundwater Drought Episodes in the Baltic States over the Period 1989–2018. J. Hydrol. Reg. Stud. 2022, 40, 101049. [Google Scholar] [CrossRef]
- Guo, M.; Yue, W.; Wang, T.; Zheng, N.; Wu, L. Assessing the Use of Standardized Groundwater Index for Quantifying Groundwater Drought over the Conterminous US. J. Hydrol. 2021, 598, 126227. [Google Scholar] [CrossRef]
- Khaira, A.; Dwivedi, R.K. A State of the Art Review of Analytical Hierarchy Process. Mater. Today Proc. 2018, 5, 4029–4035. [Google Scholar] [CrossRef]
- Singh, R.P.; Nachtnebel, H.P. Analytical Hierarchy Process (AHP) Application for Reinforcement of Hydropower Strategy in Nepal. Renew. Sustain. Energy Rev. 2016, 55, 43–58. [Google Scholar] [CrossRef]
- Goepel, K.D. Comparison of Judgment Scales of the Analytical Hierarchy Process—A New Approach. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 445–463. [Google Scholar] [CrossRef] [Green Version]
- Azizkhani, M.; Vakili, A.; Noorollahi, Y.; Naseri, F. Potential Survey of Photovoltaic Power Plants Using Analytical Hierarchy Process (AHP) Method in Iran. Renew. Sustain. Energy Rev. 2017, 75, 1198–1206. [Google Scholar] [CrossRef]
- Thanki, S.; Govindan, K.; Thakkar, J. An Investigation on Lean-Green Implementation Practices in Indian SMEs Using Analytical Hierarchy Process (AHP) Approach. J. Clean. Prod. 2016, 135, 284–298. [Google Scholar] [CrossRef]
- Joseph, E.J.; Anitha, A.B.; Jayakumar, P.; Sushanth, C.M.; Jayakumar, K.V. Climate Change and Sustainable Water Resources Management in Kerala; Centre of Water Resources Development and Management: Kozhikode, India, 2011. [Google Scholar]
- Huang, J.; Van Den Dool, H.M.; Georgakakos, K.P. Analysis of Model-Calculated Soil Moisture over the United States (1931-1993) and Applications to Long-Range Temperature Forecasts. J. Clim. 1996, 9, 1350–1362. [Google Scholar] [CrossRef]
- Fan, Y.; Van Den Dool, H. Climate Prediction Center Global Monthly Soil Moisture Data Set at 0.5° Resolution for 1948 to Present. J. Geophys. Res. 2004, 109, 10102. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, M.M.; Wang, J.; Abbas, H.; Ullah, I.; Khan, R.; Ali, F. Impact of Climate and Land-Use Change on Groundwater Resources, Study of Faisalabad District, Pakistan. Atmosphere 2022, 13, 1097. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR Essential Climate Variables and FCOVER Global Time Series Capitalizing over Existing Products. Part1: Principles of Development and Production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- León-Tavares, J.; Roujean, J.-L.; Smets, B.; Wolters, E.; Toté, C.; Swinnen, E. Correction of Directional Effects in VEGETATION NDVI Time-Series. Remote Sens. 2021, 13, 1130. [Google Scholar] [CrossRef]
- Toté, C.; Swinnen, E.; Sterckx, S.; Clarijs, D.; Quang, C.; Maes, R. Evaluation of the SPOT/VEGETATION Collection 3 Reprocessed Dataset: Surface Reflectances and NDVI. Remote Sens. Environ. 2017, 201, 219–233. [Google Scholar] [CrossRef]
- Toté, C.; Swinnen, E.; Sterckx, S.; Adriaensen, S.; Benhadj, I.; Iordache, M.-D.; Bertels, L.; Kirches, G.; Stelzer, K.; Dierckx, W.; et al. Evaluation of PROBA-V Collection 1: Refined Radiometry, Geometry, and Cloud Screening. Remote Sens. 2018, 10, 1375. [Google Scholar] [CrossRef] [Green Version]
- Pai, D.; Rajeevan, M.; Sreejith, O.; Mukhopadhyay, B.; Satbha, N. Development of a New High Spatial Resolution (0.25° × 0.25°) Long Period (1901-2010) Daily Gridded Rainfall Data Set over India and Its Comparison with Existing Data Sets over the Region. Mausam 2021, 65, 1–18. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Rajeevan, M.; Kshirsagar, S.R. Development of a High Resolution Daily Gridded Temperature Data Set (1969-2005) for the Indian Region. Atmos. Sci. Lett. 2009, 10, 249–254. [Google Scholar] [CrossRef]
- Saaty, R.W. The Analytic Hierarchy Process-What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- David, F.N.; Kendall, M.G. Rank Correlation Methods. J. R. Stat. Soc. Ser. A 1956, 119, 90. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis, 1–2; Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen, Series A Mathematical Sciences. 1950, 53, pp. 386–392, 521–525. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1245706 (accessed on 5 November 2022).
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis, 3; Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen, Series A Mathematical Sciences. 1950, 53, pp. 1397–1412. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1245706 (accessed on 5 November 2022).
- Zhao, K.; Wulder, M.A.; Hu, T.; Bright, R.; Wu, Q.; Qin, H.; Li, Y.; Toman, E.; Mallick, B.; Zhang, X.; et al. Detecting Change-Point, Trend, and Seasonality in Satellite Time Series Data to Track Abrupt Changes and Nonlinear Dynamics: A Bayesian Ensemble Algorithm. Remote Sens. Environ. 2019, 232, 111181. [Google Scholar] [CrossRef]
- White, J.H.R.; Walsh, J.E.; Thoman, R.L. Using Bayesian Statistics to Detect Trends in Alaskan Precipitation. Int. J. Climatol. 2021, 41, 2045–2059. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological Change Detection While Accounting for Abrupt and Gradual Trends in Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Liang, S.; Wang, J.; Xiao, Z. Modeling MODIS LAI Time Series Using Three Statistical Methods. Remote Sens. Environ. 2010, 114, 1432–1444. [Google Scholar] [CrossRef]
- Zhao, K.; Valle, D.; Popescu, S.; Zhang, X.; Mallick, B. Hyperspectral Remote Sensing of Plant Biochemistry Using Bayesian Model Averaging with Variable and Band Selection. Remote Sens. Environ. 2013, 132, 102–119. [Google Scholar] [CrossRef]
- Sajeena, S.; Kurien, E.K. Hydrogeological Characteristics and Groundwater Scenario of Kadalundi River Basin, Malappuram District, Kerala. Trends Biosci. 2017, 10, 2193–2200. [Google Scholar]
- Jayasankar, P.; Babu, M.N.S. An Assessment of Ground Water Potential for State of Kerala, India: A Case Study. AE Int. J. Sci. Technol. 2017, 5. [Google Scholar]
- Jagadeesh, P.; Anupama, C. Statistical and Trend Analyses of Rainfall: A Case Study of Bharathapuzha River Basin, Kerala, India. ISH J. Hydraul. Eng. 2014, 20, 119–132. [Google Scholar] [CrossRef]
- Jaman Basheer Ahamed, M.; Ravichandran, C.; Ebraheem, A.M.A. Analysis of Trend and Magnitude Using Mann-Kendall and Sen’s Slope Test in 115 Years Annual Rainfall Data of South India. Adv. Appl. Math. Sci. 2022, 21, 3419–3429. [Google Scholar]
- Sai, K.V.; Joseph, A. Trend Analysis of Rainfall of Pattambi Region, Kerala. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3274–3281. [Google Scholar] [CrossRef]
- Brema, J. John Anie Rainfall Trend Analysis by Mann-Kendall Test for Vamanapuram River Basin, Kerala. Int. J. Civ. Eng. Technol. 2018, 9, 1549–1556. [Google Scholar]
- Anjali, K.; Roshni, T. Linking Satellite-Based Forest Cover Change with Rainfall and Land Surface Temperature in Kerala, India. Environ. Dev. Sustain. 2022, 24, 11282–11300. [Google Scholar] [CrossRef]
- George, J. Long-Term Changes in Climatic Variables over the Bharathapuzha River Basin, Kerala, India. Theor. Appl. Climatol. 2020, 142, 269–286. [Google Scholar] [CrossRef]
- Varughese, A.; Hajilal, M.S.; George, B. Analysis of Historical Climate Change Trends in Bharathapuzha River Basin, Kerala, India. Nat. Environ. Pollut. Technol. 2017, 16, 237. [Google Scholar]
- Subash, N.; Sikka, A.K. Trend Analysis of Rainfall and Temperature and Its Relationship over India. Theor. Appl. Climatol. 2014, 117, 449–462. [Google Scholar] [CrossRef]
- Kabbilawsh, P.; Sathish Kumar, D.; Chithra, N.R. Trend Analysis and SARIMA Forecasting of Mean Maximum and Mean Minimum Monthly Temperature for the State of Kerala, India. Acta Geophys. 2020, 68, 1161–1174. [Google Scholar] [CrossRef]
- Bhimala, K.R.; Rakesh, V.; Prasad, K.R.; Mohapatra, G.N. Identification of Vegetation Responses to Soil Moisture, Rainfall, and LULC over Different Meteorological Subdivisions in India Using Remote Sensing Data. Theor. Appl. Climatol. 2020, 142, 987–1001. [Google Scholar] [CrossRef]
- Parida, B.R.; Pandey, A.C.; Patel, N.R. Greening and Browning Trends of Vegetation in India and Their Responses to Climatic and Non-Climatic Drivers. Climate 2020, 8, 92. [Google Scholar] [CrossRef]
- Chakraborty, A.; Seshasai, M.V.R.; Reddy, C.S.; Dadhwal, V.K. Persistent Negative Changes in Seasonal Greenness over Different Forest Types of India Using MODIS Time Series NDVI Data (2001–2014). Ecol. Indic. 2018, 85, 887–903. [Google Scholar] [CrossRef]
Thematic Layer | Assigned Weight | VI | SM | RA | TE |
---|---|---|---|---|---|
VI | 8 | 8/8 | 8/7 | 8/4 | 8/2 |
SM | 7 | 7/8 | 7/7 | 7/4 | 7/2 |
RA | 4 | 4/8 | 4/7 | 4/4 | 4/2 |
TE | 2 | 2/8 | 2/7 | 2/4 | 2/2 |
Thematic Layer | VI | SM | RA | TE | Total | Weight Vector (W) | Weightage | Product Matrix | Consistency Vector Matrix (CVM) |
---|---|---|---|---|---|---|---|---|---|
VI | 8/8 | 8/7 | 8/4 | 8/2 | 1.52 | 0.38 | 38 | 1.52 | 3.998 |
SM | 7/8 | 7/7 | 7/4 | 7/2 | 1.33 | 0.33 | 33 | 1.33 | 4.006 |
RA | 4/8 | 4/7 | 4/4 | 4/2 | 0.76 | 0.19 | 19 | 0.76 | 3.998 |
TE | 2/8 | 2/7 | 2/4 | 2/2 | 0.38 | 0.10 | 10 | 0.38 | 4.015 |
Month | RA | TE | SM | VI | Index | |||||
---|---|---|---|---|---|---|---|---|---|---|
M | NM | M | NM | M | NM | M | NM | M | NM | |
Jan | 6+5 | 8 | 0+9 | 9 | 3+9 | 7 | 1+8 | 10 | 9+4 | 6 |
Apr | 11+4 | 17 | 0+7 | 25 | 15+4 | 13 | 15+2 | 15 | 20+1 | 11 |
Aug | 1+12 | 13 | 0+20 | 6 | 0+10 | 16 | 5+4 | 17 | 1+13 | 12 |
Nov | 4+0 | 14 | 0+12 | 6 | 5+3 | 10 | 4+8 | 6 | 5+2 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
A, K.; Nair, A. Trend Analysis of Hydro-Climatological Factors Using a Bayesian Ensemble Algorithm with Reasoning from Dynamic and Static Variables. Atmosphere 2022, 13, 1961. https://doi.org/10.3390/atmos13121961
A K, Nair A. Trend Analysis of Hydro-Climatological Factors Using a Bayesian Ensemble Algorithm with Reasoning from Dynamic and Static Variables. Atmosphere. 2022; 13(12):1961. https://doi.org/10.3390/atmos13121961
Chicago/Turabian StyleA, Keerthana, and Archana Nair. 2022. "Trend Analysis of Hydro-Climatological Factors Using a Bayesian Ensemble Algorithm with Reasoning from Dynamic and Static Variables" Atmosphere 13, no. 12: 1961. https://doi.org/10.3390/atmos13121961
APA StyleA, K., & Nair, A. (2022). Trend Analysis of Hydro-Climatological Factors Using a Bayesian Ensemble Algorithm with Reasoning from Dynamic and Static Variables. Atmosphere, 13(12), 1961. https://doi.org/10.3390/atmos13121961