Research on Lidar Network Observation of Aerosol and Pollution in Beijing 2022 Winter Olympics
Abstract
:1. Introduction
2. Data and Methods
2.1. Research Area
2.2. Aerosol Lidar Data
2.3. Sun Photometer Data
2.4. CALIPSO Data
2.5. Auxiliary Meteorological Data
2.6. Backward Trajectory and Potential Source Analysis
3. Results and Discussion
3.1. Calculation of Lidar Ratio
3.2. Vertical Distribution Characteristics of Aerosol during the Winter Olympics
3.3. Observation and Analysis of Dust Weather Process
3.4. Observation and Analysis of Haze Weather Process
4. Conclusions
- The PM2.5, PM10, and the aerosol extinction coefficients in the three regions are generally lower in February than in March, and the overall spatial distribution showed a distribution pattern of higher concentration in the southeast and lower in the northwest. This difference is mainly due to differences in topography and economic activities.
- The determination of the lidar ratio was retrieved through the observation data obtained by lidar and sun photometer. The lidar ratio of the first aerosol pollution event was smaller than the second aerosol pollution event due to the transmission of dust aerosol in the northwest direction.
- The aerosol type of the first pollution event was mainly dust aerosol. On 2 March, the northwest wind brought aspherical dust particles into Beijing. During the night of 3 March, the lower wind speed caused the deposition of aerosol particles, which aggravated the aerosol pollution near the ground. On the morning of 4 March, higher wind speeds promoted the diffusion of near-ground aerosol.
- The aerosol type of the second pollution event was mainly anthropogenic aerosols. Meteorological conditions have a great impact on anthropogenic aerosol pollution. From the night of 9 March to the morning of 10 March, the ground extinction coefficient was relatively large, which may be related to the high relative humidity and low wind speed. On the night of the 11 March and the morning of the 11 March, the high wind speed and low relative humidity led to the separation of the upper aerosol and the ground aerosol, and the extinction coefficient near the ground decreased.
- Under adverse weather conditions, the causes of aerosol pollution in Beijing can be mainly divided into two aspects: the transportation of dust aerosol particles in the northwest direction and the emission of anthropogenic aerosol particles in the local and surrounding cities. Therefore, the control of air quality should not only focus on local energy conservation and emission reduction, but also pay attention to the transportation of regional air pollutants.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, C.A., 3rd; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xin, J.; Zhang, W.; Gong, C.; Ma, Y.; Ma, Y.; Wen, T.; Liu, Z.; Tian, S.; Wang, Y.; et al. Optical, Radiative and Chemical Characteristics of Aerosol in Changsha City, Central China. Adv. Atmos. Sci. 2020, 37, 1310–1322. [Google Scholar] [CrossRef]
- Choi, J.; Son, S.-W.; Park, R.J. Aerosol versus greenhouse gas impacts on Southern Hemisphere general circulation changes. Clim. Dyn. 2018, 52, 4127–4142. [Google Scholar] [CrossRef]
- Gryspeerdt, E.; Quaas, J.; Ferrachat, S.; Gettelman, A.; Ghan, S.; Lohmann, U.; Morrison, H.; Neubauer, D.; Partridge, D.G.; Stier, P.; et al. Constraining the instantaneous aerosol influence on cloud albedo. Proc. Natl. Acad. Sci. USA 2017, 114, 4899–4904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.; Bollasina, M.; Ting, M.; Diffenbaugh, N.S. Disentangling the influence of local and remote anthropogenic aerosols on South Asian monsoon daily rainfall characteristics. Clim. Dyn. 2018, 52, 6301–6320. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, D.; He, Q.; Li, D.; Qin, K. Vertical distribution and regional transport analysis of aerosols in Zhejiang Province. Chin. Environ. Sci. 2021, 41, 11. [Google Scholar]
- Leonardi, A.; Ricker, H.M.; Gale, A.G.; Ball, B.T.; Odbadrakh, T.T.; Shields, G.C.; Navea, J.G. Particle formation and surface processes on atmospheric aerosols: A review of applied quantum chemical calculations. Int. J. Quantum Chem. 2020, 120, e26350. [Google Scholar] [CrossRef]
- Kim, D.; Ramanathan, V. Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res. 2008, 113, 8434. [Google Scholar] [CrossRef] [Green Version]
- Solomos, S.; Bougiatioti, A.; Soupiona, O.; Papayannis, A.; Mylonaki, M.; Papanikolaou, C.; Argyrouli, A.; Nenes, A. Effects of regional and local atmospheric dynamics on the aerosol and CCN load over Athens. Atmos. Environ. 2019, 197, 53–65. [Google Scholar] [CrossRef]
- Salam, A.; Mamoon, H.A.; Ullah, M.B.; Ullah, S.M. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh). Atmos. Environ. 2012, 59, 338–343. [Google Scholar] [CrossRef]
- Che, H.; Xia, X.; Zhu, J.; Wang, H.; Wang, Y.; Sun, J.; Zhang, X.; Shi, G. Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China. Environ. Sci. Pollut. Res. 2015, 22, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Comeron, A.; Munoz-Porcar, C.; Rocadenbosch, F.; Rodriguez-Gomez, A.; Sicard, M. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols. Sensors 2017, 17, 1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Sun, Z.; Chen, S.; Chen, H.; Guo, P.; Chen, S.; He, J.; Wang, J.; Nian, X. Classification and source analysis of low-altitude aerosols in Beijing using fluorescence–Mie polarization lidar. Opt. Commun. 2021, 479, 126417. [Google Scholar] [CrossRef]
- Chen, C.; Song, X.; Wang, Z.; Wang, W.; Wang, X.; Zhuang, Q.; Liu, X.; Li, H.; Ma, K.; Li, X.; et al. Observations of Atmospheric Aerosol and Cloud Using a Polarized Micropulse Lidar in Xi’an, China. Atmosphere 2021, 12, 796. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Dong, Y.; Hu, Q.; Liu, T.; Zhu, Y.; Xing, C. Profiling of Dust and Urban Haze Mass Concentrations during the 2019 National Day Parade in Beijing by Polarization Raman Lidar. Remote Sens. 2021, 13, 3326. [Google Scholar] [CrossRef]
- Qiu, X.; An, X.; Liu, B.; Lu, H.; Wang, X.; Wang, Q.; Luo, X. Discussion on the vertical characteristics and influencing factors of aerosol extinction coefficients in Beijing. Environ. Sci. Res. 2020, 33, 7. [Google Scholar]
- Li, Z.; Xie, Y.; Zhang, Y.; Li, L.; Xu, H.; Li, K. Research progress on remote sensing of atmospheric aerosol components. J. Remote Sens. 2019, 23, 15. [Google Scholar]
- Chen, Y.; Wang, X.; Bu, Z.; Wang, Y.; Guo, Z.; Xiong, F.; Wang, X. Megacity test aerosol laser radar standard and result analysis. Laser Technol. 2022, 46, 435. [Google Scholar]
- Bu, Z.; Wang, X.; Wang, Y.; Liu, J.; Chen, Y. Comparison and Analysis of Aerosol Lidar Network in Mega City of Beijing Using Real Lidar. In Proceedings of the 2019 International Conference on Meteorology Observations (ICMO), Chengdu, China, 28–31 December 2019; pp. 1–3. [Google Scholar]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef]
- Solanki, R.; Singh, N. LiDAR observations of the vertical distribution of aerosols in free troposphere: Comparison with CALIPSO level-2 data over the central Himalayas. Atmos. Environ. 2014, 99, 227–238. [Google Scholar] [CrossRef]
- Reddy, K.R.O.; Zhang, X.; Bi, L. Seasonal aerosol variations over a coastal city, Zhoushan, China from CALIPSO observations. Atmos. Res. 2019, 218, 117–128. [Google Scholar] [CrossRef]
- Fan, W.; Qin, K.; Xu, J.; Yuan, L.; Li, D.; Jin, Z.; Zhang, K. Aerosol vertical distribution and sources estimation at a site of the Yangtze River Delta region of China. Atmos. Res. 2019, 217, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Ansmann, A.; Mattis, I.; Tesche, M.; Wandinger, U.; Althausen, D.; Pisani, G. Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res. 2007, 112, D16. [Google Scholar] [CrossRef]
- Müller, D.; Lee, K.H.; Gasteiger, J.; Tesche, M.; Weinzierl, B.; Kandler, K.; Müller, T.; Toledano, C.; Otto, S.; Althausen, D.; et al. Comparison of optical and microphysical properties of pure Saharan mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006. J. Geophys. Res. Atmos. 2012, 117, 16825. [Google Scholar] [CrossRef]
- Papayannis, A.; Amiridis, V.; Mona, L.; Tsaknakis, G.; Balis, D.; Bösenberg, J.; Chaikovski, A.; De Tomasi, F.; Grigorov, I.; Mattis, I.; et al. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000–2002). J. Geophys. Res. 2008, 113, 9028. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Wang, Z. Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China. Appl. Opt. 2008, 47, 4945–4951. [Google Scholar] [CrossRef]
- Cattrall, C.; Reagan, J.; Thome, K.; Dubovik, O. Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations. J. Geophys. Res. Atmos. 2005, 110, 5124. [Google Scholar] [CrossRef]
- Yang, W.T.; Yao, S.Q.; Deng, M.; Wang, Y.J. Spatio-temporal Distribution Characteristics of PM2.5 and Spatio-temporal Variation Characteristics of the Relationship Between PM2.5 and PM10 in Beijing. Environ. Sci. 2017, 39, 684–690. [Google Scholar]
- Deng, F.R.; Kang, N.; Kang, H.U.; Jiang, Y.C.; Na, Y.X.J.C.E.S. Analysis of air pollution episodes over different cites in the Yangtze River Delta. Chin. Environ. Sci. 2018, 38, 401–411. [Google Scholar]
- Li, M.; He, Y. Spatial and temporal distribution characteristics of PM(2.5)/PM(10) in the atmospheric environment of Shanghai. J. Yunnan Univ. 2019, 41, 323–332. [Google Scholar]
- Chen, S.; Nian, X.; Chen, H.; Zhang, Y.; Guo, P.; Bu, Z. Observation and analysis of optical characteristics of aerosols in the pollution process in urban Area of Beijing. Opt. Technol. 2021, 47, 570–576. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Li, Z.; Chen, Y.; Bu, Z.; Wang, X. Research on Lidar Network Observation of Aerosol and Pollution in Beijing 2022 Winter Olympics. Atmosphere 2022, 13, 1901. https://doi.org/10.3390/atmos13111901
Lu T, Li Z, Chen Y, Bu Z, Wang X. Research on Lidar Network Observation of Aerosol and Pollution in Beijing 2022 Winter Olympics. Atmosphere. 2022; 13(11):1901. https://doi.org/10.3390/atmos13111901
Chicago/Turabian StyleLu, Tong, Zhigang Li, Yubao Chen, Zhichao Bu, and Xiaopeng Wang. 2022. "Research on Lidar Network Observation of Aerosol and Pollution in Beijing 2022 Winter Olympics" Atmosphere 13, no. 11: 1901. https://doi.org/10.3390/atmos13111901
APA StyleLu, T., Li, Z., Chen, Y., Bu, Z., & Wang, X. (2022). Research on Lidar Network Observation of Aerosol and Pollution in Beijing 2022 Winter Olympics. Atmosphere, 13(11), 1901. https://doi.org/10.3390/atmos13111901