Aerosol Retrieval over Land from the Directional Polarimetric Camera Aboard on GF-5
Abstract
:1. Introduction
2. DPC Instrument and Aerosol Retrieval Approach Description
2.1. The Introduction of DPC
2.2. Aerosol Retrieval Algorithm
3. Comparison with MODIS Aerosol Product
4. Validation against AERONET Measurements
5. Case Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakata, M.; Sano, I.; Mukai, S. Investigation of air pollution and regional climate change due to anthropogenic aerosols. In Remote Sensing Technologies and Applications in Urban Environments; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; Volume 10008, p. 100080Z. [Google Scholar]
- Mishchenko, M.I.; Cairns, B.; Kopp, G.; Schueler, C.F.; Fafaul, B.A.; Hansen, J.E.; Hooker, R.J.; Itchkawich, T.; Maring, H.B.; Travis, L.D. Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory Mission. Bull. Am. Meteorol. Soc. 2007, 88, 677–692. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112, D13211. [Google Scholar] [CrossRef] [Green Version]
- Diner, D.; Beckert, J.; Reilly, T.; Bruegge, C.; Conel, J.; Kahn, R.; Martonchik, J.; Ackerman, T.; Davies, R.; Gerstl, S.; et al. Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1072–1087. [Google Scholar] [CrossRef]
- Diner, D.J.; Martonchik, J.V.; Kahn, R.A.; Pinty, B.; Gobron, N.; Nelson, D.L.; Holben, B.N. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sens. Environ. 2005, 94, 155–171. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. The modern aerosol retrieval algorithms based on the simultaneous measurements of the intensity and polarization of reflected solar light: A review. Front. Environ. Sci. 2015, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Fougnie, B.; Bracco, G.; Lafrance, B.; Ruffel, C.; Hagolle, O.; Tinel, C. PARASOL in-flight calibration and performance. Appl. Opt. 2007, 46, 5435–5451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanré, D.; Bréon, F.M.; Deuzé, J.L.; Dubovik, O.; Ducos, F.; Francois, P.; Goloub, P.; Herman, M.; Lifermann, A.; Waquet, F. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission. Atmos. Meas. Tech. 2011, 4, 1383–1395. [Google Scholar] [CrossRef] [Green Version]
- Marbach, T.; Riedi, J.; Lacan, A.; Schlüssel, P. The 3MI mission: Multi-viewing-channel-polarisation imager of the EUMETSAT polar system: Second generation (EPS-SG) dedicated to aerosol and cloud monitoring. In Polarization Science and Remote Sensing VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9613, p. 961310. [Google Scholar]
- Hasekamp, O.P.; Fu, G.; Rusli, S.P.; Wu, L.; Di Noia, A.; aan de Brugh, J.; Landgraf, J.; Martijn Smit, J.; Rietjens, J.; van Amerongen, A. Aerosol measurements by SPEXone on the NASA PACE mission: Expected retrieval capabilities. J. Quant. Spectrosc. Radiat. Transf. 2019, 227, 170–184. [Google Scholar] [CrossRef]
- Werdell, P.J.; Behrenfeld, M.J.; Bontempi, P.S.; Boss, E.; Cairns, B.; Davis, G.T.; Franz, B.A.; Gliese, U.B.; Gorman, E.T.; Hasekamp, O.; et al. The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission: Status, science, advances. Bull. Am. Meteorol. Soc. 2019, 100, 1775–1794. [Google Scholar] [CrossRef]
- Snik, F.; Karalidi, T.; Keller, C.U. Spectral modulation for full linear polarimetry. Appl. Opt. 2009, 48, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hou, W.; Hong, J.; Zheng, F.; Luo, D.; Wang, J.; Gu, X.; Qiao, Y. Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation. J. Quant. Spectrosc. Radiat. Transf. 2018, 218, 21–37. [Google Scholar] [CrossRef]
- Huang, C.; Chang, Y.Y.; Xiang, G.F.; Han, L.; Chen, F.; Luo, D.G.; Li, S.; Sun, L.; Tu, B.H.; Meng, B.H.; et al. Polarization measurement accuracy analysis and improvement methods for the directional polarimetric camera. Opt. Express 2020, 28, 38638–38666. [Google Scholar] [CrossRef] [PubMed]
- Deuzé, J.L.; Bréon, F.M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G.; et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res. Earth Surf. 2001, 106, 4913–4926. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fang, L.; Zhang, X.; Wang, W. Retrieval of aerosol properties for fine/coarse mode aerosol mixtures over Beijing from PARASOL measurements. Remote Sens. 2015, 7, 9311–9324. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanre, D.; Deuze, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2011, 4, 975–1018. [Google Scholar] [CrossRef] [Green Version]
- Hasekamp, O.P.; Litvinov, P.; Butz, A. Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements. J. Geophys. Res. Atmos. 2011, 116, D14204. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Hasekamp, O. Retrieval of aerosol microphysical and optical properties over land using a multimode approach. Atmos. Meas. Tech. 2018, 11, 6627–6650. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; van Harten, G.; Diner, D.J.; Kalashnikova, O.V.; Seidel, F.C.; Bruegge, C.J.; Dubovik, O. Coupled retrieval of aerosol properties and land surface reflection using the Airborne Multiangle SpectroPolarimetric Imager. J. Geophys. Res. Atmos. 2017, 122, 7004–7026. [Google Scholar] [CrossRef]
- Fang, L.; Hasekamp, O.; Fu, G.; Gong, W.; Wang, S.; Wang, W.; Han, Q.; Tang, S. Retrieval of Aerosol Optical Properties over Land Using an Optimized Retrieval Algorithm Based on the Directional Polarimetric Camera. Remote Sens. 2022, 14, 4571. [Google Scholar] [CrossRef]
- Kang, Q.; Yuan, Y.L.; Li, J.J.; Zhai, W.C.; Wu, H.Y.; Hong, J.; Zheng, X.B. Effect of divergence angle of polarization calibration source on DPC polarization calibration: Analysis and validation. J. Remote Sens. 2018, 22, 203–210. (In Chinese) [Google Scholar]
- Hagolle, O.; Goloub, P.; Deschamps, P.Y.; Cosnefroy, H.; Briottet, X.; Bailleul, T.; Nicolas, J.M.; Parol, F.; Lafrance, B.; Herman, M. Results of POLDER in-flight calibration. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1550–1566. [Google Scholar] [CrossRef] [Green Version]
- Nadal, F.; Bréon, F.M. Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1709–1718. [Google Scholar] [CrossRef]
- Deuzé, J.L.; Herman, M.; Goloub, P.; Tanré, D.; Marchand, A. Characterization of aerosols over ocean from POLDER/ADEOS-1. Geophys. Res. Lett. 1999, 26, 1421–1424. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.N.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanre, D.; Slutsker, I. Climatology of aerosol absorption and optical properties in key worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Bréon, F.M.; Colzy, S. Cloud detection from the spaceborne POLDER instrument and validation against surface synoptic observations. J. Appl. Meteorol. 1999, 38, 777–785. [Google Scholar] [CrossRef]
- Shettle, E.P.; Fenn, R.W. Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties; No. AFGL-TR-79-0214; Air Force Geophysics Lab: Hanscomb AFB, MA, USA, 1979; p. 94. [Google Scholar]
- Holben, B.N.; Eck, T.F.; Slutsker, I.A.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Gu, X.F.; Wang, S.P.; Fang, L.; Yu, T.; Gao, J. Sensitivity study on polarized aerosol retrievals of PARASOL in Beijing and Kanpur. Atmos. Meas. Tech. Discuss. 2011, 4, 5773–5806. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D. Estimation of PM2.5 from fine-mode aerosol optical depth. J. Remote Sens. 2013, 17, 929–943. [Google Scholar]
- Yan, X.; Shi, W.; Li, Z.; Li, Z.; Luo, N.; Zhao, W.; Wang, H.; Yu, X. Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China. Atmos. Environ. 2017, 170, 290–302. [Google Scholar] [CrossRef]
Items | DPC | POLDER |
---|---|---|
swath(km) | 1850 | 1600 |
FOV | ±50° (Along track/Across track) | ±51° (Along track) ±43° (Across track) |
spatial resolution | 3.3 km (nadir) | 6 km × 7 km (nadir) |
pixel number on the CCD | 512 × 512 | 274×242 |
bands (nm, P stands for polarization) | 443, 490 (P), 565, 670 (P), 763, 765, 865 (P), 910 | 443, 490 (P), 565, 670 (P), 763, 765, 865 (P), 910 |
band width(nm) | 20, 20, 20, 20, 10, 40, 40, 20 | 20, 20, 20, 20, 10, 40, 40, 20 |
polarization direction | 0°, 60°, 120° | 0°, 60°, 120° |
radiation calibration error | ≤5% | 2% for shorter wavelength (≤565 nm) 3% for longer wavelength (565 nm) |
polarization calibration errorin DoLP | ≤0.02 | 1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Gong, W.; Fang, L.; Wang, W.; Zhang, P.; Lu, N.; Tang, S.; Zhang, X.; Hu, X.; Sun, X. Aerosol Retrieval over Land from the Directional Polarimetric Camera Aboard on GF-5. Atmosphere 2022, 13, 1884. https://doi.org/10.3390/atmos13111884
Wang S, Gong W, Fang L, Wang W, Zhang P, Lu N, Tang S, Zhang X, Hu X, Sun X. Aerosol Retrieval over Land from the Directional Polarimetric Camera Aboard on GF-5. Atmosphere. 2022; 13(11):1884. https://doi.org/10.3390/atmos13111884
Chicago/Turabian StyleWang, Shupeng, Weishu Gong, Li Fang, Weihe Wang, Peng Zhang, Naimeng Lu, Shihao Tang, Xingying Zhang, Xiuqing Hu, and Xiaobing Sun. 2022. "Aerosol Retrieval over Land from the Directional Polarimetric Camera Aboard on GF-5" Atmosphere 13, no. 11: 1884. https://doi.org/10.3390/atmos13111884
APA StyleWang, S., Gong, W., Fang, L., Wang, W., Zhang, P., Lu, N., Tang, S., Zhang, X., Hu, X., & Sun, X. (2022). Aerosol Retrieval over Land from the Directional Polarimetric Camera Aboard on GF-5. Atmosphere, 13(11), 1884. https://doi.org/10.3390/atmos13111884