Investigation of the Parameters Influencing Baseline Ozone in the Western United States: A Statistical Modeling Approach
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laurence, J.A. Ecological effects of ozone: Integrating exposure and response with ecosystem dynamics and function. Environ. Sci. Policy 1998, 1, 179–184. [Google Scholar] [CrossRef]
- Lippmann, M. Health effects of tropospheric ozone. Environ. Sci. Technol. 1991, 25, 1954–1962. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. NAAQS Table. Criteria Air Pollutants. 2016. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 30 June 2022).
- Jaffe, D.A.; Ninneman, M.; Chan, H.C. NOx and O3 Trends at U.S. Non-Attainment Areas for 1995–2020: Influence of COVID-19 Reductions and Wildland Fires on Policy-Relevant Concentrations. J. Geophys. Res. Atmos. 2022, 127, e2021JD036385. [Google Scholar] [CrossRef] [PubMed]
- Langford, A.O.; Alvarez, R.J., II; Brioude, J.; Fine, R.; Gustin, M.S.; Lin, M.Y.; Marchbanks, R.D.; Pierce, R.B.; Sandberg, S.P.; Senff, C.J.; et al. Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southwestern U.S. J. Geophys. Res. Atmos. 2017, 122, 1312–1337. [Google Scholar] [CrossRef]
- Nussbaumer, C.M.; Cohen, R.C. The Role of Temperature and NOx in Ozone Trends in the Los Angeles Basin. Environ. Sci. Technol. 2020, 54, 15652–15659. [Google Scholar] [CrossRef]
- Simon, H.; Reff, A.; Wells, B.; Xing, J.; Frank, N. Ozone Trends Across the United States over a Period of Decreasing NOx and VOC Emissions. Environ. Sci. Technol. 2015, 49, 186–195. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Cooper, O.R.; Fiore, A.M.; Henderson, B.H.; Tonnesen, G.S.; Russell, A.G.; Henze, D.K.; Langford, A.O.; Lin, M.; Moore, T. Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elem. Sci. Anthr. 2018, 6, 56. [Google Scholar] [CrossRef]
- Dolwick, P.; Akhtar, F.; Baker, K.R.; Possiel, N.; Simon, H.; Tonnesen, G. Comparison of background ozone estimates over the western United States based on two separate model methodologies. Atmos. Environ. 2015, 109, 282–296. [Google Scholar] [CrossRef]
- Emery, C.; Jung, J.; Downey, N.; Johnson, J.; Jimenez, M.; Yarwood, G.; Morris, R. Regional and global modeling estimates of policy relevant background ozone over the United States. Atmos. Environ. 2012, 47, 206–217. [Google Scholar] [CrossRef]
- Fiore, A.M.; Jacob, D.J.; Bey, I.; Yantosca, R.M.; Field, B.D.; Fusco, A.C.; Wilkinson, J.G. Background ozone over the United States in summer: Origin, trend, and contribution to pollution episodes. J. Geophys. Res. Earth Surf. 2002, 107, ACH-11-1–ACH 11-25. [Google Scholar] [CrossRef]
- Fiore, A.; Jacob, D.J.; Liu, H.; Yantosca, R.M.; Fairlie, T.D.; Li, Q. Variability in surface ozone background over the United States: Implications for air quality policy. J. Geophys. Res. Earth Surf. 2003, 108, ACH-19-1–ACH-19-12. [Google Scholar] [CrossRef]
- Fiore, A.M.; Oberman, J.T.; Lin, M.Y.; Zhang, L.; Clifton, O.E.; Jacob, D.J.; Naik, V.; Horowitz, L.W.; Pinto, J.P.; Milly, G.P. Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties, and recommendations. Atmos. Environ. 2014, 96, 284–300. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Emery, C.; Shadwick, D.; Wernli, H.; Jung, J.; Oltmans, S.J. Estimates of background surface ozone concentrations in the United States based on model-derived source apportionment. Atmos. Environ. 2014, 84, 275–288. [Google Scholar] [CrossRef]
- Lin, M.; Fiore, A.M.; Cooper, O.R.; Horowitz, L.W.; Langford, A.O.; Levy, H., II; Johnson, B.J.; Naik, V.; Oltmans, S.J.; Senff, C.J.; et al. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. J. Geophys. Res. Earth Surf. 2012, 117, D00V22. [Google Scholar] [CrossRef]
- Miyazaki, K.; Neu, J.L.; Osterman, G.; Bowman, K. Changes in US background ozone associated with the 2011 turnaround in Chinese NOx emissions. Environ. Res. Commun. 2022, 4, 045003. [Google Scholar] [CrossRef]
- Parrish, D.D.; Ennis, C.A. Estimating background contributions and US anthropogenic enhancements to maximum ozone concentrations in the northern US. Atmos. Chem. Phys. 2019, 19, 12587–12605. [Google Scholar] [CrossRef]
- Parrish, D.D.; Young, L.M.; Newman, M.H.; Aikin, K.C.; Ryerson, T.B. Ozone Design Values in Southern California’s Air Basins: Temporal Evolution and U.S. Background Contribution. J. Geophys. Res. Atmos. 2017, 122, 11–166, 182. [Google Scholar] [CrossRef]
- Parrish, D.D.; Faloona, I.C.; Derwent, R.G. Observational-based assessment of contributions to maximum ozone concentrations in the western United States. J. Air Waste Manag. Assoc. 2022, 72, 434–454. [Google Scholar] [CrossRef]
- Stauffer, R.M.; Thompson, A.M.; Oltmans, S.J.; Johnson, B.J. Tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 2. Links between Trinidad Head, CA, profile clusters and inland surface ozone measurements. J. Geophys. Res. Atmos. 2017, 122, 1261–1280. [Google Scholar] [CrossRef]
- Wang, H.; Jacob, D.J.; Le Sager, P.; Streets, D.G.; Park, R.J.; Gilliland, A.B.; van Donkelaar, A. Surface ozone background in the United States: Canadian and Mexican pollution influences. Atmos. Environ. 2009, 43, 1310–1319. [Google Scholar] [CrossRef]
- Yan, Q.; Wang, Y.; Cheng, Y.; Li, J. Summertime Clean-Background Ozone Concentrations Derived from Ozone Precursor Relationships are Lower than Previous Estimates in the Southeast United States. Environ. Sci. Technol. 2021, 55, 12852–12861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jacob, D.J.; Downey, N.V.; Wood, D.A.; Blewitt, D.; Carouge, C.C.; van Donkelaar, A.; Jones, D.B.; Murray, L.; Wang, Y. Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2° × 2/3° horizontal resolution over North America. Atmos. Environ. 2011, 45, 6769–6776. [Google Scholar] [CrossRef]
- Ambrose, J.L.; Reidmiller, D.R.; Jaffe, D.A. Causes of high O3 in the lower free troposphere over the Pacific Northwest as observed at the Mt. Bachelor Observatory. Atmos. Environ. 2011, 45, 5302–5315. [Google Scholar] [CrossRef]
- Zhang, L.; Jaffe, D.A. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor Observatory (MBO) during 2004–2015. Atmos. Environ. 2017, 165, 143–154. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Zhang, L. Meteorological anomalies lead to elevated O 3 in the western U.S. in June 2015. Geophys. Res. Lett. 2017, 44, 1990–1997. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Fiore, A.M.; Keating, T.J. Importance of background ozone for air quality management. The Magazine for Environmental Managers, 1 November 2020; 1–5. Available online: https://pubs.awma.org/flip/EM-Nov-2020/jaffe.pdf (accessed on 19 July 2022).
- Gong, X.; Kaulfus, A.; Nair, U.; Jaffe, D.A. Quantifying O3 Impacts in Urban Areas Due to Wildfires Using a Generalized Additive Model. Environ. Sci. Technol. 2017, 51, 13216–13223. [Google Scholar] [CrossRef]
- Jaffe, D.; Prestbo, E.; Swartzendruber, P.; Weisspenzias, P.; Kato, S.; Takami, A.; Hatakeyama, S.; Kajii, Y. Export of atmospheric mercury from Asia. Atmos. Environ. 2005, 39, 3029–3038. [Google Scholar] [CrossRef]
- Baylon, P.; Jaffe, D.A.; Hall, S.R.; Ullmann, K.; Alvarado, M.J.; Lefer, B.L. Impact of Biomass Burning Plumes on Photolysis Rates and Ozone Formation at the Mount Bachelor Observatory. J. Geophys. Res. Atmos. 2018, 123, 2272–2284. [Google Scholar] [CrossRef]
- Gratz, L.E.; Jaffe, D.A.; Hee, J.R. Causes of increasing ozone and decreasing carbon monoxide in springtime at the Mt. Bachelor Observatory from 2004 to 2013. Atmos. Environ. 2015, 109, 323–330. [Google Scholar] [CrossRef]
- Zhang, L.; Jacob, D.J.; Boersma, K.F.; Jaffe, D.A.; Olson, J.R.; Bowman, K.W.; Worden, J.R.; Thompson, A.M.; Avery, M.A.; Cohen, R.C.; et al. Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: An integrated analysis using satellite, aircraft, ozonesonde, and surface observations. Atmos. Chem. Phys. 2008, 8, 6117–6136. [Google Scholar] [CrossRef]
- Gaudel, A.; Cooper, O.R.; Ancellet, G.; Barret, B.; Boynard, A.; Burrows, J.P.; Clerbaux, C.; Coheur, P.-F.; Cuesta, J.; Cuevas, E.; et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem. Sci. Anthr. 2018, 6, 39. [Google Scholar] [CrossRef]
- Qu, Z.; Henze, D.K.; Cooper, O.R.; Neu, J.L. Impacts of global NOx inversions on NO2 and ozone simulations. Atmos. Chem. Phys. 2020, 20, 13109–13130. [Google Scholar] [CrossRef]
- Weiss-Penzias, P.; Jaffe, D.A.; Swartzendruber, P.; Dennison, J.B.; Chand, D.; Hafner, W.; Prestbo, E. Observations of Asian air pollution in the free troposphere at Mount Bachelor Observatory during the spring of 2004. J. Geophys. Res. Earth Surf. 2006, 111, D10304. [Google Scholar] [CrossRef]
- Chen, H.; Karion, A.; Rella, C.W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P.P. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech. 2013, 6, 1031–1040. [Google Scholar] [CrossRef]
- Briggs, N.L.; Jaffe, D.A.; Gao, H.; Hee, J.R.; Baylon, P.M.; Zhang, Q.; Zhou, S.; Collier, S.C.; Sampson, P.D.; Cary, R.A. Particulate Matter, Ozone, and Nitrogen Species in Aged Wildfire Plumes Observed at the Mount Bachelor Observatory. Aerosol Air Qual. Res. 2016, 16, 3075–3087. [Google Scholar] [CrossRef]
- Zhou, S.; Collier, S.; Jaffe, D.A.; Briggs, N.L.; Hee, J.; Sedlacek, A.J., III; Kleinman, L.; Onasch, T.B.; Zhang, Q. Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmos. Chem. Phys. 2017, 17, 2477–2493. [Google Scholar] [CrossRef]
- Zhou, S.; Collier, S.; Jaffe, D.A.; Zhang, Q. Free tropospheric aerosols at the Mt. Bachelor Observatory: More oxidized and higher sulfate content compared to boundary layer aerosols. Atmos. Chem. Phys. 2019, 19, 1571–1585. [Google Scholar] [CrossRef]
- Bolton, D. The Computation of Equivalent Potential Temperature. Mon. Weather Rev. 1980, 108, 1046–1053. [Google Scholar] [CrossRef]
- Reidmiller, D.R.; Jaffe, D.A.; Fischer, E.V.; Finley, B. Nitrogen oxides in the boundary layer and free troposphere at the Mt. Bachelor Observatory. Atmos. Chem. Phys. 2010, 10, 6043–6062. [Google Scholar] [CrossRef]
- Aneja, V.P.; Businger, S.; Li, Z.; Claiborn, C.S.; Murthy, A. Ozone climatology at high elevations in the southern Appalachians. J. Geophys. Res. Earth Surf. 1991, 96, 1007. [Google Scholar] [CrossRef]
- Aneja, V.P.; Li, Z. Characterization of ozone at high elevation in the eastern United States: Trends, seasonal variations, and exposure. J. Geophys. Res. Earth Surf. 1992, 97, 9873–9888. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Shadwick, D.S.; Mohnen, V.A. The characterization of ozone concentrations at a select set of high-elevation sites in the eastern United States. Environ. Pollut. 1990, 67, 147–178. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Mohnen, V.A. The Characterization of Ozone, Sulfur Dioxide, and Nitrogen Dioxide for Selected Monitoring Sites in the Federal Republic of Germany. J. Air Pollut. Control Assoc. 1986, 36, 1329–1337. [Google Scholar] [CrossRef]
- Mohnen, V.A.; Hogan, A.; Coffey, P. Ozone measurements in rural areas. J. Geophys. Res. Earth Surf. 1977, 82, 5889–5895. [Google Scholar] [CrossRef]
- Naja, M.; Lal, S.; Chand, D. Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6°N, 72.7°E, 1680 m asl) in India. Atmos. Environ. 2003, 37, 4205–4215. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
- Kavassalis, S.C.; Murphy, J.G. Understanding ozone-meteorology correlations: A role for dry deposition. Geophys. Res. Lett. 2017, 44, 2922–2931. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Shen, L. Meteorology and Climate Influences on Tropospheric Ozone: A Review of Natural Sources, Chemistry, and Transport Patterns. Curr. Pollut. Rep. 2019, 5, 238–260. [Google Scholar] [CrossRef]
- Texeira, J. AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS-only) 1 degree × 1 degree V006. Available online: https://disc.gsfc.nasa.gov/datasets/AIRS3STD_006/summary (accessed on 20 September 2022).
- Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models; Chapman & Hall/CRC: Boca Raton, FL, USA, 1990. [Google Scholar]
- McClure, C.D.; Jaffe, D.A. Investigation of high ozone events due to wildfire smoke in an urban area. Atmos. Environ. 2018, 194, 146–157. [Google Scholar] [CrossRef]
- Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 2007, 41, 7127–7137. [Google Scholar] [CrossRef]
- Sun, W.; Palazoglu, A.; Singh, A.; Zhang, H.; Wang, Q.; Zhao, Z.; Cao, D. Prediction of surface ozone episodes using clusters based generalized linear mixed effects models in Houston–Galveston–Brazoria area, Texas. Atmos. Pollut. Res. 2015, 6, 245–253. [Google Scholar] [CrossRef]
- Jurán, S.; Edwards-Jonášová, M.; Cudlín, P.; Zapletal, M.; Šigut, L.; Grace, J.; Urban, O. Prediction of ozone effects on net ecosystem production of Norway spruce forest. iForest-Biogeos. For. 2018, 11, 743–750. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- CFI Team. Adjusted R-Squared. Available online: https://corporatefinanceinstitute.com/resources/knowledge/other/adjusted-r-squared/ (accessed on 1 October 2022).
- National Interagency Fire Center. Fire information: Statistics. Available online: https://www.nifc.gov/fire-information/statistics (accessed on 5 July 2022).
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef] [PubMed]
- Decker, Z.C.J.; Zarzana, K.J.; Coggon, M.; Min, K.-E.; Pollack, I.; Ryerson, T.B.; Peischl, J.; Edwards, P.; Dubé, W.P.; Markovic, M.Z.; et al. Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft Observations. Environ. Sci. Technol. 2019, 53, 2529–2538. [Google Scholar] [CrossRef]
- Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167–19170. [Google Scholar] [CrossRef]
- Val Martin, M.; Heald, C.L.; Lamarque, J.-F.; Tilmes, S.; Emmons, L.K.; Schichtel, B.A. How emissions, climate, and land use change will impact mid-century air quality over the United States: A focus on effects at national parks. Atmos. Chem. Phys. 2015, 15, 2805–2823. [Google Scholar] [CrossRef]
- Buysse, C.E.; Kaulfus, A.; Nair, U.; Jaffe, D.A. Relationships between Particulate Matter, Ozone, and Nitrogen Oxides during Urban Smoke Events in the Western US. Environ. Sci. Technol. 2019, 53, 12519–12528. [Google Scholar] [CrossRef]
- Sillman, S.; Samson, P.J. Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. J. Geophys. Res. Earth Surf. 1995, 100, 11497–11508. [Google Scholar] [CrossRef]
- Baylon, P.M.; Jaffe, D.A.; Pierce, R.B.; Gustin, M.S. Interannual Variability in Baseline Ozone and Its Relationship to Surface Ozone in the Western U.S. Environ. Sci. Technol. 2016, 50, 2994–3001. [Google Scholar] [CrossRef] [PubMed]
- Wigder, N.L.; Jaffe, D.A.; Herron-Thorpe, F.L.; Vaughan, J.K. Influence of daily variations in baseline ozone on urban air quality in the United States Pacific Northwest. J. Geophys. Res. Atmos. 2013, 118, 3343–3354. [Google Scholar] [CrossRef]
- Research Works Archive. Search: Mt. Bachelor Observatory. Available online: https://digital.lib.washington.edu/researchworks/discover?scope=%2F&query=%22mt.+bachelor+observatory%22&submit=&filtertype_0=title&filter_relational_operator_0=contains&filter_0=data (accessed on 18 April 2022).
- NOAA GML. GML Data Finder. Available online: https://gml.noaa.gov/dv/data/index.php?category=Ozone&type=Balloon&site=THD (accessed on 14 July 2022).
- Platnick, S.; Hubanks, P.; Meyer, K.; King, M.D. MODIS Atmosphere L3 Monthly Product (08_M3). Available online: http://dx.doi.org/10.5067/MODIS/MYD08_M3.006 (accessed on 20 June 2022).
Data Source * | Parameter Number | Parameter Name (Unit) | Description |
---|---|---|---|
1 | 1 | Year (unitless) | Year |
1 | 2 | DOY (unitless) | Day-of-year |
2 | 3 | RH_8h (%) | 8 h average relative humidity |
2 | 4 | Scattering_8h (Mm−1) | 8 h average aerosol scattering |
2 | 5 | CO_8h (ppb) | 8 h average carbon monoxide |
2 | 6 | WV_8h (g kg−1) | 8 h average water vapor mixing ratio |
3 | 7 | Tropopause_Pres (hPa) | Daily, satellite-derived regional tropopause pressure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ninneman, M.; Petropavlovskikh, I.; Effertz, P.; Chand, D.; Jaffe, D. Investigation of the Parameters Influencing Baseline Ozone in the Western United States: A Statistical Modeling Approach. Atmosphere 2022, 13, 1883. https://doi.org/10.3390/atmos13111883
Ninneman M, Petropavlovskikh I, Effertz P, Chand D, Jaffe D. Investigation of the Parameters Influencing Baseline Ozone in the Western United States: A Statistical Modeling Approach. Atmosphere. 2022; 13(11):1883. https://doi.org/10.3390/atmos13111883
Chicago/Turabian StyleNinneman, Matthew, Irina Petropavlovskikh, Peter Effertz, Duli Chand, and Daniel Jaffe. 2022. "Investigation of the Parameters Influencing Baseline Ozone in the Western United States: A Statistical Modeling Approach" Atmosphere 13, no. 11: 1883. https://doi.org/10.3390/atmos13111883
APA StyleNinneman, M., Petropavlovskikh, I., Effertz, P., Chand, D., & Jaffe, D. (2022). Investigation of the Parameters Influencing Baseline Ozone in the Western United States: A Statistical Modeling Approach. Atmosphere, 13(11), 1883. https://doi.org/10.3390/atmos13111883