Accurate Stall Prediction for Thick Airfoil by Delayed Detached-Eddy Simulations
Abstract
:1. Introduction
2. Numerical Simulation
2.1. Numerical Models
2.2. Mesh and Boundary Conditions
3. Results and Discussion
3.1. Spanwise Length Analysis
3.2. The Grid Sensitivity
3.3. The Accurate Prediction of Stall-Starting AOA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Z.; Zhu, W.J.; Shen, W.Z.; Zhong, W.; Cao, J.; Tao, Q. Aerodynamic Analysis of Coning Effects on the DTU 10 MW Wind Turbine Rotor. Energies 2020, 13, 5753–5771. [Google Scholar] [CrossRef]
- Loth, E.; Steele, A.; Ichter, B.; Selig, M.; Moriarty, P. Segmented Ultralight Pre-Aligned Rotor for Extreme-Scale Wind Turbines. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, Nashville, TN, USA, 9 January 2012. [Google Scholar]
- Barnes, R.H.; Morozov, E.V. Structural Optimisation of Composite Wind Turbine Blade Structures with Variations of Internal Geometry Configuration. Compos. Struct. 2016, 152, 158–167. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Q.; Shen, W.Z.; Pang, X.; Li, S.; Guo, X. Structural Optimization Study of Composite Wind Turbine Blade. Mater. Des. 2013, 46, 247–255. [Google Scholar] [CrossRef]
- Sun, Z.; Sessarego, M.; Chen, J.; Shen, W.Z. Design of the OffWindChina 5 MW Wind Turbine Rotor. Energies 2017, 10, 777–796. [Google Scholar] [CrossRef] [Green Version]
- Hrgovan, I.; Shen, W.Z.; Zhu, W.J.; Madsen, J.; Hansen, R. Design and Experimental Validation of Thick Airfoils for Large Wind Turbines. In Renewable Energy in the Service of Mankind Vol I: Selected Topics from the World Renewable Energy Congress WREC 2014; Sayigh, A., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 855–863. [Google Scholar]
- Zahle, F.; Bak, C.; Sørensen, N.N.; Vronsky, T.; Gaudern, N. Design of the LRP Airfoil Series Using 2D CFD. J. Phys. Conf. Ser. 2014, 524, 12020. [Google Scholar] [CrossRef] [Green Version]
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In Proceedings of the Low Reynolds Number Aerodynamics; Mueller, T.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1–12. [Google Scholar]
- Szydlowski, J.; Costes, M. Simulation of Flow Around a Static and Oscillating in Pitch NACA 0015 Airfoil Using URANS and DES. In Proceedings of the Volume 2, Parts A and B; ASMEDC: Charlotte, NC, USA, 2004; pp. 891–908. [Google Scholar]
- Richez, F.; Mary, I.; Gleize, V.; Basdevant, C. Near Stall Simulation of the Flow around an Airfoil Using Zonal RANS/LES Coupling Method. Comput Fluids 2008, 37, 857–866. [Google Scholar] [CrossRef]
- Richez, F.; Mary, I.; Gleize, V.; Basdevant, C. Zonal RANS/LES Coupling Simulation of a Transitional and Separated Flow around an Airfoil near Stall. Theor. Comput. Fluid Dyn. 2008, 22, 305–315. [Google Scholar] [CrossRef]
- Sandham, N.D. Transitional Separation Bubbles and Unsteady Aspects of Aerofoil Stall. Aeronaut. J. 2008, 112, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, J.; Jones, L.; Sandham, N. Intermittent Bursting of a Laminar Separation Bubble on an Airfoil. AIAA J. 2010, 48, 414–426. [Google Scholar] [CrossRef]
- Fukumoto, H.; Aono, H.; Nonomura, T.; Oyama, A.; Fujii, K. Significance of Computational Spanwise Domain Length on LES for the Flowfield with Large Vortex Structure; American Institute of Aeronautics and Astronautics: Nashville, TN, USA, 4 January 2016; Volume 7. [Google Scholar]
- Manni, L.; Nishino, T.; Delafin, P.-L. Numerical Study of Airfoil Stall Cells Using a Very Wide Computational Domain. Comput Fluids 2016, 140, 260–269. [Google Scholar] [CrossRef]
- Sharma, A.; Visbal, M. Numerical Investigation of the Effect of Airfoil Thickness on Onset of Dynamic Stall. J. Fluid Mech. 2017, 870, 870–900. [Google Scholar] [CrossRef] [Green Version]
- Asada, K.; Kawai, S. Large-Eddy Simulation of Airfoil Flow near Stall Condition at Reynolds Number 2.1 × 106. Phys. Fluids 2018, 30, 85103. [Google Scholar] [CrossRef]
- Yalçın, Ö.; Cengiz, K.; Özyörük, Y. High-Order Detached Eddy Simulation of Unsteady Flow around NREL S826 Airfoil. J. Wind Eng. Ind. Aerodyn. 2018, 179, 125–134. [Google Scholar] [CrossRef]
- Cui, W.; Xiao, Z.; Yuan, X. Simulations of Transition and Separation Past a Wind-Turbine Airfoil near Stall. Energy 2020, 205, 118003. [Google Scholar] [CrossRef]
- Tamaki, Y.; Fukushima, Y.; Kuya, Y.; Kawai, S. Physics and Modeling of Trailing-Edge Stall Phenomena for Wall-Modeled Large-Eddy Simulation. Phys. Rev. Fluid 2020, 5, 74602. [Google Scholar] [CrossRef]
- Gleize, V.; Costes, M.; Mary, I. Numerical Simulation of NACA4412 Airfoil in Pre-Stall Conditions. International Journal of Numer. Methods Heat Fluid Flow 2021, 32, 1375–1397. [Google Scholar] [CrossRef]
- Menter, F.; Kuntz, M.; Langtry, R. Ten Years of Industrial Experience with the SST Turbulence Model. Turbul. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
Lz/c | Nx | Ny | Nz | ∆x+ | ∆y+ | ∆z+ |
---|---|---|---|---|---|---|
0.1 | 201 | 134 | 11 | ~600 | 1 | 1200 |
0.2 | 201 | 134 | 21 | ~600 | 1 | 1200 |
0.3 | 201 | 134 | 31 | ~600 | 1 | 1200 |
0.4 | 201 | 134 | 41 | ~600 | 1 | 1200 |
0.5 | 201 | 134 | 51 | ~600 | 1 | 1200 |
1 | 201 | 134 | 101 | ~600 | 1 | 1200 |
5 | 201 | 134 | 501 | ~600 | 1 | 1200 |
5 | 201 | 134 | 251 | ~600 | 1 | 2400 |
5 | 101 | 134 | 501 | ~1200 | 1 | 1200 |
∆CL | 6° | 11° | 14° | 17° | 20° |
---|---|---|---|---|---|
Lz = 0.1c | −8.92% | 0.35% | 35.69% | 30.38% | 31.53% |
Lz = 0.2c | −8.28% | 0.75% | 35.39% | 26.75% | 27.47% |
Lz = 0.3c | −8.97% | −11.57% | 24.45% | 14.79% | 19.75% |
Lz = 0.4c | −8.28% | 0.75% | 9.54% | 9.99% | 12.51% |
Lz = 0.5c | −8.28% | 0.74% | 12.56% | 10.19% | 5.73% |
∆ CD | 6° | 11° | 14° | 17° | 20° |
---|---|---|---|---|---|
Lz = 0.1c | 59.54% | 51.22% | 9.69% | 21.70% | 25.08% |
Lz = 0.2c | 59.91% | 51.59% | 11.58% | 22.40% | 23.82% |
Lz = 0.3c | 60.04% | 52.29% | 23.74% | 28.24% | 25.67% |
Lz = 0.4c | 59.91% | 51.60% | 43.57% | 32.02% | 25.79% |
Lz = 0.5c | 59.91% | 51.58% | 42.24% | 32.29% | 29.22% |
11° | 14° | 20° | ||
---|---|---|---|---|
Lz = 0.5c | 0.74% | 12.56% | 5.73% | |
∆CL | Lz = 1c | 0.75% | 12.64% | 5.42% |
Lz = 5c | 0.76% | 8.54% | 3.50% | |
Lz = 0.5c | 51.58% | 42.24% | 29.22% | |
∆CD | Lz = 1c | 51.60% | 38.47% | 32.04% |
Lz = 5c | 51.61% | 45.19% | 28.07% |
11° | 14° | 20° | ||
---|---|---|---|---|
Nx = 201, Nz = 501 | 0.76% | 8.54% | 3.50% | |
∆CL | Nx = 101, Nz = 501 | −14.12% | 6.33% | 1.81% |
Nx = 201, Nz = 251 | −0.23% | 8.70% | 6.68% | |
Nx = 201, Nz = 501 | 51.61% | 45.19% | 28.07% | |
∆CD | Nx = 101, Nz = 501 | 93.66% | 48.84% | 26.40% |
Nx = 201, Nz = 251 | 49.46% | 48.34% | 22.25% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Shi, R.; Zhu, W.; Li, X.; Yang, J. Accurate Stall Prediction for Thick Airfoil by Delayed Detached-Eddy Simulations. Atmosphere 2022, 13, 1804. https://doi.org/10.3390/atmos13111804
Sun Z, Shi R, Zhu W, Li X, Yang J. Accurate Stall Prediction for Thick Airfoil by Delayed Detached-Eddy Simulations. Atmosphere. 2022; 13(11):1804. https://doi.org/10.3390/atmos13111804
Chicago/Turabian StyleSun, Zhenye, Rongkun Shi, Weijun Zhu, Xiaochuan Li, and Junwei Yang. 2022. "Accurate Stall Prediction for Thick Airfoil by Delayed Detached-Eddy Simulations" Atmosphere 13, no. 11: 1804. https://doi.org/10.3390/atmos13111804
APA StyleSun, Z., Shi, R., Zhu, W., Li, X., & Yang, J. (2022). Accurate Stall Prediction for Thick Airfoil by Delayed Detached-Eddy Simulations. Atmosphere, 13(11), 1804. https://doi.org/10.3390/atmos13111804