Near Real-Time Spatial and Temporal Distribution of Traffic Emissions in Bangkok Using Google Maps Application Program Interface
Abstract
:1. Introduction
2. Methods
- = traffic emission of pollutant p on road segment k (g/hr)
- = emission factor for pollutant p from vehicle type i at speed j (g/km)
- = traffic volume of vehicle type i on road segment k (vehicles/hr)
- = length of road segment k (km)
2.1. Traffic Model and Lane Adjustment Factor
- u = speed (km/hr)
- k = density (veh/km)
- uf = free-flow speed (km/hr)
- km = optimum density (veh/km)
2.2. Emission Factors
2.3. Traffic Emission Inventory
3. Results
3.1. Vehicle Type and Technology in Bangkok’s Fleet
3.2. Traffic Models for Bangkok City
3.3. Development of the Lane Adjustment Factor
3.4. Validation of the Traffic Model
3.5. Diurnal Distribution of Traffic Emissions
3.6. Spatial Distribution of Traffic Emissions in Bangkok
3.7. Contribution of Different Vehicle Types to Traffic Emissions in Bangkok
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- INRIX. Bangkok’s Scorecard Report. Available online: http://inrix.com/scorecard-city/?city=Bangkok&index=11 (accessed on 14 July 2022).
- PCD—Pollution Control Department. Report of Situation and Ambient Air Quality in Thailand. Available online: http://air4thai.pcd.go.th/webV2/download.php (accessed on 15 August 2022).
- Caserini, S.; Pastorello, C.; Gaifami, P.; Ntziachristos, L. Impact of the Dropping Activity with Vehicle Age on Air Pollutant Emissions. Atmos. Pollut. Res. 2013, 4, 282–289. [Google Scholar] [CrossRef] [Green Version]
- PCD—Pollution Control Department. Thailand State of Pollution 2020. Available online: https://www.pcd.go.th/wp-content/uploads/2021/03/pcdnew-2021-04-07_06-54-58_342183.pdf (accessed on 14 August 2022).
- Narita, D.; Oanh, N.T.K.; Sato, K.; Huo, M.; Permadi, D.A.; Chi, N.N.H.; Ratanajaratroj, T.; Pawarmart, I. Pollution Characteristics and Policy Actions on Fine Particulate Matter in a Growing Asian Economy: The Case of Bangkok Metropolitan Region. Atmosphere 2019, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Kanchanasuta, S.; Sooktawee, S.; Patpai, A.; Vatanasomboon, P. Temporal Variations and Potential Source Areas of Fine Particulate Matter in Bangkok, Thailand. Air Soil Water Res. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Leong, S.T.; Muttamara, S.; Laortanakul, P. Air Pollution and Traffic Measurements in Bangkok Streets. Asian J. Energy Environ. 2002, 3, 185–213. [Google Scholar]
- Wang, X.; Westerdahl, D.; Hu, J.; Wu, Y.; Yin, H.; Pan, X.; Zhang, K. On-road Diesel Vehicle Emission Factors for Nitrogen Oxides and Black Carbon in Two Chinese Cities. Atmos. Environ. 2012, 46, 45–55. [Google Scholar] [CrossRef]
- Reşitoğlu, İ.A.; Altinişik, K.; Keskin, A. The Pollutant Emissions from Diesel-engine Vehicles and Exhaust Aftertreatment Systems. Clean Technol. Environ. Policy 2015, 17, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kamal, R.; Ahamed, I.; Wagh, M.; Bihari, V.; Sathin, B.; Kesavanchandran, C.N. PAH Exposure-associated Lung Cancer: An Updated. Meta Anal. 2018, 68, 255–261. [Google Scholar]
- Sahanavin, N.; Prueksasit, T.; Tantrakarnapa, K. Relationship between PM10 and PM2.5 levels in a high-traffic area determined using path analysis and linear regression. J. Environ. Sci. 2018, 69, 105–114. [Google Scholar] [CrossRef] [PubMed]
- WHO—World Health Organization. Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; License: CC BY-NC-SA 3.0 IGO.
- Mohan, M.; Bhati, S.; Marappu, P.G. Emission Inventory of Air Pollutants and Trend Analysis Based on Various Regulatory Measures over Megacity Delhi; Air Quality—New Perspective; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-H.; Ma, J.-L.; Li, L.; Lin, X.-F.; Xu, W.-J.; Ding, H. A High Temporal-spatial Vehicle Emission Inventory based on Detailed Hourly Traffic Data in a Medium-sized City of China. Environ. Pollut. 2018, 236, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Immers, L.H.; Logghe, S. Traffic Flow Theory; Katholieke Universiteit Leuven: Heverlee, Belgium, 2002; pp. 1–21. [Google Scholar]
- Qu, X.; Zhang, J.; Wang, S. On the Stochastic Fundamental Diagram for Freeway Traffic: Model Development, Analytical Properties, Validation, and Extensive Applications. Transp. Res. Part B: Methodol. 2018, 104, 256–271. [Google Scholar] [CrossRef]
- Chandra, S.; Upendra, K. Effect of Lane Width on Capacity under Mixed Traffic Conditions in India. J. Transp. Eng. 2003, 129, 155–160. [Google Scholar] [CrossRef]
- Moses, R.; Mtoi, E.; McBean, H.; Ruegg, S. Development of Speed Models for Improving Travel Forecasting and Highway Performance Evaluation; Department of Transportation: Tallahassee, FL, USA, 2013.
- Pelkmans, L.; Debal, P. Comparison of On-road Emissions with Emissions Measured on Chassis Dynamometer Test Cycles. Transp. Res. Part D Transp. Environ. 2006, 11, 233–241. [Google Scholar] [CrossRef]
- Jing, B.; Wu, L.; Mao, H.; Gong, S.; He, J.; Zou, C.; Song, G.; Li, X.; Wu, Z. Development of a Vehicle Emission Inventory with High Temporal–spatial Resolution based on NRT Traffic Data and Its Impact on Air Pollution in Beijing—Part 1: Development and Evaluation of Vehicle Emission Inventory. Atmos. Chem. Phys. 2016, 16, 3161–3170. [Google Scholar] [CrossRef] [Green Version]
- Google-Developers. Developer Guide Distance Matrix API. Available online: https://developers.google.com/maps/documentation/distance-matrix/intro (accessed on 25 August 2019).
- Wagner, J.M.S.; Eschbach, M.; Vosseberg, K.; Gennat, M. Travel Time Estimation by means of Google API data. IFAC PapersOnLine 2020, 15434–15439. [Google Scholar] [CrossRef]
- Sirisubtawee, S. Development of Temporal Distribution of Traffic Emission Using Google Traffic Application Program Interface. Available online: http://203.159.12.58/ait-thesis/detail.php?id=B02703 (accessed on 7 October 2022).
- Edie, L.C. Car-Following and Steady-State Theory for Noncongested Traffic. Oper. Res. 1961, 9, 66–76. [Google Scholar] [CrossRef]
- Heydecker, B.G.; Addison, J.D. Analysis and Modeling of Traffic Flow Under Variable Speed Limits. Transp. Res. Part C Emerg. Technol. 2011, 19, 206–217. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A Refined Index of Model Performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Demirarslan, K.O.; Doğruparmak, Ş.Ç. Determining Performance and Application of Steady-state Models and Lagrangian Puff Model for Environmental Assessment of CO and NOx Emissions. Pol. J. Environ. Stud. 2016, 25, 83–96. [Google Scholar] [CrossRef]
- PCD—Pollution Control Department. Vehicle Emission Standard and Management Report; PCD: Bangkok, Thailand, 2012.
- BMA-CPS. Report of Road Network and Special Road in Bangkok. Available online: http://cpd.bangkok.go.th:90/web2/strategy/reportstudy50/Infrastruc (accessed on 15 May 2020).
- Yu, C.; Zhang, J.; Yao, D.; Zhang, R.; Jin, H. Speed-density Model of Interrupted Traffic Flow based on Coil Data. Mob. Inf. Syst. 2016. [Google Scholar] [CrossRef] [Green Version]
- IIASA—International Institute for Applied Systems Analysis. GAINS Online. Available online: https://gains.iiasa.ac.at/models/ (accessed on 14 July 2022).
- Cheewaphongphan, P.; Junpen, A.; Garivait, S.; Chatani, S. Emission Inventory of On-Road Transport in Bangkok Metropolitan Region (BMR) Development during 2007 to 2015 Using the GAINS Model. Atmosphere 2017, 8, 167. [Google Scholar] [CrossRef]
- Kim Oanh, N.T. A Study in Urban Air Pollution Improvement in Asia; Asian Institute of Technology: Bangkok, Thailand, 2017. [Google Scholar]
Selected Roads | Length (km) | Width (m) | No. of Lanes (Direction) |
---|---|---|---|
Rama VI | 2.28 | 18 | 3 (Inbound) 3 (Outbound) |
Pradiphat | 1.07 | 15 | 2 (Inbound) 2 (Outbound) |
Pahonyothin | 3.43 | 18 | 3 (Inbound) 3 (Outbound) |
Suthisan Winitchai | 1.44 | 9 | 1 (Inbound) 2 (Outbound) |
Vibhavadi Rangsit | 3.18 | 21 | 4 (Inbound) 4 (Outbound) |
Vehicle Type | Vehicle Ages with Different European Standards in Thailand (Years) | ||||
---|---|---|---|---|---|
Pre-Euro | Euro I | Euro II | Euro III | Euro IV | |
Passenger car, Taxi | ≥20 | 18–19 | 14–17 | 7–13 | <1–6 |
Van, Pick-up | ≥20 | 18–19 | 14–17 | 7–13 | <1–6 |
Bus, Truck | >20 | 20 | 12–19 | <1–11 | - |
Motorcycle | ≥20 | 15–19 | 11–14 | <1–10 | - |
Observed Road | Direction | Number of Lanes | Index of Agreement (d) * | Fractional Bias (FB) ** |
---|---|---|---|---|
Pahonyothin (BTS Ari) | Outbound | 3 | 0.65 | 0.46 |
Pahonyothin (Sanampao BTS) | Outbound | 3 | 0.96 | −0.09 |
Pahonyothin (Sanampao BTS) | Inbound | 3 | 0.85 | −0.36 |
Rama VI (Department of public work) | Outbound | 3 | 0.98 | −0.11 |
Rama VI (Department of public work) | Inbound | 3 | 0.97 | −0.14 |
Vipawadee Rangsit | Outbound | 4 | 0.50 | 0.16 |
Pradiphat | Inbound | 2 | 0.57 | 0.42 |
Pradiphat | Outbound | 2 | 0.80 | 0.21 |
Suthisan Winitchai (Wipawad intersection) | Inbound | 1 | 0.65 | −0.08 |
Suthisan Winitchai (Sapan-kwai intersection) | Inbound | 1 | 0.00 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naiudomthum, S.; Winijkul, E.; Sirisubtawee, S. Near Real-Time Spatial and Temporal Distribution of Traffic Emissions in Bangkok Using Google Maps Application Program Interface. Atmosphere 2022, 13, 1803. https://doi.org/10.3390/atmos13111803
Naiudomthum S, Winijkul E, Sirisubtawee S. Near Real-Time Spatial and Temporal Distribution of Traffic Emissions in Bangkok Using Google Maps Application Program Interface. Atmosphere. 2022; 13(11):1803. https://doi.org/10.3390/atmos13111803
Chicago/Turabian StyleNaiudomthum, Supiya, Ekbordin Winijkul, and Sunicha Sirisubtawee. 2022. "Near Real-Time Spatial and Temporal Distribution of Traffic Emissions in Bangkok Using Google Maps Application Program Interface" Atmosphere 13, no. 11: 1803. https://doi.org/10.3390/atmos13111803
APA StyleNaiudomthum, S., Winijkul, E., & Sirisubtawee, S. (2022). Near Real-Time Spatial and Temporal Distribution of Traffic Emissions in Bangkok Using Google Maps Application Program Interface. Atmosphere, 13(11), 1803. https://doi.org/10.3390/atmos13111803