A Bivariate Nonstationary Extreme Values Analysis of Skew Surge and Significant Wave Height in the English Channel
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Exploratory Analysis
2.3. Modeling of S and HS Extremes
2.4. Modeling of the Dependence between S and HS
2.5. Definition of the p-Level Curves
3. Results
3.1. Pre-Selection of the Physical Covariates
3.2. Nonstationary NHPP for S and HS Extremes
3.3. Dynamic Copula for S and HS
3.4. Climate-Dependent p-Level of S and HS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kopytko, N.; Perkins, J. Climate change, nuclear power, and the adaptation–mitigation dilemma. Energy Policy 2011, 39, 318–333. [Google Scholar] [CrossRef]
- Rueda, A.; Camus, P.; Tomás, A.; Vitousek, S.; Méndez, F. A multivariate extreme wave and storm surge climate emulator based on weather patterns. Ocean Model. 2016, 104, 242–251. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef]
- Chebana, F.; Ouarda, T.B.M.J. Multivariate quantiles in hydrological frequency analysis. Environmetrics 2011, 22, 63–78. [Google Scholar] [CrossRef]
- Pan, X.; Rahman, A.; Haddad, K.; Ouarda, T.B.M.J. Peaks-over-threshold model in flood frequency analysis: A scoping review. Stoch. Environ. Res. Risk Assess. 2022, 36, 2419–2435. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001. [Google Scholar]
- Northrop, P.J.; Jonathan, P.; Randell, D. Threshold Modeling of Nonstationary Extremes. In Extreme Value Modeling and Risk Analysis: Methods and Applications; Dey, D.K., Yan, J., Eds.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016; pp. 87–108. [Google Scholar]
- Katz, R.W.; Parlange, M.B.; Naveau, P. Statistics of extremes in hydrology. Adv. Water Resour. 2002, 25, 1287–1304. [Google Scholar] [CrossRef]
- Wahl, T.; Chambers, D.P. Climate controls multidecadal variability in U. S. extreme sea level records. J. Geophys. Res. Oceans 2016, 121, 1274–1290. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G. Stationarity is undead: Uncertainty dominates the distribution of extremes. Adv. Water Resour. 2015, 77, 17–36. [Google Scholar] [CrossRef]
- Renard, B.; Lang, M.; Bois, P. Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: Case study with peak-over-threshold data. Stoch. Environ. Res. Risk Assess. 2006, 21, 97–112. [Google Scholar] [CrossRef]
- Sun, X.; Renard, B.; Thyer, M.; Westra, S.; Lang, M. A global analysis of the asymmetric effect of ENSO on extreme precipitation. J. Hydrol. 2015, 530, 51–65. [Google Scholar] [CrossRef]
- Gilleland, E.; Katz, R.W. extRemes 2.0: An Extreme Value Analysis Package in R. J. Stat. Softw. 2016, 72, 1–39. [Google Scholar] [CrossRef]
- Coles, S.; Pericchi, L. Anticipating catastrophes through extreme value modelling. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2003, 52, 405–416. [Google Scholar] [CrossRef]
- Ouarda, T.B.M.J.; Charron, C. Changes in the distribution of hydro-climatic extremes in a non-stationary framework. Sci. Rep. 2019, 9, 8104. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, Y.; Duluc, C.M.; Bardet, L.; Rebour, V. Development of a target-site-based regional frequency model using historical information. Nat. Hazards 2019, 98, 895–913. [Google Scholar] [CrossRef]
- Andreevsky, M.; Hamdi, Y.; Griolet, S.; Bernardara, P.; Frau, R. Regional frequency analysis of extreme storm surges using the extremogram approach. Nat. Hazards Earth Syst. Sci. 2020, 20, 1705–1717. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1959 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Bologna, Italy, 2018. [Google Scholar] [CrossRef]
- Gao, B.; Huang, X.; Shi, J.; Tai, Y.; Zhang, J. Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks. Renew. Energy 2020, 162, 1665–1683. [Google Scholar] [CrossRef]
- Luukko, P.J.J.; Helske, J.; Räsänen, E. Introducing libeemd: A program package for performing the ensemble empirical mode decomposition. Comput. Stat. 2016, 31, 545–557. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Lee, T.; Ouarda, T.B. Multivariate Nonstationary Oscillation Simulation of Climate Indices with Empirical Mode Decomposition. Water Resour. Res. 2019, 55, 5033–5052. [Google Scholar] [CrossRef]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147, ISSN 2379-190X. [Google Scholar] [CrossRef]
- Smith, R. Statistics of Extremes, with Applications in Environment, Insurance, and Finance. In Extreme Values in Finance, Telecommunications, and the Environment, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003; p. 78. [Google Scholar]
- Martins, E.S.; Stedinger, J.R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 2000, 36, 737–744. [Google Scholar] [CrossRef]
- El Adlouni, S.; Ouarda, T.B.M.J.; Zhang, X.; Roy, R.; Bobée, B. Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Dziak, J.J.; Coffman, D.L.; Lanza, S.T.; Li, R. Sensitivity and specificity of information criteria. Briefings Bioinform. 2020, 21, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Camus, P.; Haigh, I.D.; Wahl, T.; Nasr, A.A.; Méndez, F.J.; Darby, S.E.; Nicholls, R.J. Daily synoptic conditions associated with occurrences of compound events in estuaries along North Atlantic coastlines. Int. J. Climatol. 2022, 42, 5694–5713. [Google Scholar] [CrossRef]
- Fawcett, L.; Walshaw, D. Improved estimation for temporally clustered extremes. Environmetrics 2007, 18, 173–188. [Google Scholar] [CrossRef]
- Li, X.; Genest, C.; Jalbert, J. A self-exciting marked point process model for drought analysis. Environmetrics 2021, 32, e2697. [Google Scholar] [CrossRef]
- Yan, J. Enjoy the Joy of Copulas: With a Package copula. J. Stat. Softw. 2007, 21, 1–21. [Google Scholar] [CrossRef]
- Sarhadi, A.; Burn, D.H.; Ausin, M.C.; Wiper, M.P. Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula. Water Resour. Res. 2016, 52, 2327–2349. [Google Scholar] [CrossRef]
- Chebana, F.; Ouarda, T.B.M.J. Multivariate non-stationary hydrological frequency analysis. J. Hydrol. 2021, 593, 125907. [Google Scholar] [CrossRef]
- Nagler, T.; Schepsmeier, U.; Stoeber, J.; Brechmann, E.C.; Graeler, B.; Erhardt, T. VineCopula: Statistical Inference of Vine Copulas; 2022. Available online: https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf (accessed on 9 May 2022).
- Tootoonchi, F.; Sadegh, M.; Haerter, J.O.; Räty, O.; Grabs, T.; Teutschbein, C. Copulas for hydroclimatic analysis: A practice-oriented overview. WIREs Water 2022, 9, e1579. [Google Scholar] [CrossRef]
- Serinaldi, F. Dismissing return periods! Stoch. Environ. Res. Risk Assess. 2015, 29, 1179–1189. [Google Scholar] [CrossRef]
- Volpi, E.; Fiori, A. Design event selection in bivariate hydrological frequency analysis. Hydrol. Sci. J. 2012, 57, 1506–1515. [Google Scholar] [CrossRef]
- Deng, K.; Azorin-Molina, C.; Minola, L.; Zhang, G.; Chen, D. Global Near-Surface Wind Speed Changes over the Last Decades Revealed by Reanalyses and CMIP6 Model Simulations. J. Clim. 2021, 34, 2219–2234. [Google Scholar] [CrossRef]
- Calafat, F.M.; Wahl, T.; Tadesse, M.G.; Sparrow, S.N. Trends in Europe storm surge extremes match the rate of sea-level rise. Nature 2022, 603, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Aas, K.; Czado, C.; Frigessi, A.; Bakken, H. Pair-copula constructions of multiple dependence. Insur. Math. Econ. 2009, 44, 182–198. [Google Scholar] [CrossRef]
- Ahn, K.H. Streamflow estimation at partially gaged sites using multiple-dependence conditions via vine copulas. Hydrol. Earth Syst. Sci. 2021, 25, 4319–4333. [Google Scholar] [CrossRef]
- Almeida, C.; Czado, C.; Manner, H. Modeling high-dimensional time-varying dependence using dynamic D-vine models. Appl. Stoch. Model. Bus. Ind. 2016, 32, 621–638. [Google Scholar] [CrossRef]
- Saint Criq, L.; Gaume, E.; Hamdi, Y.; Ouarda, T.B.M.J. Extreme Sea Level Estimation Combining Systematic Observed Skew Surges and Historical Record Sea Levels. Water Resour. Res. 2022, 58, e2021WR030873. [Google Scholar] [CrossRef]
- Volpi, E.; Fiori, A. Hydraulic structures subject to bivariate hydrological loads: Return period, design, and risk assessment. Water Resour. Res. 2014, 50, 885–897. [Google Scholar] [CrossRef]
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly. Geophys. Res. Lett. 2017, 44, 1384–1392. [Google Scholar] [CrossRef]
- Agilan, L.; Umamahesh, N.V. What are the best covariates for developing non-stationary rainfall Intensity-Duration-Frequency relationship? Adv. Water Resour. 2017, 101, 11–22. [Google Scholar] [CrossRef]
- Pokorná, L.; Huth, R. Climate impacts of the NAO are sensitive to how the NAO is defined. Theor. Appl. Climatol. 2015, 119, 639–652. [Google Scholar] [CrossRef]
- El Adlouni, S.; Ouarda, T.B.M.J. Joint Bayesian model selection and parameter estimation of the generalized extreme value model with covariates using birth-death Markov chain Monte Carlo. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
Model | LR p-v. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | - | |||||||||||||
1 | NWS | ≈0 | ||||||||||||
2 | SLP | NWS | ≈0 | |||||||||||
3 | SLP | NWS | SST | |||||||||||
4 | SLP | NWS | SST | SST | ||||||||||
5 | SLP | NWS | SST | SLP | SST |
Model | LR p-v. | |||||
---|---|---|---|---|---|---|
0 | - | |||||
1 | NWS | ≈0 |
Model | LR p-v. | |||||||
---|---|---|---|---|---|---|---|---|
0 | - | |||||||
1 | SST | ≈0 | ||||||
2 | NWS | SST | ||||||
3 | SLP | NWS | SST |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chapon, A.; Hamdi, Y. A Bivariate Nonstationary Extreme Values Analysis of Skew Surge and Significant Wave Height in the English Channel. Atmosphere 2022, 13, 1795. https://doi.org/10.3390/atmos13111795
Chapon A, Hamdi Y. A Bivariate Nonstationary Extreme Values Analysis of Skew Surge and Significant Wave Height in the English Channel. Atmosphere. 2022; 13(11):1795. https://doi.org/10.3390/atmos13111795
Chicago/Turabian StyleChapon, Antoine, and Yasser Hamdi. 2022. "A Bivariate Nonstationary Extreme Values Analysis of Skew Surge and Significant Wave Height in the English Channel" Atmosphere 13, no. 11: 1795. https://doi.org/10.3390/atmos13111795
APA StyleChapon, A., & Hamdi, Y. (2022). A Bivariate Nonstationary Extreme Values Analysis of Skew Surge and Significant Wave Height in the English Channel. Atmosphere, 13(11), 1795. https://doi.org/10.3390/atmos13111795