Effects of Home Office Order on Ambient Particulate Matters Assessed by Interrupted-Time-Series Analysis: Evidence from Shanghai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Study Period
2.2. Statistics Analysis
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chilamakuri, R.; Agarwal, S. COVID-19: Characteristics and Therapeutics. Cells 2021, 10, 206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, W.; Chen, S. Shanghai’s life-saving efforts against the current omicron wave of the COVID-19 pandemic. Lancet 2022, 399, 2011–2012. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- GBD Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Liu, X.; Lang, J.; Zhou, Y.; Wei, L.; Wang, X.; Guo, X. Estimating the contribution of regional transport to PM (2.5) air pollution in a rural area on the North China Plain. Sci. Total Environ. 2017, 583, 280–291. [Google Scholar] [CrossRef]
- Fu, S.; Gu, Y. Highway toll and air pollution: Evidence from Chinese cities. Soc. Sci. Electron. Public 2016, 83, 32–49. [Google Scholar]
- Cole, M.A.; Elliott, R.; Shimamoto, K. Industrial characteristics, environmental regulations and air pollution: An analysis of the UK manufacturing sector. J. Environ. Econ. Manag. 2005, 50, 121–143. [Google Scholar] [CrossRef]
- Lin, C.Y.C.; Zhang, W.; Umanskaya, V.I. The Effects of Driving Restrictions on Air Quality: São Paulo, Bogotá, Beijing, and Tianjin. In Proceedings of the 2011 Annual Meeting, Pittsburgh, PA, USA, 24–26 July 2011. [Google Scholar]
- Degli, E.M.; Spreckelsen, T.; Gasparrini, A.; Wiebe, D.J.; Bonander, C.; Yakubovich, A.R.; Humphreys, D.K. Can synthetic controls improve causal inference in interrupted time series evaluations of public health interventions? Int. J. Epidemiol. 2021, 49, 2010–2020. [Google Scholar] [CrossRef] [PubMed]
- Dennis, J.; Ramsay, T.; Turgeon, A.F.; Zarychanski, R. Helmet legislation and admissions to hospital for cycling related head injuries in Canadian provinces and territories: Interrupted time series analysis. BMJ 2013, 346, f2674. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.L.; Cummins, S.; Gasparrini, A. Interrupted time series regression for the evaluation of public health interventions: A tutorial. Int. J. Epidemiol. 2017, 46, 348–355. [Google Scholar] [CrossRef]
- Wollschläger, D.; Auvinen, A.; Blettner, M.; Zeeb, H. Methodological considerations for interrupted time series analysis in radiation epidemiology: An overview. J. Radiol. Prot. 2021, 41, 609–618. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, R.; Kan, H. Air Pollution, Disease Burden, and Health Economic Loss in China. Adv. Exp. Med. Biol. 2017, 1017, 233–242. [Google Scholar]
- Schraufnagel, D.E.; Balmes, J.R.; Matteis, S.D.; Hoffman, B.; Wuebbles, D.J. Health Benefits of Air Pollution Reduction. Ann. Am. Thorac. Soc. 2019, 16, 1478–1487. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Mansor, A.A.; Napi, N.N.L.M.; Mansor, W.N.W.; Ahmed, A.N.; Ismail, M.; Ramly, Z.T.A. Air quality status during 2020 Malaysia Movement Control Order (MCO) due to 2019 novel coronavirus (2019-nCoV) pandemic. Sci. Total Environ. 2020, 729, 139022. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Pan, Y.; Tanaka, T. COVID-19, City Lockdowns, and Air Pollution: Evidence from China. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Yang, Z.; Liu, T.; Shen, Y.; Fu, X.; Qian, X.; Zhang, Y.; Wang, Y.; Xu, Z.; Zhu, S.; et al. Ambient air pollution and years of life lost in Ningbo, China. Sci. Rep. 2016, 6, 22485. [Google Scholar] [CrossRef]
District | Last Year μg/m3 | Before Home Office Order μg/m3 | During Home Office Order μg/m3 | Variation 1 | Variation 2 | ||
---|---|---|---|---|---|---|---|
μg/m3 | % | μg/m3 | % | ||||
Baoshan | 68.18 | 51.45 | 37.56 | −13.89 ** | −27.00 | −30.62 ** | −44.91 |
Changning | 60.52 | 47.05 | 34.23 | −12.82 ** | −27.24 | −26.28 *** | −43.43 |
Chongming | 56.08 | 38.67 | 30.27 | −8.40 ** | −21.72 | −25.82 *** | −46.03 |
Fengxian | 52.27 | 42.35 | 32.10 | −10.25 * | −24.20 | −20.17 *** | −38.58 |
Hongkou | 61.82 | 48.62 | 36.27 | −12.35 ** | −25.40 | −25.55 ** | −41.33 |
Huangpu | 63.12 | 47.62 | 33.57 | −14.05 ** | −29.51 | −29.55 *** | −46.82 |
Jiading | 65.63 | 50.05 | 37.48 | −12.57 | −25.11 | −28.15 * | −42.89 |
Jingan | 59.60 | 45.93 | 33.08 | −12.85 ** | −27.98 | −26.52 ** | −44.49 |
Jinshan | 57.23 | 44.63 | 33.18 | −11.45 ** | −25.65 | −24.05 *** | −42.02 |
Minhang | 60.13 | 44.18 | 31.92 | −12.27 ** | −27.76 | −28.22 *** | −46.92 |
Pudong New Area | 56.67 | 46.40 | 32.45 | −13.95 ** | −30.06 | −24.22 ** | −42.74 |
Putuo | 62.48 | 50.83 | 36.32 | −14.52 ** | −28.56 | −26.17 ** | −41.88 |
Qingpu | 64.65 | 47.43 | 34.18 | −13.25 ** | −27.93 | −30.47 *** | −47.13 |
Songjiang | 60.25 | 46.68 | 33.18 | −13.50 ** | −28.92 | −27.07 ** | −44.92 |
Xuhui | 61.37 | 45.53 | 32.42 | −13.12 ** | −28.81 | −28.95 *** | −47.18 |
Yangpu | 63.25 | 45.92 | 34.00 | −11.92 ** | −25.95 | −29.25 *** | −46.25 |
Average | 60.83 | 46.46 | 33.89 | −12.57 ** | −27.06 | −26.94 *** | −44.29 |
District | Last Year μg/m3 | Before Home Office Order μg/m3 | During Home Office Order μg/m3 | Variation 1 | Variation 2 | ||
---|---|---|---|---|---|---|---|
μg/m3 | % | μg/m3 | % | ||||
Baoshan | 33.62 | 35.02 | 22.67 | −12.35 ** | −35.27 | −10.95 * | −32.57 |
Changning | 34.05 | 33.20 | 19.77 | −13.43 *** | −40.46 | −14.28 *** | −41.95 |
Chongming | 31.42 | 33.07 | 24.93 | −8.13 ** | −24.60 | −6.48 * | −20.64 |
Fengxian | 31.65 | 34.23 | 22.42 | −11.82 *** | −34.52 | −9.23 * | −29.17 |
Hongkou | 31.42 | 30.83 | 21.48 | −9.35 *** | −30.32 | −9.93 ** | −31.62 |
Huangpu | 33.97 | 34.60 | 22.66 | −11.94 *** | −34.52 | −11.31 ** | −33.30 |
Jiading | 34.73 | 36.70 | 23.93 | −12.77 ** | −34.80 | −10.81 * | −31.11 |
Jingan | 34.47 | 34.95 | 23.20 | −11.75 *** | −33.62 | −11.27 ** | −32.69 |
Jinshan | 35.42 | 36.93 | 23.32 | −13.62 ** | −36.87 | −12.10 *** | −34.16 |
Minhang | 34.83 | 36.82 | 20.82 | −16.00 *** | −43.46 | −14.02 *** | −40.24 |
Pudong New Area | 32.17 | 32.18 | 21.85 | −10.33 ** | −32.11 | −10.32 * | −32.07 |
Putuo | 34.40 | 35.30 | 21.78 | −13.52 *** | −38.29 | −12.62 ** | −36.68 |
Qingpu | 36.07 | 37.48 | 24.75 | −12.73 ** | −33.97 | −11.32 * | −31.38 |
Songjiang | 35.48 | 38.95 | 26.42 | −12.53 ** | −32.18 | −9.07 * | −25.55 |
Xuhui | 35.18 | 34.97 | 23.02 | −11.95 *** | −34.18 | −12.17 * | −34.58 |
Yangpu | 31.00 | 32.90 | 22.42 | −10.48 ** | −31.86 | −8.58 | −27.69 |
Average | 33.74 | 34.88 | 22.84 | −12.04 *** | −34.53 | −10.90 ** | −32.31 |
10 Days | 25 Days | 40 Days | 60 Days | |||||
---|---|---|---|---|---|---|---|---|
Variation | p | Variation | p | Variation | p | Variation | p | |
PM10 | −31.40 | 0.028 | −33.70 | 0.014 | −46.23 | <0.001 | −33.49 | <0.001 |
PM2.5 | −10.33 | 0.276 | −16.35 | 0.038 | −19.44 | 0.002 | −11.12 | 0.039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, L.; Liu, Y.; Ren, Y.; Xu, H.; Han, F.; Qian, H.; Sui, S. Effects of Home Office Order on Ambient Particulate Matters Assessed by Interrupted-Time-Series Analysis: Evidence from Shanghai, China. Atmosphere 2022, 13, 1659. https://doi.org/10.3390/atmos13101659
Tong L, Liu Y, Ren Y, Xu H, Han F, Qian H, Sui S. Effects of Home Office Order on Ambient Particulate Matters Assessed by Interrupted-Time-Series Analysis: Evidence from Shanghai, China. Atmosphere. 2022; 13(10):1659. https://doi.org/10.3390/atmos13101659
Chicago/Turabian StyleTong, Ling, Yongping Liu, Yangyang Ren, Huihui Xu, Fengchan Han, Hailei Qian, and Shaofeng Sui. 2022. "Effects of Home Office Order on Ambient Particulate Matters Assessed by Interrupted-Time-Series Analysis: Evidence from Shanghai, China" Atmosphere 13, no. 10: 1659. https://doi.org/10.3390/atmos13101659
APA StyleTong, L., Liu, Y., Ren, Y., Xu, H., Han, F., Qian, H., & Sui, S. (2022). Effects of Home Office Order on Ambient Particulate Matters Assessed by Interrupted-Time-Series Analysis: Evidence from Shanghai, China. Atmosphere, 13(10), 1659. https://doi.org/10.3390/atmos13101659