The Emissions of Water Vapour and NOx from Modelled Hydrogen-Fuelled Aircraft and the Impact of NOx Reduction on Climate Compared with Kerosene-Fuelled Aircraft
Abstract
:1. Introduction
2. Methods
2.1. Emission Calculation
2.2. Atmospheric Modelling
3. Results and Discussion
3.1. Performance Analysis
3.2. Emissions
3.3. Climate Impact
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Model Output Level | Mean Pressure (hPa) | Approximate Height (km) |
---|---|---|
1 | 1013–912 | 0.0–1.0 |
2 | 912–810 | 1.0–2.0 |
3 | 810–709 | 2.0–3.0 |
4 | 709–607 | 3.0–4.2 |
5 | 607–505 | 4.2–5.6 |
6 | 505–404 | 5.6–7.2 |
7 | 404–302 | 7.2–9.2 |
8 | 302–201 | 9.2–11.8 |
9 | 201–100 | 11.8–16.2 |
References
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef]
- Butler, C.D. Climate change, health and existential risks to civilization: A comprehensive review (1989–2013). Int. J. Environ. Res. Public Health 2018, 15, 2266. [Google Scholar] [CrossRef] [Green Version]
- Tait, K.N.; Khan, M.A.H.; Bullock, S.; Lowenberg, M.H.; Shallcross, D.E. Aircraft emissions, their plume-scale effects and the spatio-temporal sensitivity of the atmospheric response: A review. Aerospace 2022, 9, 355. [Google Scholar] [CrossRef]
- Masiol, M.; Harrison, R.M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar]
- Koroneos, C.; Dompros, A.; Roumbas, G.; Moussiopoulos, N. Life cycle assessment of kerosene used in aviation. Int. J. LCA 2005, 10, 417–424. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Talluri, G.; Vourliotakis, G.; Testa, L.; Prussi, M.; Scarlat, N. Can lower carbon aviation fuels (LCAF) really complement sustainable aviation fuel (SAF) towards EU aviation decarbonization? Energies 2021, 14, 6430. [Google Scholar] [CrossRef]
- Airbus. How Blue Condor Will Accelerate Airbus First Hydrogen-Powered Test Flights. Available online: https://www.airbus.com/en/newsroom/stories/2022-07-how-blue-condor-will-accelerate-airbus-first-hydrogen-powered-test-flights (accessed on 31 August 2022).
- Veziroğlu, T.N.; Barbir, F. Hydrogen: The wonder fuel. Int. J. Hydrog. Energy 1992, 17, 391–404. [Google Scholar] [CrossRef]
- Rosen, M.A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energ. Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef] [Green Version]
- Najjar, Y. Hydrogen safety: The road toward green technology. Int. J. Hydrogen Energy 2013, 38, 10716–10728. [Google Scholar] [CrossRef]
- Verstraete, D. The Potential of Liquid Hydrogen for Long Range Aircraft Propulsion. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2009. [Google Scholar]
- Tashie-Lewis, B.C.; Nnabuife, S.G. Hydrogen production, distribution, storage and power conversion in a hydrogen economy-A technology review. Chem. Eng. J. Adv. 2021, 8, 100172. [Google Scholar] [CrossRef]
- Nojoumi, H.; Dincer, I.; Naterer, G.F. Greenhouse gas emissions assessment of hydrogen and kerosene-fueled aircraft propulsion. Int. J. Hydrog. Energy 2009, 34, 1363–1369. [Google Scholar] [CrossRef]
- Svensson, F. Potential of Reducing the Environmental Impact of Civil Subsonic Aviation by Using Liquid Hydrogen. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2005. [Google Scholar]
- Agarwal, P.; Sun, X.; Gauthier, P.; Sethi, V. Injector design space exploration for an ultra-low NOx hydrogen micromix combustion system GT2019-90833. In Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Phoenix, AZ, USA, 17–21 June 2019. [Google Scholar]
- Kentarchos, A.S.; Roelofs, G.J. Impact of aircraft NOx emissions on tropospheric ozone calculated with a chemistry-general circulation model: Sensitivity to higher hydrocarbon chemistry. J. Geophys. Res. 2002, 107, ACH 8-1–ACH 8-12. [Google Scholar]
- Ponater, M.; Pechtl, S.; Sausen, R.; Schumann, U.; Huttig, G. Potential of the cryplane technology to reduce aircraft climate impact: A state-of-the-art assessment. Atmos. Environ. 2006, 40, 6928–6944. [Google Scholar] [CrossRef] [Green Version]
- Gauss, M.; Isaken, I.S.A.; Wong, S.; Wang, W.C. Impact of H2O emissions from cryoplanes and kerosene aircraft on the Atmosphere. J. Geophys. Res. Atmos. 2003, 108, 4304. [Google Scholar] [CrossRef]
- Yu, Z.; Liscinsky, D.S.; Winstead, E.L.; True, B.S.; Timko, M.T.; Bhargava, A.; Herndon, S.C.; Anderson, B.E. Characterization of lubrication oil emissions from aircraft engines. Environ. Sci. Technol. 2010, 44, 9530–9534. [Google Scholar] [CrossRef]
- Fushimi, A.; Saitoh, K.; Fujitani, Y.; Takegawa, N. Identification of jet lubrication oil as a major component of aircraft exhaust nanoparticles. Atmos. Chem. Phys. 2019, 19, 6389–6399. [Google Scholar] [CrossRef] [Green Version]
- Brierley, J. Comparison of Emissions from Kerosene and Liquid Hydrogen Fuelled Aircraft and Their Impact on Atmospheric Chemistry. Master’s Thesis, University of Bristol, Bristol, UK, 2022. [Google Scholar]
- Jenkinson, L.R.; Simpkin, P.; Rhodes, D. Civil Jet Aircraft Design; Butterworth-Heinemann: Oxford, UK, 1999; 432p. [Google Scholar]
- Wasiuk, D.K.; Lowenberg, M.H.; Shallcross, D.E. An aircraft performance model implementation for the estimation of global and regional commercial aviation fuel burn and emissions. Transp. Res. Part D Transp. Environ. 2015, 35, 142–159. [Google Scholar] [CrossRef] [Green Version]
- Seeckt, K.; Scholz, D. Jet versus Prop, Hydrogen versus Kerosene for a Regional Freighter Aircraft. Available online: http://fe.ProfScholz.de (accessed on 31 August 2022).
- Funke, H.H.-W.; Keinz, J.; Hendrick, P. Experimental evaluation of the pollutant and noise emissions of the GTCP 36-300 gas turbine operated with kerosene and a low NOx micromix hydrogen combustor. In Proceedings of the 7th European Conference for Aeronautics and Space Science (EUCASS), Milan, Italy, 3–6 July 2017. [Google Scholar]
- Collins, W.J.; Stevenson, D.S.; Johnson, C.E.; Derwent, R.G. Tropospheric ozone in a global-scale three-dimensional Lagrangian model and Its response to NOx emission controls. J. Atmos. Chem. 1997, 26, 223–274. [Google Scholar] [CrossRef]
- Cullen, M.J. The unified forecast/climate model. Meteorol. Mag. 1993, 122, 81–94. [Google Scholar]
- Cooke, M.C. Global Modelling of Atmospheric Trace Gases Using the CRI Mechanism. Ph.D. Thesis, University of Bristol, Bristol, UK, 2010. [Google Scholar]
- Jenkin, M.E.; Watson, L.A.; Utembe, S.R.; Shallcross, D.E. A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 1: Gas phase mechanism development. Atmos. Environ. 2008, 42, 7185–7195. [Google Scholar] [CrossRef]
- Watson, L.A.; Shallcross, D.E.; Utembe, S.R.; Jenkin, M.E. A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 2: Gas phase mechanism reduction. Atmos. Environ. 2008, 42, 7196–7204. [Google Scholar] [CrossRef]
- Utembe, S.R.; Watson, L.A.; Shallcross, D.E.; Jenkin, M.E. A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 3: Development of a secondary organic aerosol module. Atmos. Environ. 2009, 43, 1982–1990. [Google Scholar] [CrossRef]
- Utembe, S.R.; Cooke, M.C.; Archibald, A.T.; Jenkin, M.E.; Derwent, R.G.; Shallcross, D.E. Using a reduced common representative (CRI v2-R5) mechanism to simulate tropospheric ozone in 1 3-D Lagrangian chemistry transport model. Atmos. Environ. 2010, 44, 1609–1622. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Khan, M.A.H.; Shallcross, D.E.; Bergström, R.; Simpson, D.; Murphy, K.L.C.; Rickard, A.R. The CRI v2.2. reduced degradation scheme for isoprene. Atmos. Environ. 2019, 212, 172–182. [Google Scholar] [CrossRef]
- Wasiuk, D.K.; Khan, M.A.H.; Shallcross, D.E.; Lowenberg, M.H. A commercial aircraft fuel burn and emissions inventory for 2005–2011. Atmosphere 2016, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Schumann, U. Formation, properties and climate effects of contrails. Comptes Rendus Phys. 2005, 6, 549–565. [Google Scholar] [CrossRef]
Kerosene Fuel Aircraft | |||
---|---|---|---|
Species | Cruise Emissions (kg) | LTO Cycle Emissions (kg) | Total Emissions (kg) |
H2O | 14,890 | 2522 | 17,412 |
NOx | 222.1 | 5.9 | 228.0 |
Hydrogen fuel aircraft | |||
H2O | 58,640 | 16,360 | 75,000 |
NOx | 23.7 | 7.2 | 30.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.H.; Brierley, J.; Tait, K.N.; Bullock, S.; Shallcross, D.E.; Lowenberg, M.H. The Emissions of Water Vapour and NOx from Modelled Hydrogen-Fuelled Aircraft and the Impact of NOx Reduction on Climate Compared with Kerosene-Fuelled Aircraft. Atmosphere 2022, 13, 1660. https://doi.org/10.3390/atmos13101660
Khan MAH, Brierley J, Tait KN, Bullock S, Shallcross DE, Lowenberg MH. The Emissions of Water Vapour and NOx from Modelled Hydrogen-Fuelled Aircraft and the Impact of NOx Reduction on Climate Compared with Kerosene-Fuelled Aircraft. Atmosphere. 2022; 13(10):1660. https://doi.org/10.3390/atmos13101660
Chicago/Turabian StyleKhan, M. Anwar H., Joel Brierley, Kieran N. Tait, Steve Bullock, Dudley E. Shallcross, and Mark H. Lowenberg. 2022. "The Emissions of Water Vapour and NOx from Modelled Hydrogen-Fuelled Aircraft and the Impact of NOx Reduction on Climate Compared with Kerosene-Fuelled Aircraft" Atmosphere 13, no. 10: 1660. https://doi.org/10.3390/atmos13101660
APA StyleKhan, M. A. H., Brierley, J., Tait, K. N., Bullock, S., Shallcross, D. E., & Lowenberg, M. H. (2022). The Emissions of Water Vapour and NOx from Modelled Hydrogen-Fuelled Aircraft and the Impact of NOx Reduction on Climate Compared with Kerosene-Fuelled Aircraft. Atmosphere, 13(10), 1660. https://doi.org/10.3390/atmos13101660